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Improved Processor Bounds for Parallel Algorithms 
for Weighted Directed Graphs

Nancy Amato
Department of Computer Science 

University of Illinois at Urbana-Champaign Urbana, IL 61801

Abstract

This paper presents a parallel algorithm that solves the single-source shortest path 
(SSSP) problem for a weighted digraph G — (V,E) in time O(log2 n) using M(n) 
processors on an exclusive-read exclusive-write parallel random access machine (EREW 
PRAM), where n — \V\, edge weights are drawn from the set [0,1,2,... ,&], for some 
fixed constant k, and M(n) is the number of processors necessary to multiply two nxn  
integer matrices over a ring in O(logn) time. This algorithm is a generalization of the 
result of Gazit and Miller [GM 88] for the SSSP problem on an unweighted digraph. 
We then show how our solution of the SSSP problem for a weighted digraph can be 
used to solve a number of digraph problems in polylog time using M(n) processors; 
all previous NC algorithms for these problems required 0(n3) processors (to within 
a polylog factor). The digraph problems we consider are finding a minimum weight 
branching, finding an ear-decomposition, and the transitive reduction problem.

1 Introduction
We present a parallel algorithm that solves the single-source shortest path problem (SSSP) 
for a weighted digraph G =  (V, E) in time 0(log2 n) using M(n)  processors on an exclusive- 
read exclusive-write parallel random access machine (EREW PRAM), where n = \V\, edge 
weights are drawn from the set [0 ,1 ,2 ,..., fc], for some fixed constant and M(n) is the 
number of processors necessary to multiply two n x n  integer matrices over a ring in 0(log n) 
time (currently, M(n) =  n2,376 [CW 87]). The best previous parallel solution to this prob
lem was essentially the computation of the transitive closure of the incidence matrix of the 
digraph, and was implemented by using a parallelization of the standard sequential matrix 
multiplication algorithm; this approach required time O(log2 n) and 0 (n 3/  log n) processors 
in the EREW and CREW PRAM models or O(logn) time and 0(n3) processors in the
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CRCW PRAM model. The algorithm presented here is a generalization of the 0 (log2 n) 
time, M(n) processor EREW PRAM algorithm due to Gazit and Miller [GM 88] for the 
SSSP problem in an unweighted digraph. In addition, we provide a proof of correctness for 
the generalized algorithm that is simpler than the proof given in [GM 88] for the original 
algorithm; this new proof has the added benefit that it provides a more intuitive charac
terization of how the algorithm computes the shortest paths. Using our solution of the 
SSSP problem for a weighted digraph, we show that a number of digraph problems can be 
solved in polylog time using M(n) processors; all previous NC algorithms for these problems 
required at least 0 (n 3) processors (to within a polylog factor). The digraph problems we 
consider are finding an ear-decomposition, the transitive reduction problem, and finding a 
minimum weight branching where the edge weights are non-negative integers bounded by 
some constant k.

In this paper we use the parallel random access machine (PRAM) model of parallel 
computation, in which it is assumed that each processor has random access to any shared 
memory location in unit time. In the EREW PRAM model, different processors may not 
access the same common memory location when reading or writing; in the CREW and 
CRCW PRAM models, concurrent reads and concurrent reads and writes, respectively, are 
allowed. The commonly held view is that a PRAM algorithm should attempt to solve the 
problem in time 0 (logfc n) for some constant k (often referred to as polylog time) using 
0 (n ° (U) processors, where n is the size of the input; the class NC consists of those problems 
that can be solved within these bounds. In general, an NC algorithm is said to be optimal if 
the product of the time and the number of processors used (processor-time product) equals 
the sequential complexity of the the problem. Similarly, an NC algorithm is said to be 
efficient if the processor-time product exceeds the sequential complexity of the problem by 
at most a polylog factor. For a detailed treatment of the various PRAM models and the 
class NC consult [KR 90].

Although efficient parallel algorithms exist for many problems concerned with undirected 
graphs, the same is not true when dealing with directed graphs (digraphs). The main reason 
for this disparity is that reachability information (which vertices are reachable from other 
vertices) is often required and, although there are various optimal techniques for searching 
undirected graphs (see e.g., [KR 90]), the most economical method known today to determine 
if one vertex is reachable from another in a digraph is to compute the transitive closure of 
its incidence matrix by repeated matrix multiplication. The standard matrix multiplication 
algorithm, working over the semiring (TV, min, + ), requires 0 (n 3) operations. When working 
over a ring, or Boolean matrices that may be embedded in a ring, there exist more econom
ical techniques requiring 0(na) operations; currently the best of these achieves a. =  2.376 
[CW 87]. All of these sequential techniques may be implemented efficiently in parallel; the 
standard algorithm requires 0 (1) time and 0 (n 3) processors on a CRCW PRAM, or 0(log n) 
time and 0(n3/ log n) processors on an EREW or CREW PRAM, and the more economical
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algorithms require O(logra) time and 0(na) processors on an EREW or CREW PRAM (un
fortunately these algorithms are not amenable to implementation on CRCW PRAMs). It is 
a common convention to denote na by M(n).

Thus, although the parallel solution of many problems dealing with digraphs seems to 
require the transitive closure of the relevant incidence matrices, if the computation can be 
restricted to matrices over a ring, or Boolean matrices that can be embedded in a ring, 
then fewer processors will be required yielding a lower processor-time product. The first 
contribution to this effort was made by Gazit and Miller [GM 88] when they provided an 
O(log2 n) time, M(n) processor EREW PRAM algorithm for solving the SSSP problem for 
an unweighted digraph G =  (V, E), where |V| =  n. In this paper we extend their result to 
include weighted digraphs in which the edges have weights drawn from the set [0 ,1 ,2 ,..., &], 
for some constant k. In addition, we provide a proof of correctness for the generalized 
algorithm that is simpler than the proof given in [GM 88] for the original algorithm; this 
new proof has the added benefit that it provides a more intuitive characterization of how 
the algorithm computes the shortest paths. We then explain how our solution of the SSSP 
problem for a weighted digraph can be used to reduce the previous known processor bounds 
for a number of digraph problems to M(n) from 0 (n 3) (within a polylog factor) without 
increasing the running time; the problems we consider are finding an ear-decomposition, the 
transitive reduction problem, and finding a minimum weight branching in a digraph in which 
the edge weights are non-negative integers bounded by some constant k.

2 Preliminaries
In many of our algorithms we use well known parallel techniques such as pointer jumping, 
list ranking and the Euler tour technique as subroutines. Pointer jumping is an operation 
on linked lists in which, for every element in the list, the pointer to the next element in the 
list is replaced by a pointer to the next element’s next element. Thus, after log n iterations 
the first element will have a pointer to the last element. The Euler tour technique on trees is 
used with list ranking to obtain a rooted spanning tree corresponding to a depth first search 
traversal of the tree. For a detailed explanation of these and other techniques used in this 
paper consult [KR 90].

In this paper, we will use a notation introduced in [R 88] to refer to the time and processor 
bounds when the processor count is dominated by the number of processors necessary to 
multiply two n x n Boolean matrices. The bounds will be reported as parallel time t(n) 
using Q(n) processors when the algorithm would run in time t(n) with 0(n3) processors on 
a CRCW PRAM and would run in time 0(t(n) ■ logn) with 0(na) processors on an EREW 
or CREW PRAM.

There will be two different kinds of matrix multiplication that we will refer to in the
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following section, and they will be represented by the following symbols:
*: Matrix multiplication over a ring (or Boolean matrices embedded in a ring).
•: Matrix multiplication over the semiring (N U { 00}, min, +).

3 The Single-Source Shortest Path Problem

In a digraph G = {V,E) with root r, the single-source shortest path (SSSP) problem is to 
find for every vertex v ^ r the length of the shortest path from r to v. Since the solution of 
the SSSP problem can be translated into a single-source breadth-first search (BFS) tree of 
the digraph G in constant time using 0(\E\) processors, the SSSP and BFS problems can 
be viewed as slightly different instances of the same problem; we will refer to this problem 
as the SSSP/BFS problem. In this section, n denotes |V|.

When working with matrices over the semiring (N, min, + ), the SSSP/BFS problem can 
be solved in O(logn) time using 0 (n 3) processors on a CRCW PRAM (or 0 (log2n) time 
with O(n3/lo g n ) processors on a CREW or EREW PRAM) by using repeated (min, +) 
matrix multiplication; this technique actually solves the all-pairs shortest path problem. 
Gazit and Miller have given an algorithm that will solve the SSSP/BFS problem for an 
unweighted digraph in time 0 (logn ) using Q(n) processors by performing the computations 
over a ring [GM 88]. We now show how their method may be extended to solve the problem 
for a weighted digraph, where weights of zero and positive integers, less than some constant 
k, are allowed; this generalized algorithm also runs in time O(logn) using Q(n) processors.

In the algorithm for solving the SSSP/BFS problem for a weighted digraph G we deal 
with edges with weights larger than one and edges with weight zero separately. In particular, 
we remove the necessity of considering edges with weights larger than one by transforming 
the digraph G into an equivalent digraph G' that has edges with weights of only zero and 
one; an important property of this transformation is that the new digraph G' has only 0(n)  
vertices. When considering edges of weight zero, we first identify all paths consisting only of 
edges with weight zero, and then concatenate these paths with all incident edges of weight 
one to identify all paths of weight zero or one. In the following discussion we use wt(vi, v3) 
and d(i,j) to refer to the weight of the edge (u,-,Uj) and the shortest distance between the 
vertices V{ and Uj, respectively, in G (or the equivalent digraph G').

Algorithm 1: SSSP/BFS in a Weighted Digraph
Input: A digraph G with edge weights w £ {0 ,1 , . . . ,  k}, for some fixed fc, and a source s. 
Output: The lengths of the shortest paths from s to all other vertices in G.

1. Create the digraph G' =  (V',E'); initially V' =  V and (x,y) £ E' if wt(x,y) is 0 or 
1 in G (this same weight is retained in G'). For each vertex v £ V, for each edge
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weight 2 < w <  k in G, add w — 1 new vertices to V' forming a path of length w — 1 
originating at vertex v (each edge on the path has weight 1); denote the other endpoint 
of this path as vw. Introduce edge u) of weight 1 in G' for every vertex u such that 
wt(y,u) —w m G .  Let n' =  \V'\.

2. Consider the subgraph C =  (Vc,Ec ) of G' formed by including only those edges of 
weight 0; let C be the Boolean incidence matrix of this subgraph (i.e., C[x,y\ =  1 if 
(x ,y) € Ec or x — y, 1 < x ,y  <  n'). Compute Cn , the transitive closure of C. Pre 
and post multiply the Boolean incidence matrix of G' by Cn' to form the matrix B0.

3. Next, approximations of the distances between all pairs of vertices are calculated. 
Compute the first [logn'] matrices of the form =  B{ *  B{ — B2. For each matrix 
Bj, construct a matrix M, as follows; first set M{[x,y] = oo, next set M,-[x,z/] =  2Z if 
B{[x,y] = 1, and finally set Mi[x,y] =  0 if Cn'[x,y] =  1, for 1 < x,y  < n' .

4. This step consists of [logn'] - f 1 stages so that after the zth stage (z decreasing), d(s,x) 
has been computed if it is a multiple of 2*; specifically, these distances are represented 
by a row vector V{ of length n' in which Vjx] =  d(s, x) if and only if d(s, x) is a multiple 
of 2*, 1 < x < n'. Initially, V(iogn ' l + i M  = 0 and V(iogn'l+ibl =  00 ôr J ^ s- For 
z =  [logrz'] downto 0 let V{ =  K+i • Mi.

The algorithm of [GM 88] for solving the SSSP/BFS problem in an unweighted digraph 
essentially consists of steps 3 and 4 of the above algorithm, with n replacing n\ the incidence 
matrix of G replacing B0, and the condition x =  y replacing the condition Cn'[x,y] =  1.

Theorem 1: Algorithm 1 may be implemented in time O(logn) using Q(n) processors. 
Proof: In Step 1, for each of the n original vertices in G, we add an additional 0(k2) vertices 
to G', for a total of n1 =  0 (k2n) =  0 (n ) vertices; this procedure can be accomplished in 
G(logn) time using 0 (k2n) =  0 (n ) processors for each of the n vertices of G. Clearly the 
graph G' preserves the distances among the vertices of G; note that the obvious method 
of edge subdivision would not work because this approach could potentially add 0(\E\k) = 
0(n2) vertices to G' and would require Q(n2) processors for Boolean matrix multiplication 
rather than the desired Q(n). The transitive closure of the matrix C in step 2 and of 
the B{ matrices in step 3 can be computed in time O(logn) using Q(n) processors. The 
transformation of the B{ matrices into the Mt- matrices in step 3 can be accomplished in 
time G(logn) using 0 (n 2) processors. Each of the multiplications over the semiring (TV U 
{oo},m in, + ) in step 4 can be performed by making n' copies of V, computing n'2 “+ ” 
operations, and then computing n' “min” operations, each on a set of n' numbers. Thus, 
step 4 can be implemented in time O(log2 n) using 0(n2/ logn) processors. Hence, the total 
complexity of Algorithm 1 is O(logn) time using Q(n) processors. □
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The correctness of Algorithm 1 is established by the following theorem which also provides 
a new proof of the correctness of the algorithm presented in [GM 88] for SSSP/BFS in an 
unweighted digraph. This theorem has the added benefit that its proof is simpler and shorter 
than the corresponding proof of its counterpart in [GM 88]; the main reason for this is 
because this theorem only requires that V{[x] =  d(s,x) if d(s,x) is a multiple of 2*, whereas 
the theorem in [GM 88] requires that Vi[x] =  2* [d(s, x)/2*], 1 < x < n. Furthermore, 
although this theorem is weaker, its proof provides a better characterization of the progress 
that the algorithm makes in computing the shortest paths; specifically, if 0 < d(s,y) < 2l,
1 < V < n1 then the values in V{[y\ are irrelevant to the computation at stage i (i decreasing) 
because if d(s,x) is a multiple of 2* but not of 2t+1, then the algorithm calculates d(s,x) 
in stage i from some previously calculated d(s,w) where d(s,w) is a multiple 2l+1 and 
d(w, x) =  Mi[w, x] =  2*.

Theorem 2: If d(s,j) =  c • 2* then Vi[j] = d(s, j), 1 <  j  < n', 0 < i < flogn'], 0 < c <
2 (i°g

Proof: It is immediate to verify (i) Mi[x,y] =  min/€{o>2*,oo}[f|d(z,y) < ¿]? 1 < x ,y < n\ and 
(ii) d(s,x) <  V{[x] <  V̂ +i[x], 1 < x < n' and 0 <  i <  flogn'"]; these will be referred to as 
Facts (i) and (ii), respectively.

The statement is proven by induction on i, i decreasing. Since Vpogn/-| is the sth row of 
Mpogn'l? the basis is established by Fact (i). We now assume the statement holds for i +  1 
and show that it holds for i; let Vj be a vertex such that d(s, j)  = c ■ 2*.

We first note that if c is even, then d(s,j) =  c' ■ 2t+1, for some integer c', and thus 
by the hypothesis Vi+i[j] =  d(s,j); this and Fact (ii) ensure that Vi[j] = d(s,j). If c is 
odd, then there must be a vertex Vk that lies on a shortest path from s to Vj such that 
d(k,j) =  2* and d(s, k) =  d(s,j) — d(k,j) =  c • 2* — 2* =  (c — 1) • 2*. Moreover, since (c -  1) 
is even, d(s,k) =  (c — l) /2  • 2,+1 and thus by the hypothesis, V{+i[k] = d(s,k). Finally, 
Vi[j] < Vi+i[k] +  Mi[k,j] =  (c -  1) • 2* +  2* =  c • 2* =  d(s,j) since, by Fact (i), Mi[k,j] =  2*; 
this and Fact (ii) ensure that Vi[j] — d(s,j). □

The proof of this theorem indicates that any additional generalization of this technique 
to include digraphs with polynomially bounded weights is unlikely without major alterations 
to the general algorithm. This is due to the fact that if d(s,x) = c • 2‘ , c odd, then when 
calculating d(s,x) at stage ¿, the algorithm depends on the fact that there is some vy that 
lies on a shortest path from s to vx such that d(s,y) =  (c — l) /2  • 21+1 and d(y,x) =  2*; 
clearly this is unlikely to be the case in a digraph with polynomially bounded edge weights. 
(The technique employed here would not work because G' could have as many as O fn u ;^ ) 
vertices, where tumax is the maximum edge weight).
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4 Minimum Weight Branchings of Digraphs
A branching (also known as a forward or in-branching) of a digraph is a rooted spanning 
subgraph such that every vertex except the root has indegree 1; in a reverse or out-branching, 
every vertex except the root has outdegree 1. In a weighted digraph G = (V, E), a minimum 
weight branching is a collection of edges of E such that these edges form a branching of G and 
the sum of the weights on these edges is minimum. In [L 85] Lovasz shows that this problem, 
in which the edge weights are polynomially bounded, is in NC by giving an algorithm that 
finds the branching in time 0 (log2 nlogw ) using 0(n3) processors, where w is the number of 
bits used to represent the weights on the edges. The algorithm we present below finds such 
a branching in the digraph G in time 0 (log2 n) using Q(n) processors, where the weights 
of the edges are bounded by some constant k, and is based on the algorithm presented by 
Lovasz.

Algorithm 2: Minimum Weight Branching of a Digraph
Input: A digraph G with edge weights w 6 {0 ,1 ,.. .,& }, for some fixed k, and a root r. 
Output: A minimum weight branching of G rooted at r.

1. Without loss of generality, assume that r has outdegree 1 such that the outgoing edge 
from r has a very large weight (if not, create such an r in 0 (1 ) time). For each vertex 
v determine the minimum of the weights of its entering edges. If we subtract this 
minimum weight from the weight of each edge entering v we will shift the value of the 
minimum branching but the edges in a minimum branching will remain unchanged. 
We now have a graph in which every vertex has an entering edge with weight 0. Form 
the subgraph H by choosing an entering edge with weight 0 for every vertex.

2. If i f  is a branching, it has minimum weight and we are done. If not, there exists at 
least one directed cycle in H. Identify the directed cycles Hi ,H2, . . . ,  of H. (Thus 
far the algorithm is the same as Edmonds’ [E 67].)

3. For each cycle if,, construct the set of vertices Vi that are reachable from Hl. For 
each Hi form a strongly connected component [/, by determining those vertices v £ Vt 
whose distance to Hi is less than or equal to the distance from every vertex outside 
of Vi to Hi. Form a new graph G' by contracting the sets Ui into a single vertex Ui. 
Define the following weighting for the edges of G'

// x _  f ™(x,y) -  A +  di(y) if y E 1 < i < k 
' { w(x,y) otherwise

where w(x,y) (w'(x,y)) is the weight of edge (x,y) in G (G1), di(y) is the shortest
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distance from y to Hi, and ft is the shortest distance from any vertex outside of V  to 
Hi.

4. Form the subgraph H', in which each vertex has one entering edge with weight 0, from 
G' as follows. Note that, by the definition of ft and w', each vertex € G' has an 
entering edge with weight 0; choose one of these edges for each u, and for all other 
vertices choose the same edge that was chosen in H. Recursively apply the above steps, 
beginning with step 2, to the new graph G', and the just formed subgraph H', to find 
a minimum weight branching in it.

We now show how the above algorithm may be implemented in time 0 ( log2 n) using 
Q{n) processors. Step 1 may be accomplished in time O(logn) using 0(n2) processors, and 
the subgraph H' in step 4 can be formed in 0(1 ) time using 0 (n 2) processors by assigning 
n processors to every vertex.

In order to implement step 2 we first note that if we form a branching of each connected 
component of H there will be at most one non-tree edge in each branching because each 
vertex has indegree of at most one. In addition, these non-tree edges will identify any 
directed cycles that exist. We can find a spanning forest of the undirected version of H 
using an optimal parallel algorithm [KR 90]. Introducing the orientation of the edges into 
the undirected spanning forest will translate it into a branching of H , in which the connected 
components of H are identified. If none of the connected components has a non-tree edge H 
is a branching, otherwise we have identified the directed cycles in the connected components. 
Thus, step 2 can be implemented in time O(log2 n) using 0{n)  processors.

In order to form the new graph G' in step 3 we begin by considering each cycle Hi, its 
connected component Vi, and all the edges (x ,y ) 6 G where both x and y are contained in 
Vi. For each such group we compute the shortest distance from each vertex v € Vi to the 
cycle Hi. This is done by reversing the direction of all the edges and considering the cycle 
Hi as the single source for Algorithm 1. We now have ft(u), the shortest distance for every 
vertex u £ Vi to the cycle Hi. We next calculate ft, the shortest distance from some vertex 
v £ V — Vi to the cycle Hi as follows. Each vertex x £ K' chooses the edge with minimum 
weight entering it from a vertex v £ V — Vi and adds the weight of this edge to its distance 
from Ĥ , the minimum of these values is ft. From this point the formation of the Ui sets 
and the new graph G' is trivial. The step can be accomplished in time O(logn) using Q(n) 
processors.

It is established in [L 85] that if B' is a minimum weight branching in G' and B is a 
minimum weight branching in G, then w'(B') =  w(B) — ft  — ft  — . . .  — (3k- This shows 
that if a minimum weight branching is found for the graph G' it can easily be extended to a 
minimum weight branching in G. In addition, it is shown in [L 85] that every directed cycle 
in H' will contain at least two vertices that were previously shrunk. This establishes that 
there will be at most a logarithmic number of iterations in this algorithm. Therefore, since
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we have O(logn) iterations, each taking time O(logn) and using Q(n) processors^ the entire 
algorithm will run in time O(log2n) using Q(n) processors.

5 Applications of SSSP/BFS and Minimum ¡Weight 
Branchings

An ear-decomposition of a digraph G = (V,E) is a partition of E into an ordered collection 
of ears (edge-disjoint simple directed paths or simple directed cycles), D =  [/$, P i , . . . ,  Pfc], 
such that Po is a simple directed cycle and for 1 < i <  n, each endpoint of P, belongs to a 
smaller numbered ear while the internal vertices of P, do not belong to any smaller numbered 
ear. For undirected graphs, efficient ear-decomposition algorithms imply efficient solutions 
to a number of other problems such as 2-edge connectivity and biconnectivity [KR 90]. It is 
known that a digraph is strongly connected if and only if it has an ear-decomposition [L 85]; 
this and the prospect of other applications, as in the undirected case, has lead to interest in 
developing ear-decomposition techniques for strongly connected digraphs. Lovasz shows that 
finding an ear-decomposition of a strongly connected digraph G =  {V,E) is in NC by giving 
an algorithm that runs in time O(log2 n) using 0 (n 4) processors [L 85]; the general strategy 
of this algorithm is to merge a forward and reverse branching of G by an assignment of labels 
to the edges so that edges with the same label designate an ear. In the appendix, we show 
that Lovasz’s algorithm can be implemented in time O(logn) using Q(n) processors by using 
Algorithm 1 and a judicious combination of well known efficient parallel algorithms such as 
pointer jumping and the Euler tour technique [KR 90]. Lucas and Sackrowitz [LM 91] have 
proposed another O(logn) time, Q(n) processor algorithm that is similar to that! of Lovasz 
but uses a simpler technique of labeling the edges; the advantage of their approach is that it 
only requires SSSP/BFS in an unweighted digraph, whereas that of Lovasz uses SSSP/BFS 
in a weighted digraph.

Given a strongly connected digraph, the transitive reduction problem is to ^determine a 
minimal strongly connected spanning subgraph of it. This spanning subgraph as minimal 
in the sense that if any of its edges were removed it would not be strongly connected. A 
definition of this problem and algorithms, both parallel and sequential, for its solution are 
given in [GKRST 91]. The parallel algorithm runs in time 0 (log4n) with O(n3)(processors 
on a CREW PRAM. The subtask in this algorithm responsible for the processor bound is 
the computation of a minimum weight branching in a digraph with edge weightseof 0 and 1. 
Consequently, by using Algorithm 2 to find this branching the processors necessary can be 
reduced to Q(n) without increasing the running time.
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A Appendix - An Ear Decomposition Algorithm for 
Digraphs

An ear-decomposition of a digraph G =  (V, E) is a partition of E into an ordered collection of 
ears (edge-disjoint simple directed paths or simple directed cycles), D =  [Po, P i , , Pjb], such 
that P0 is a simple directed cycle and for 1 <  i <  ra, each endpoint of Pi belongs to a smaller 
numbered ear while the internal vertices of P, do not belong to any smaller numbered ear. It 
is known that a digraph has an ear-decomposition if and only if it is strongly connected [L 85]. 
Lovasz shows that finding an ear-decomposition of a strongly connected digraph G = (V,E) 
is in NC by giving an algorithm that runs in time 0 (log2n) using 0 (n 4) processors [L 85]. 
We show, by using Algorithm 1 and efficient parallel algorithms such as pointer jumping and 
the Euler tour technique [KR 90], that his algorithm can be implemented in time O(logrc) 
using Q(n) processors.

Since each edge belongs to exactly one ear, we can numerically label the edges in E so 
that these labels uniquely identify an ear-decomposition by assigning the same label to all 
edges in the same ear and requiring that the label of ear Pi be less than the label of ear 
Pi+1- The following algorithm constructs such a labeling of a strongly connected digraph 
G =  {V,E) corresponding to an ear-decomposition of G. Its correctness is shown in [L 85]. 
The general strategy of this algorithm is to construct the ear-decomposition by merging a 
forward and reverse branching of G from some root r. From these branchings we will have 
a n r -+ u  and a v —* r path for each v E V, which if combined form a cycle. In general, there 
will be some redundancy in these cycles that must be removed to ensure that the internal 
vertices of an ear are not contained in any previous ear. The following algorithm avoids this 
redundancy by assigning a priority hierarchy to the cycles and including only those portions 
of these cycles that are not contained in some ear of higher priority.

Algorithm: Parallel Ear-Decomposition 
Input: A strongly connected digraph G =  (V, E).
Output: An ear-decomposition of G.

1. Pick a root r and construct a forward branching, B =  (Vb , jEr ), of G rooted at r. 
Label the edges in E — Eg arbitrarily with unique integers referred to as xp labels. For 
each vertex v € V let Fv denote the unique r —► v path in B.

2. Reassign the weights of the edges; 0 for edges in Eb , and 1 otherwise. Form a reverse 
branching R =  (Vr , Er) by finding, for every v £ V, the shortest v —► r path in G ; let 
Rv denote the unique v —> r path in R.

3. Extend the xp labels to the edges in Eb by giving an unlabeled edge the same label
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as the first labeled edge on the path back to the root in R from the vertex which the 
unlabeled edge enters.

4. Assign A labels to the edges of the form

A(u,u) =  (\(E(RV) U (u,i>)) -  Eb \,\{E(Fv) U (u,v)) -  ER\,il>(u,v))

where E{RV) (E(FV)) denotes the edges in Rv (Fv). These A labels uniquely determine 
an ear-decomposition of the graph G; those edges with the same label form the ears, 
and the ordering of the ears is determined by the value of the labels with priority 
assigned to the first, second and third components of the labels in that order.

5. If desired, sort the A labels to obtain the ordering of the ears.

We will now show how each of these steps may be implemented. In every case, optimal 
parallel algorithms exist for all techniques used except for the solution of the SSSP problem 
which requires Q(n) processors. In order to construct the branching in step 1 we assign a 
weight of 1 to each edge in E and find the shortest path from r to every other vertex in 
v £ V. For each vertex v (E V we mark the last edge in this path as the edge entering v in 
B. This can be done using Algorithm 1.

The rational behind the reassignment of weights in step 2 is to ensure that the final labels 
that determine the ears assigned in step 4 will be properly ordered. This is shown in [L 85]. 
The reverse branching R is easily computed by reversing the directions of all edges e 6 E 
while maintaining the new weights assigned above and applying Algorithm 1.

In order to extend the rj) labels in step 3 to the edges in B we will think of vertices as 
being labeled. If a vertex has an outgoing edge that is labeled it will assign that same label 
to itself. An edge in B will be assigned the label of the vertex that it enters. Our strategy 
will be to isolate the relevant edges that are contained in the Rv path for some vertex v 
and to determine the first edge on this path that is not contained in B. We note that any 
edge e £ B that is not in R cannot be in the unique vertex to root path Rv, for any v 6 V. 
Furthermore, for every internal vertex in J9, there is at most one outgoing edge in B that 
is also in R. Therefore, we can form linked lists of edges in B by disregarding the edges in 
Eb — Er. The label of every vertex in these newly formed linked lists will be either the label 
of an outgoing edge of that vertex or of the first vertex in the list below it that is labeled. 
(From the structure of B and R we are assured that every leaf of B has an outgoing edge 
in E — Eb )- We can further decompose these lists by assigning every vertex with a labeled 
outgoing edge that same label and removing the edge leaving that vertex in F?, if there is 
one. We are now left with a set of linked lists of vertices in B in which the bottom vertex 
in the list is labeled and all other vertices are unlabeled. Now we simply use the pointer 
jumping technique to propagate the label from the bottom vertex in each list to all other
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vertices in the list. This whole process can be accomplished optimally in time O(logn) using 
0 (n /lo g  n) processors.

When calculating the A labels in step 4, we note that we already have the third component 
of label, but we must compute the first and second. The computation of the first component 
is trivial. When we were forming the reverse branching R we assigned the edges in B a 
weight of 0 and all other edges a weight of 1. Thus, when we found the shortest vertex to 
root path, Rv, for each vertex v 6 V we were simply counting the number of edges in this 
path that were not in B. Consequently, for an edge (u,u) we determine the first component 
by finding the distance from v to the root and adding one to this distance if (u, v) is not in 
B. For the second component we need to determine, for all vertices u 6 V, the number of 
edges in the Fu path that are not in R. We can use the Euler tour technique on the tree 
B to solve this problem optimally. We begin with the tree B and for every edge (u,v) we 
add an edge (v,ii). This gives us an Euler tour of B. We now assign a weight of 1 to those 
edges that are in B — R and a weight of —1 to their corresponding back edges. For those 
edges that are in R, and their corresponding back edges, we assign a weight of 0. Now the 
sum of the weights of the edges on the path from the root to the first occurrence of any 
vertex v along the Eulerian tour will be the number of edges in the path Fv that are not in 
R, as desired. These sums can be calculated optimally by list ranking in time O(log n) with 
0(n/ log n) processors.

All portions of the first four steps of the algorithm are accomplished optimally except the 
matrix multiplications in the SSSP computations which require Q(n) processors and time 
O(logn). Consequently, an ear-decomposition of a strongly connected digraph G can be 
obtained in time O(logn) using Q(n) processors. If desired, the A labels may be sorted so 
that the ears may be output in order.
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