
September 1991 UILU-ENG-91-2241
ACT-118

Applied Computation Theory

IMPROVED PROCESSOR BOUNDS FOR PARALLEL ALGORITHMS
FOR WEIGHTED DIRECTED GRAPHS

Nancy Amato

Coordinated Science Laboratory
College of Engineering
UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN
Approved for Public Release. Distribution Unlimited.

unclassified
« fl.BITV ¿UUSIEICaTIM ÜE fM* EaòF.

REPORT DOCUMENTATION PAGE
form Approved
OMB No. 0704-01»$

1«. REPORT SECURITY CLASSIFICATION

Unclassified •
lb. RESTRICTIVE MARKINGS

None
2a. SECURITY CLASSIFICATION AUTHORITY

2b. DECLASSIFICATION / DOWNGRADING SCHEDULE

3. DISTRIBUTION /AVAILABILITY OF REPORT

Approved for public release;
distribution unlimited

S. MONITORING ORGANIZATION REPORT NUMBER(S)4. PERFORMING ORGANIZATION REPORT NUMBER(S)

UILU-ENG-91-2241 (ACT-118)
U . NAME OF PERFORMING ORGANIZATION

Coordinated Science Lab
University of Illinois

6b. OFFICE SYMBOL
(If »pplkëbh)

N/A_______

7a. NAME OF MONITORING ORGANIZATION

6c AOORESS (City, Staff, and ZIP Codot

1101 W. Springfield Ave.
Urbana, IL 61801

7b. AOORESS (Oty, Staff, *nd ZIP Codot

8a. NAME OF FUNOING/SPONSORING
ORGANIZATION

8b. OFFICE SYMBOL
(If opplkoblot

9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER

Be AOORESS (CHy. Statt, and 21» Codot 10. SOURCE OF FUNOING NUMBERS
PROGRAM PROJECT TASK
ELEMENT NO. NO. NO.

WORK UNIT

11. TITLE (Indudo Security Cutitiottion)
Improved Processor Bounds for Parallel Algorithms for Weighted Directed Graphs

12. PERSONAL AUTHOR(S)Amato, Nancy
13a. TYPE OF REPORT

Technical
13b. TIME COVEREO

FROM_________ TO 114. DATE OF REPORT (Yoor, Month, Ooyt
September 1991_________

IS. PAGE COUNT

13
16. SUPPLEMENTARY NOTATION

17. COSATI COOES

FIELO GROUP SUB-GROUP

18. SUBJECT TERMS (Continue on reverse if noooaary and idondfy by Mode munbort .
weighted directed graph, single-source shortest paths,
parallel algorithms, matrix multiplication

This paper presents a parallel algorithm that solves the single-source shortest path
(SSSP) problem for a weighted digraph G = (V,E) in time 0 (log 2 n) using M{n)
processors on an exclusive-read exclusive-write parallel random access machine (EREW
PRAM), where n = |V|, edge weights are drawn from the set [0 ,1 ,2 ,... ,&], for some
fixed constant it, and M (n) is the number of processors necessary to multiply two n x n
integer matrices over a ring in 0 (log n) time. This algorithm is a generalization of the
result of Gazit and Miller [GM 88] for the SSSP problem on an unweighted digraph.
We then show how our solution of the SSSP problem for a weighted digraph can be
used to solve a number of digraph problems in polylog time using M (n) processors;
all previous NC algorithms for these problems required 0 (n 3) processors (to within
a polylog factor). The digraph problems we consider are finding a minimum weight
branching, finding an ear-decomposition, and the transitive reduction problem.

20. DISTRIBUTION /AVAILABILITY OF ABSTRACT
OUNCLASSIFIEDAJNUMITED □ SAME AS RPT. □ DTIC USERS

21. ABSTRACT SECURITY CLASSIFICATION
Unclassified

22«. NAME OF RESPONSIBLE INOIVIOUAL 22b. TELEPHONE (Indudo Aro* Codot I 22c OFFICE SYMBOL

DO Form 1473. JUN 86 Provious editions *ro obsolete. SECURITY CLASSIFICATION OF THIS PAGE

Improved Processor Bounds for Parallel Algorithms
for Weighted Directed Graphs

Nancy Amato
Department of Computer Science

University of Illinois at Urbana-Champaign Urbana, IL 61801

Abstract

This paper presents a parallel algorithm that solves the single-source shortest path
(SSSP) problem for a weighted digraph G — (V,E) in time O(log2 n) using M(n)
processors on an exclusive-read exclusive-write parallel random access machine (EREW
PRAM), where n — \V\, edge weights are drawn from the set [0,1,2,... ,&], for some
fixed constant k, and M(n) is the number of processors necessary to multiply two nxn
integer matrices over a ring in O(logn) time. This algorithm is a generalization of the
result of Gazit and Miller [GM 88] for the SSSP problem on an unweighted digraph.
We then show how our solution of the SSSP problem for a weighted digraph can be
used to solve a number of digraph problems in polylog time using M(n) processors;
all previous NC algorithms for these problems required 0(n3) processors (to within
a polylog factor). The digraph problems we consider are finding a minimum weight
branching, finding an ear-decomposition, and the transitive reduction problem.

1 Introduction
We present a parallel algorithm that solves the single-source shortest path problem (SSSP)
for a weighted digraph G = (V, E) in time 0(log2 n) using M(n) processors on an exclusive-
read exclusive-write parallel random access machine (EREW PRAM), where n = \V\, edge
weights are drawn from the set [0 ,1 ,2 ,..., fc], for some fixed constant and M(n) is the
number of processors necessary to multiply two n x n integer matrices over a ring in 0(log n)
time (currently, M(n) = n2,376 [CW 87]). The best previous parallel solution to this prob
lem was essentially the computation of the transitive closure of the incidence matrix of the
digraph, and was implemented by using a parallelization of the standard sequential matrix
multiplication algorithm; this approach required time O(log2 n) and 0 (n 3/ log n) processors
in the EREW and CREW PRAM models or O(logn) time and 0(n3) processors in the

1

CRCW PRAM model. The algorithm presented here is a generalization of the 0 (log2 n)
time, M(n) processor EREW PRAM algorithm due to Gazit and Miller [GM 88] for the
SSSP problem in an unweighted digraph. In addition, we provide a proof of correctness for
the generalized algorithm that is simpler than the proof given in [GM 88] for the original
algorithm; this new proof has the added benefit that it provides a more intuitive charac
terization of how the algorithm computes the shortest paths. Using our solution of the
SSSP problem for a weighted digraph, we show that a number of digraph problems can be
solved in polylog time using M(n) processors; all previous NC algorithms for these problems
required at least 0 (n 3) processors (to within a polylog factor). The digraph problems we
consider are finding an ear-decomposition, the transitive reduction problem, and finding a
minimum weight branching where the edge weights are non-negative integers bounded by
some constant k.

In this paper we use the parallel random access machine (PRAM) model of parallel
computation, in which it is assumed that each processor has random access to any shared
memory location in unit time. In the EREW PRAM model, different processors may not
access the same common memory location when reading or writing; in the CREW and
CRCW PRAM models, concurrent reads and concurrent reads and writes, respectively, are
allowed. The commonly held view is that a PRAM algorithm should attempt to solve the
problem in time 0 (logfc n) for some constant k (often referred to as polylog time) using
0 (n ° (U) processors, where n is the size of the input; the class NC consists of those problems
that can be solved within these bounds. In general, an NC algorithm is said to be optimal if
the product of the time and the number of processors used (processor-time product) equals
the sequential complexity of the the problem. Similarly, an NC algorithm is said to be
efficient if the processor-time product exceeds the sequential complexity of the problem by
at most a polylog factor. For a detailed treatment of the various PRAM models and the
class NC consult [KR 90].

Although efficient parallel algorithms exist for many problems concerned with undirected
graphs, the same is not true when dealing with directed graphs (digraphs). The main reason
for this disparity is that reachability information (which vertices are reachable from other
vertices) is often required and, although there are various optimal techniques for searching
undirected graphs (see e.g., [KR 90]), the most economical method known today to determine
if one vertex is reachable from another in a digraph is to compute the transitive closure of
its incidence matrix by repeated matrix multiplication. The standard matrix multiplication
algorithm, working over the semiring (TV, min, +), requires 0 (n 3) operations. When working
over a ring, or Boolean matrices that may be embedded in a ring, there exist more econom
ical techniques requiring 0(na) operations; currently the best of these achieves a. = 2.376
[CW 87]. All of these sequential techniques may be implemented efficiently in parallel; the
standard algorithm requires 0 (1) time and 0 (n 3) processors on a CRCW PRAM, or 0(log n)
time and 0(n3/ log n) processors on an EREW or CREW PRAM, and the more economical

2

algorithms require O(logra) time and 0(na) processors on an EREW or CREW PRAM (un
fortunately these algorithms are not amenable to implementation on CRCW PRAMs). It is
a common convention to denote na by M(n).

Thus, although the parallel solution of many problems dealing with digraphs seems to
require the transitive closure of the relevant incidence matrices, if the computation can be
restricted to matrices over a ring, or Boolean matrices that can be embedded in a ring,
then fewer processors will be required yielding a lower processor-time product. The first
contribution to this effort was made by Gazit and Miller [GM 88] when they provided an
O(log2 n) time, M(n) processor EREW PRAM algorithm for solving the SSSP problem for
an unweighted digraph G = (V, E), where |V| = n. In this paper we extend their result to
include weighted digraphs in which the edges have weights drawn from the set [0 ,1 ,2 ,..., &],
for some constant k. In addition, we provide a proof of correctness for the generalized
algorithm that is simpler than the proof given in [GM 88] for the original algorithm; this
new proof has the added benefit that it provides a more intuitive characterization of how
the algorithm computes the shortest paths. We then explain how our solution of the SSSP
problem for a weighted digraph can be used to reduce the previous known processor bounds
for a number of digraph problems to M(n) from 0 (n 3) (within a polylog factor) without
increasing the running time; the problems we consider are finding an ear-decomposition, the
transitive reduction problem, and finding a minimum weight branching in a digraph in which
the edge weights are non-negative integers bounded by some constant k.

2 Preliminaries
In many of our algorithms we use well known parallel techniques such as pointer jumping,
list ranking and the Euler tour technique as subroutines. Pointer jumping is an operation
on linked lists in which, for every element in the list, the pointer to the next element in the
list is replaced by a pointer to the next element’s next element. Thus, after log n iterations
the first element will have a pointer to the last element. The Euler tour technique on trees is
used with list ranking to obtain a rooted spanning tree corresponding to a depth first search
traversal of the tree. For a detailed explanation of these and other techniques used in this
paper consult [KR 90].

In this paper, we will use a notation introduced in [R 88] to refer to the time and processor
bounds when the processor count is dominated by the number of processors necessary to
multiply two n x n Boolean matrices. The bounds will be reported as parallel time t(n)
using Q(n) processors when the algorithm would run in time t(n) with 0(n3) processors on
a CRCW PRAM and would run in time 0(t(n) ■ logn) with 0(na) processors on an EREW
or CREW PRAM.

There will be two different kinds of matrix multiplication that we will refer to in the

3

following section, and they will be represented by the following symbols:
*: Matrix multiplication over a ring (or Boolean matrices embedded in a ring).
•: Matrix multiplication over the semiring (N U { 00}, min, +).

3 The Single-Source Shortest Path Problem

In a digraph G = {V,E) with root r, the single-source shortest path (SSSP) problem is to
find for every vertex v ^ r the length of the shortest path from r to v. Since the solution of
the SSSP problem can be translated into a single-source breadth-first search (BFS) tree of
the digraph G in constant time using 0(\E\) processors, the SSSP and BFS problems can
be viewed as slightly different instances of the same problem; we will refer to this problem
as the SSSP/BFS problem. In this section, n denotes |V|.

When working with matrices over the semiring (N, min, +), the SSSP/BFS problem can
be solved in O(logn) time using 0 (n 3) processors on a CRCW PRAM (or 0 (log2n) time
with O(n3/lo g n) processors on a CREW or EREW PRAM) by using repeated (min, +)
matrix multiplication; this technique actually solves the all-pairs shortest path problem.
Gazit and Miller have given an algorithm that will solve the SSSP/BFS problem for an
unweighted digraph in time 0 (logn) using Q(n) processors by performing the computations
over a ring [GM 88]. We now show how their method may be extended to solve the problem
for a weighted digraph, where weights of zero and positive integers, less than some constant
k, are allowed; this generalized algorithm also runs in time O(logn) using Q(n) processors.

In the algorithm for solving the SSSP/BFS problem for a weighted digraph G we deal
with edges with weights larger than one and edges with weight zero separately. In particular,
we remove the necessity of considering edges with weights larger than one by transforming
the digraph G into an equivalent digraph G' that has edges with weights of only zero and
one; an important property of this transformation is that the new digraph G' has only 0(n)
vertices. When considering edges of weight zero, we first identify all paths consisting only of
edges with weight zero, and then concatenate these paths with all incident edges of weight
one to identify all paths of weight zero or one. In the following discussion we use wt(vi, v3)
and d(i,j) to refer to the weight of the edge (u,-,Uj) and the shortest distance between the
vertices V{ and Uj, respectively, in G (or the equivalent digraph G').

Algorithm 1: SSSP/BFS in a Weighted Digraph
Input: A digraph G with edge weights w £ {0 ,1 , . . . , k}, for some fixed fc, and a source s.
Output: The lengths of the shortest paths from s to all other vertices in G.

1. Create the digraph G' = (V',E'); initially V' = V and (x,y) £ E' if wt(x,y) is 0 or
1 in G (this same weight is retained in G'). For each vertex v £ V, for each edge

4

weight 2 < w < k in G, add w — 1 new vertices to V' forming a path of length w — 1
originating at vertex v (each edge on the path has weight 1); denote the other endpoint
of this path as vw. Introduce edge u) of weight 1 in G' for every vertex u such that
wt(y,u) —w m G . Let n' = \V'\.

2. Consider the subgraph C = (Vc,Ec) of G' formed by including only those edges of
weight 0; let C be the Boolean incidence matrix of this subgraph (i.e., C[x,y\ = 1 if
(x ,y) € Ec or x — y, 1 < x ,y < n'). Compute Cn , the transitive closure of C. Pre
and post multiply the Boolean incidence matrix of G' by Cn' to form the matrix B0.

3. Next, approximations of the distances between all pairs of vertices are calculated.
Compute the first [logn'] matrices of the form = B{ * B{ — B2. For each matrix
Bj, construct a matrix M, as follows; first set M{[x,y] = oo, next set M,-[x,z/] = 2Z if
B{[x,y] = 1, and finally set Mi[x,y] = 0 if Cn'[x,y] = 1, for 1 < x,y < n' .

4. This step consists of [logn'] - f 1 stages so that after the zth stage (z decreasing), d(s,x)
has been computed if it is a multiple of 2*; specifically, these distances are represented
by a row vector V{ of length n' in which Vjx] = d(s, x) if and only if d(s, x) is a multiple
of 2*, 1 < x < n'. Initially, V(iogn ' l + i M = 0 and V(iogn'l+ibl = 00 ôr J ^ s- For
z = [logrz'] downto 0 let V{ = K+i • Mi.

The algorithm of [GM 88] for solving the SSSP/BFS problem in an unweighted digraph
essentially consists of steps 3 and 4 of the above algorithm, with n replacing n\ the incidence
matrix of G replacing B0, and the condition x = y replacing the condition Cn'[x,y] = 1.

Theorem 1: Algorithm 1 may be implemented in time O(logn) using Q(n) processors.
Proof: In Step 1, for each of the n original vertices in G, we add an additional 0(k2) vertices
to G', for a total of n1 = 0 (k2n) = 0 (n) vertices; this procedure can be accomplished in
G(logn) time using 0 (k2n) = 0 (n) processors for each of the n vertices of G. Clearly the
graph G' preserves the distances among the vertices of G; note that the obvious method
of edge subdivision would not work because this approach could potentially add 0(\E\k) =
0(n2) vertices to G' and would require Q(n2) processors for Boolean matrix multiplication
rather than the desired Q(n). The transitive closure of the matrix C in step 2 and of
the B{ matrices in step 3 can be computed in time O(logn) using Q(n) processors. The
transformation of the B{ matrices into the Mt- matrices in step 3 can be accomplished in
time G(logn) using 0 (n 2) processors. Each of the multiplications over the semiring (TV U
{oo},m in, +) in step 4 can be performed by making n' copies of V, computing n'2 “+ ”
operations, and then computing n' “min” operations, each on a set of n' numbers. Thus,
step 4 can be implemented in time O(log2 n) using 0(n2/ logn) processors. Hence, the total
complexity of Algorithm 1 is O(logn) time using Q(n) processors. □

5

The correctness of Algorithm 1 is established by the following theorem which also provides
a new proof of the correctness of the algorithm presented in [GM 88] for SSSP/BFS in an
unweighted digraph. This theorem has the added benefit that its proof is simpler and shorter
than the corresponding proof of its counterpart in [GM 88]; the main reason for this is
because this theorem only requires that V{[x] = d(s,x) if d(s,x) is a multiple of 2*, whereas
the theorem in [GM 88] requires that Vi[x] = 2* [d(s, x)/2*], 1 < x < n. Furthermore,
although this theorem is weaker, its proof provides a better characterization of the progress
that the algorithm makes in computing the shortest paths; specifically, if 0 < d(s,y) < 2l,
1 < V < n1 then the values in V{[y\ are irrelevant to the computation at stage i (i decreasing)
because if d(s,x) is a multiple of 2* but not of 2t+1, then the algorithm calculates d(s,x)
in stage i from some previously calculated d(s,w) where d(s,w) is a multiple 2l+1 and
d(w, x) = Mi[w, x] = 2*.

Theorem 2: If d(s,j) = c • 2* then Vi[j] = d(s, j), 1 < j < n', 0 < i < flogn'], 0 < c <
2 (i°g

Proof: It is immediate to verify (i) Mi[x,y] = min/€{o>2*,oo}[f|d(z,y) < ¿]? 1 < x ,y < n\ and
(ii) d(s,x) < V{[x] < V̂ +i[x], 1 < x < n' and 0 < i < flogn'"]; these will be referred to as
Facts (i) and (ii), respectively.

The statement is proven by induction on i, i decreasing. Since Vpogn/-| is the sth row of
Mpogn'l? the basis is established by Fact (i). We now assume the statement holds for i + 1
and show that it holds for i; let Vj be a vertex such that d(s, j) = c ■ 2*.

We first note that if c is even, then d(s,j) = c' ■ 2t+1, for some integer c', and thus
by the hypothesis Vi+i[j] = d(s,j); this and Fact (ii) ensure that Vi[j] = d(s,j). If c is
odd, then there must be a vertex Vk that lies on a shortest path from s to Vj such that
d(k,j) = 2* and d(s, k) = d(s,j) — d(k,j) = c • 2* — 2* = (c — 1) • 2*. Moreover, since (c - 1)
is even, d(s,k) = (c — l) /2 • 2,+1 and thus by the hypothesis, V{+i[k] = d(s,k). Finally,
Vi[j] < Vi+i[k] + Mi[k,j] = (c - 1) • 2* + 2* = c • 2* = d(s,j) since, by Fact (i), Mi[k,j] = 2*;
this and Fact (ii) ensure that Vi[j] — d(s,j). □

The proof of this theorem indicates that any additional generalization of this technique
to include digraphs with polynomially bounded weights is unlikely without major alterations
to the general algorithm. This is due to the fact that if d(s,x) = c • 2‘ , c odd, then when
calculating d(s,x) at stage ¿, the algorithm depends on the fact that there is some vy that
lies on a shortest path from s to vx such that d(s,y) = (c — l) /2 • 21+1 and d(y,x) = 2*;
clearly this is unlikely to be the case in a digraph with polynomially bounded edge weights.
(The technique employed here would not work because G' could have as many as O fn u ;^)
vertices, where tumax is the maximum edge weight).

6

4 Minimum Weight Branchings of Digraphs
A branching (also known as a forward or in-branching) of a digraph is a rooted spanning
subgraph such that every vertex except the root has indegree 1; in a reverse or out-branching,
every vertex except the root has outdegree 1. In a weighted digraph G = (V, E), a minimum
weight branching is a collection of edges of E such that these edges form a branching of G and
the sum of the weights on these edges is minimum. In [L 85] Lovasz shows that this problem,
in which the edge weights are polynomially bounded, is in NC by giving an algorithm that
finds the branching in time 0 (log2 nlogw) using 0(n3) processors, where w is the number of
bits used to represent the weights on the edges. The algorithm we present below finds such
a branching in the digraph G in time 0 (log2 n) using Q(n) processors, where the weights
of the edges are bounded by some constant k, and is based on the algorithm presented by
Lovasz.

Algorithm 2: Minimum Weight Branching of a Digraph
Input: A digraph G with edge weights w 6 {0 ,1 ,.. .,& }, for some fixed k, and a root r.
Output: A minimum weight branching of G rooted at r.

1. Without loss of generality, assume that r has outdegree 1 such that the outgoing edge
from r has a very large weight (if not, create such an r in 0 (1) time). For each vertex
v determine the minimum of the weights of its entering edges. If we subtract this
minimum weight from the weight of each edge entering v we will shift the value of the
minimum branching but the edges in a minimum branching will remain unchanged.
We now have a graph in which every vertex has an entering edge with weight 0. Form
the subgraph H by choosing an entering edge with weight 0 for every vertex.

2. If i f is a branching, it has minimum weight and we are done. If not, there exists at
least one directed cycle in H. Identify the directed cycles Hi ,H2, . . . , of H. (Thus
far the algorithm is the same as Edmonds’ [E 67].)

3. For each cycle if,, construct the set of vertices Vi that are reachable from Hl. For
each Hi form a strongly connected component [/, by determining those vertices v £ Vt
whose distance to Hi is less than or equal to the distance from every vertex outside
of Vi to Hi. Form a new graph G' by contracting the sets Ui into a single vertex Ui.
Define the following weighting for the edges of G'

// x _ f ™(x,y) - A + di(y) if y E 1 < i < k
' { w(x,y) otherwise

where w(x,y) (w'(x,y)) is the weight of edge (x,y) in G (G1), di(y) is the shortest

7

distance from y to Hi, and ft is the shortest distance from any vertex outside of V to
Hi.

4. Form the subgraph H', in which each vertex has one entering edge with weight 0, from
G' as follows. Note that, by the definition of ft and w', each vertex € G' has an
entering edge with weight 0; choose one of these edges for each u, and for all other
vertices choose the same edge that was chosen in H. Recursively apply the above steps,
beginning with step 2, to the new graph G', and the just formed subgraph H', to find
a minimum weight branching in it.

We now show how the above algorithm may be implemented in time 0 (log2 n) using
Q{n) processors. Step 1 may be accomplished in time O(logn) using 0(n2) processors, and
the subgraph H' in step 4 can be formed in 0(1) time using 0 (n 2) processors by assigning
n processors to every vertex.

In order to implement step 2 we first note that if we form a branching of each connected
component of H there will be at most one non-tree edge in each branching because each
vertex has indegree of at most one. In addition, these non-tree edges will identify any
directed cycles that exist. We can find a spanning forest of the undirected version of H
using an optimal parallel algorithm [KR 90]. Introducing the orientation of the edges into
the undirected spanning forest will translate it into a branching of H , in which the connected
components of H are identified. If none of the connected components has a non-tree edge H
is a branching, otherwise we have identified the directed cycles in the connected components.
Thus, step 2 can be implemented in time O(log2 n) using 0{n) processors.

In order to form the new graph G' in step 3 we begin by considering each cycle Hi, its
connected component Vi, and all the edges (x ,y) 6 G where both x and y are contained in
Vi. For each such group we compute the shortest distance from each vertex v € Vi to the
cycle Hi. This is done by reversing the direction of all the edges and considering the cycle
Hi as the single source for Algorithm 1. We now have ft(u), the shortest distance for every
vertex u £ Vi to the cycle Hi. We next calculate ft, the shortest distance from some vertex
v £ V — Vi to the cycle Hi as follows. Each vertex x £ K' chooses the edge with minimum
weight entering it from a vertex v £ V — Vi and adds the weight of this edge to its distance
from Ĥ , the minimum of these values is ft. From this point the formation of the Ui sets
and the new graph G' is trivial. The step can be accomplished in time O(logn) using Q(n)
processors.

It is established in [L 85] that if B' is a minimum weight branching in G' and B is a
minimum weight branching in G, then w'(B') = w(B) — ft — ft — . . . — (3k- This shows
that if a minimum weight branching is found for the graph G' it can easily be extended to a
minimum weight branching in G. In addition, it is shown in [L 85] that every directed cycle
in H' will contain at least two vertices that were previously shrunk. This establishes that
there will be at most a logarithmic number of iterations in this algorithm. Therefore, since

8

we have O(logn) iterations, each taking time O(logn) and using Q(n) processors^ the entire
algorithm will run in time O(log2n) using Q(n) processors.

5 Applications of SSSP/BFS and Minimum ¡Weight
Branchings

An ear-decomposition of a digraph G = (V,E) is a partition of E into an ordered collection
of ears (edge-disjoint simple directed paths or simple directed cycles), D = [/$, P i , . . . , Pfc],
such that Po is a simple directed cycle and for 1 < i < n, each endpoint of P, belongs to a
smaller numbered ear while the internal vertices of P, do not belong to any smaller numbered
ear. For undirected graphs, efficient ear-decomposition algorithms imply efficient solutions
to a number of other problems such as 2-edge connectivity and biconnectivity [KR 90]. It is
known that a digraph is strongly connected if and only if it has an ear-decomposition [L 85];
this and the prospect of other applications, as in the undirected case, has lead to interest in
developing ear-decomposition techniques for strongly connected digraphs. Lovasz shows that
finding an ear-decomposition of a strongly connected digraph G = {V,E) is in NC by giving
an algorithm that runs in time O(log2 n) using 0 (n 4) processors [L 85]; the general strategy
of this algorithm is to merge a forward and reverse branching of G by an assignment of labels
to the edges so that edges with the same label designate an ear. In the appendix, we show
that Lovasz’s algorithm can be implemented in time O(logn) using Q(n) processors by using
Algorithm 1 and a judicious combination of well known efficient parallel algorithms such as
pointer jumping and the Euler tour technique [KR 90]. Lucas and Sackrowitz [LM 91] have
proposed another O(logn) time, Q(n) processor algorithm that is similar to that! of Lovasz
but uses a simpler technique of labeling the edges; the advantage of their approach is that it
only requires SSSP/BFS in an unweighted digraph, whereas that of Lovasz uses SSSP/BFS
in a weighted digraph.

Given a strongly connected digraph, the transitive reduction problem is to ^determine a
minimal strongly connected spanning subgraph of it. This spanning subgraph as minimal
in the sense that if any of its edges were removed it would not be strongly connected. A
definition of this problem and algorithms, both parallel and sequential, for its solution are
given in [GKRST 91]. The parallel algorithm runs in time 0 (log4n) with O(n3)(processors
on a CREW PRAM. The subtask in this algorithm responsible for the processor bound is
the computation of a minimum weight branching in a digraph with edge weightseof 0 and 1.
Consequently, by using Algorithm 2 to find this branching the processors necessary can be
reduced to Q(n) without increasing the running time.

9

6 Acknowledgement
The author would like to thank Vijaya Ramachandran for many useful discussions and
suggestions.

References
[CW 87] D. Coppersmith, S. Winograd, Matrix multiplication via arithmetic progres

sions, Proc. 19th Ann. ACM Symp. on Theory of Computing May (1987), pp.
1-6.

[E 67] J. Edmonds, Optimum Branchings, J. Res. Nat. Bureau of Standards 71B
(1967), pp. 233-240.

[GM 88] H. Gazit and G.L. Miller, An Improved Parallel Algorithm That Computes
the BFS Numbering of a Directed Graph, Information Processing Letters 28
(1988), pp. 61-65.

[GKRST 91] P. Gibbons, R. Karp, V. Ramachandran, D. Soroker, R. Tarjan, Transitive
Reduction in Parallel via Branchings, Journal of Algorithms 12 (1991), pp.

[KR 90]

110-125.

R. Karp, V. Ramachandran, Parallel Algorithms for Shared-Memory Ma
chines, Handbook of Theoretical Computer Science - Volume A, J. Van
Leeuwan, ed., Elsevier Science Publishers/The MIT Press, Amsterdam, (1990),
pp. 869-941.

[L 85] L. Lovasz, Computing Ears and Branchings in Parallel, Proc. 26th Annual
Symposium on Foundations of Computer Science (1985), pp. 464-467.

[LM 91] J. Lucas and M. Sackrowitz, Private Communication, (1991).

[R 88] V. Ramachandran, Fast and Processor-Efficient Parallel Algorithms for Re
ducible Flow Graphs, Tech, report #UILU-ENG-88-2257 (ACT #103), Co
ordinated Science Lab, University of Illinois at Urbana-Champaign, Urbana,
Illinois, 61801 (1988).

10

A Appendix - An Ear Decomposition Algorithm for
Digraphs

An ear-decomposition of a digraph G = (V, E) is a partition of E into an ordered collection of
ears (edge-disjoint simple directed paths or simple directed cycles), D = [Po, P i , , Pjb], such
that P0 is a simple directed cycle and for 1 < i < ra, each endpoint of Pi belongs to a smaller
numbered ear while the internal vertices of P, do not belong to any smaller numbered ear. It
is known that a digraph has an ear-decomposition if and only if it is strongly connected [L 85].
Lovasz shows that finding an ear-decomposition of a strongly connected digraph G = (V,E)
is in NC by giving an algorithm that runs in time 0 (log2n) using 0 (n 4) processors [L 85].
We show, by using Algorithm 1 and efficient parallel algorithms such as pointer jumping and
the Euler tour technique [KR 90], that his algorithm can be implemented in time O(logrc)
using Q(n) processors.

Since each edge belongs to exactly one ear, we can numerically label the edges in E so
that these labels uniquely identify an ear-decomposition by assigning the same label to all
edges in the same ear and requiring that the label of ear Pi be less than the label of ear
Pi+1- The following algorithm constructs such a labeling of a strongly connected digraph
G = {V,E) corresponding to an ear-decomposition of G. Its correctness is shown in [L 85].
The general strategy of this algorithm is to construct the ear-decomposition by merging a
forward and reverse branching of G from some root r. From these branchings we will have
a n r -+ u and a v —* r path for each v E V, which if combined form a cycle. In general, there
will be some redundancy in these cycles that must be removed to ensure that the internal
vertices of an ear are not contained in any previous ear. The following algorithm avoids this
redundancy by assigning a priority hierarchy to the cycles and including only those portions
of these cycles that are not contained in some ear of higher priority.

Algorithm: Parallel Ear-Decomposition
Input: A strongly connected digraph G = (V, E).
Output: An ear-decomposition of G.

1. Pick a root r and construct a forward branching, B = (Vb , jEr), of G rooted at r.
Label the edges in E — Eg arbitrarily with unique integers referred to as xp labels. For
each vertex v € V let Fv denote the unique r —► v path in B.

2. Reassign the weights of the edges; 0 for edges in Eb , and 1 otherwise. Form a reverse
branching R = (Vr , Er) by finding, for every v £ V, the shortest v —► r path in G ; let
Rv denote the unique v —> r path in R.

3. Extend the xp labels to the edges in Eb by giving an unlabeled edge the same label

11

as the first labeled edge on the path back to the root in R from the vertex which the
unlabeled edge enters.

4. Assign A labels to the edges of the form

A(u,u) = (\(E(RV) U (u,i>)) - Eb \,\{E(Fv) U (u,v)) - ER\,il>(u,v))

where E{RV) (E(FV)) denotes the edges in Rv (Fv). These A labels uniquely determine
an ear-decomposition of the graph G; those edges with the same label form the ears,
and the ordering of the ears is determined by the value of the labels with priority
assigned to the first, second and third components of the labels in that order.

5. If desired, sort the A labels to obtain the ordering of the ears.

We will now show how each of these steps may be implemented. In every case, optimal
parallel algorithms exist for all techniques used except for the solution of the SSSP problem
which requires Q(n) processors. In order to construct the branching in step 1 we assign a
weight of 1 to each edge in E and find the shortest path from r to every other vertex in
v £ V. For each vertex v (E V we mark the last edge in this path as the edge entering v in
B. This can be done using Algorithm 1.

The rational behind the reassignment of weights in step 2 is to ensure that the final labels
that determine the ears assigned in step 4 will be properly ordered. This is shown in [L 85].
The reverse branching R is easily computed by reversing the directions of all edges e 6 E
while maintaining the new weights assigned above and applying Algorithm 1.

In order to extend the rj) labels in step 3 to the edges in B we will think of vertices as
being labeled. If a vertex has an outgoing edge that is labeled it will assign that same label
to itself. An edge in B will be assigned the label of the vertex that it enters. Our strategy
will be to isolate the relevant edges that are contained in the Rv path for some vertex v
and to determine the first edge on this path that is not contained in B. We note that any
edge e £ B that is not in R cannot be in the unique vertex to root path Rv, for any v 6 V.
Furthermore, for every internal vertex in J9, there is at most one outgoing edge in B that
is also in R. Therefore, we can form linked lists of edges in B by disregarding the edges in
Eb — Er. The label of every vertex in these newly formed linked lists will be either the label
of an outgoing edge of that vertex or of the first vertex in the list below it that is labeled.
(From the structure of B and R we are assured that every leaf of B has an outgoing edge
in E — Eb)- We can further decompose these lists by assigning every vertex with a labeled
outgoing edge that same label and removing the edge leaving that vertex in F?, if there is
one. We are now left with a set of linked lists of vertices in B in which the bottom vertex
in the list is labeled and all other vertices are unlabeled. Now we simply use the pointer
jumping technique to propagate the label from the bottom vertex in each list to all other

12

vertices in the list. This whole process can be accomplished optimally in time O(logn) using
0 (n /lo g n) processors.

When calculating the A labels in step 4, we note that we already have the third component
of label, but we must compute the first and second. The computation of the first component
is trivial. When we were forming the reverse branching R we assigned the edges in B a
weight of 0 and all other edges a weight of 1. Thus, when we found the shortest vertex to
root path, Rv, for each vertex v 6 V we were simply counting the number of edges in this
path that were not in B. Consequently, for an edge (u,u) we determine the first component
by finding the distance from v to the root and adding one to this distance if (u, v) is not in
B. For the second component we need to determine, for all vertices u 6 V, the number of
edges in the Fu path that are not in R. We can use the Euler tour technique on the tree
B to solve this problem optimally. We begin with the tree B and for every edge (u,v) we
add an edge (v,ii). This gives us an Euler tour of B. We now assign a weight of 1 to those
edges that are in B — R and a weight of —1 to their corresponding back edges. For those
edges that are in R, and their corresponding back edges, we assign a weight of 0. Now the
sum of the weights of the edges on the path from the root to the first occurrence of any
vertex v along the Eulerian tour will be the number of edges in the path Fv that are not in
R, as desired. These sums can be calculated optimally by list ranking in time O(log n) with
0(n/ log n) processors.

All portions of the first four steps of the algorithm are accomplished optimally except the
matrix multiplications in the SSSP computations which require Q(n) processors and time
O(logn). Consequently, an ear-decomposition of a strongly connected digraph G can be
obtained in time O(logn) using Q(n) processors. If desired, the A labels may be sorted so
that the ears may be output in order.

13

