
May 2001 UILU-ENG-01-2210
CHRC-01-01

A PORTABLE SOFTWARE TOOL FOR
MEASUREMENT OF TRANSIENT
ERRORS IN COMMERCIAL
MICROPROCESSORS

Karen E. Wells and Janak H. Patel

Coordinated Science Laboratory
University o f Illinois at Urbana-Champaign
1308 West Main Street, Urbana, IL 61801

REPORT DOCUMENTATION PAGE Form Approved
OMB NO. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources,
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comment regarding this burden estimate or any other aspect of this
collection of information, including suggestions for reducing this burden, to Washington Headquarters Services. Directorate for information Operations and Reports, 1215 Jefferson
Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE
May 2001

3. REPORT TYPE AND DATES COVERED

4. TITLE AND SUBTITLE
A Portable Software Tool for Measurement of Transient Errors in Commercial
Microprocessors

6. AUTHOR(S)

Karen. E. Wells and Janak. H. Patel

5. FUNDING NUMBERS
NASA-JPL-1215699

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Coordinated Science Laboratory
University of Illinois at Urbana-Champaign
1308 West Main Street
Urbana, Illinois 61801-2307

8. PERFORMING RGANIZATION
REPORT NUMBER

UILU-ENG-01-2210
(CRHC-01-01)

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)
Jet Propulsion Laboratory
4800 Oak Grove Drive
Pasadena, CA 91109

10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES
The views, opinions and/or findings contained in this report are those of the author(s) and should not be construed as an
official position, policy or decision, unless so designated by other documentation

12a. DISTRIBUTION/AVAILABILITY STATEMENT

Approved for public release; distribution unlimited.

12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 words)
This research describes a software tool that was written to support NASA's Remote Exploration and Experimentation (REE) project.
The REE project attempts to improve the reliability of commercial off-the-shelf (COTS) microprocessors by supporting research
devoted to bringing commercial supercomputing technology into space. COTS microprocessors are typically not radiation hardened
and are therefore susceptible to transient errors due to alpha-particle radiation found in space environments.

The software tool developed for this research runs on a microprocessor to detect and measure the error rate of a processor exposed to
radiation. It will estimate the location of any errors encountered and output information on these errors. The program is written in
high-level language C and is broken down into separate routines for each testable hardware unit in a microprocessor. The tool is
designed to be portable across several different platforms and is intended to provide crucial information about the state of system.
Using the physical fault injection technique of power supply disturbances, results are presented that verify the tool is capable of
detecting errors within the processor.

14. SUBJECT TERMS

Error detection, SEU, Microprocessors, Control flow error, Fault injection, Error rate,
Error latency

15. NUMBER OF PAGES
62
16. PRICE CODE

17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION 20. LIMITATION OF ABSTRACT
OF REPORT OF THIS PAGE OF ABSTRACT

UNCLASSIFIED UNCLASSIFIED UNCLASSIFIED UL

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)

A Portable Software Tool for Measurement o f Transient Errors
in Commercial Microprocessors

Karen E. Wells and Janak H. Patel
University of Illinois at Urbana-Champaign

ABSTRACT

This research describes a software tool that was written to support NASA’s Remote

Exploration and Experimentation (REE) project. The REE project attempts to improve the

reliability of commercial off-the-shelf (COTS) microprocessors by supporting research devoted

to bringing commercial supercomputing technology into space. COTS microprocessors are

typically not radiation hardened and are therefore susceptible to transient errors due to alpha-

particle radiation found in space environments.

The software tool developed for this research runs on a microprocessor to detect and

measure the error rate of a processor exposed to radiation. It will estimate the location of any

errors encountered and output information on these errors. The program is written in the high-

level language C and is broken down into separate routines for each testable hardware unit in a

microprocessor. The tool is designed to be portable across several different platforms and is

intended to provide crucial information about the state of the system. Using the physical fault

injection technique of power supply disturbances, results are presented that verify the tool is

capable of detecting errors within the processor.

Kev Words: Error detection, SEU, Microprocessors, Control flow error, Fault injection,

Error rate, Error latency

This material is based upon work supported by the NASA-JPL under Award No. 1215699

TABLE OF CONTENTS

1 INTRODUCTION...1
1.1 Background... 1
1.2 Software Tool Description... 2

2 RELATED WORK... 4

3 TRANSIENT ERROR OVERVIEW...8
3.1 Single-Event Upsets...8
3.2 Analysis of Transient Faults...8
3.3 Fault Models.. 9

4 SOFTWARE ERROR DETECTION TECHNIQUES.. 12
4.1 Time Redundancy...12
4.2 Consistency Checks... 12

5 PROCESSOR MODEL..15

6 TESTING THE INTEGER UNITS... 18
6.1 Addition... 19
6.2 Subtraction.. 21
6.3 Multiplication.. 22
6.4 Division..23
6.5 Logical AND... 24
6.6 Logical OR.. 25
6.7 Logical XOR... 26

7 TESTING THE REGISTER UNIT...28
7.1 Fault Model... 28
7.2 Functional Vectors... 28

8 TESTING THE LOAD/STORE UNIT..30
8.1 Fault Model..30
8.2 Functional Vectors... 30

9 TESTING THE INSTRUCTION FETCH UNIT..32
9.1 Fault Model..32
9.2 Functional Vectors... 34

10 TESTING THE BRANCH PROCESSING UNIT..36
10.1 Fault Model..36
10.2 Functional Vectors... 36

11 FAULT INJECTION METHODS...39
11.1 Radiation Inj ection.. 39
11.2 Power Supply Disturbances...39

12 EXPERIMENTAL RESULTS..41
12.1 Experimental Setup.. 41
12.2 Program Output... 42
12.3 Overhead..43
12.4 Programming Issues... 43

ii

12.5 Results...45
12.5.1 Power supply disturbances.. 46
12.5.2 Weak radiation exposure... 47
12.5.3 Temperature increases coupled with power supply disturbances................... 48

13 CONCLUSIONS AND FUTURE WORK... 49
REFERENCES... 51

APPENDIX A REETOOL USER’S GUIDE.. 53
A. 1 Setting Up the Board with the Serial Connection.. 53
A.2 Using vDESKTOP...54

A.2.1 Establishing a serial connection... 54
A.2.2 Downloading the visionWARE file and updating the firmware...................... 54

A. 3 Running the Program... 55
A. 4 Statistical Output..55
A. 5 Making Changes to the Program..56

LIST OF TABLES

Table Page

1: Minimum Test Set for Ripple Carry Adders Under MCFM [19]...20

2: Vectors for Integer Multiplication..22

3: Dependent Integer Multiplication Vectors...23

4: Vectors for Integer Division...23

5: Dependent Integer Division Vectors...24

6: Truth Table for AND Function.. 25

7: Truth Table for OR Function... 26

8: Truth Table for XOR Function...26

9: Operations and Running Times for Each Routine..45

10: Results from the Power Supply Disturbance Experiments...46

11: Command Line Options for REETool..56

IV

LIST OF FIGURES

Figure Page

1: Time Redundancy Example...13

2: Flowchart for Functional Unit Routines... 14

3: MPC750 Processor Block Diagram... 17

4: Example Code for Independent Integer Addition Operations...21

5: Example Code for Dependent Integer Addition Operations... 21

6: Example Code for the Logical AND Routine... 25

7: Example Code for the Logical OR Routine.. 26

8: Example Code for the Logical XOR Routine..27

9: Example Code for the Register Unit... 29

10: Example Code for the Load/Store Unit..31

11 : Example Machine-Level Instructions.. 32

12: General Instruction Format... 33

13: Example Code for the Intruction Fetch Unit.. 35

14: If-Then-Else Tree for the Branch Prediction Unit..37

15: Example Code for the Branch Processing Unit...38

16: Sample Hardware Setup..42

v

1 INTRODUCTION

This research describes a software tool that was written to support NASA’s Remote

Exploration and Experimentation (REE) project. The work was supported by the NASA Jet

Propulsion Laboratory (JPL).

1.1 Background

The prevention of system failure in space applications is extremely important. The

consequences of failures can be costly and hazardous. Of particular concern are temporary

errors, specifically, those due to transient faults. Transient faults are induced by external

perturbation such as power supply fluctuations or radiation. In space applications, they are

predominantly caused by alpha particle radiation. As a result, many companies aim to produce

radiation-hardened systems to be used in space programs. However, these systems are often

more costly, higher in volume, higher in mass and power consumption, and lower in

performance than components presently available off-the-shelf. In particular, today’s

microprocessors that are available commercially have many advantages over those in radiation-

hardened systems. Commonly referred to as commercial off-the-shelf (COTS) components, these

microprocessors are readily available, of high packaging density, cheap, capable of supporting

extensive software, and consume relatively low power [1], With the increased use of software in

space and the drive toward smaller, faster, better, and more cost-effective satellites, COTS

systems are attractive for use in computer-based satellite systems. However, since COTS

microprocessors are not radiation-hardened, they are much more vulnerable to transient failures

[2]. As a result, various tools and methodologies are being researched to tolerate the effects of

radiation on COTS microprocessors in space applications.

The NASA Remote Exploration and Experimentation (REE) project attempts to improve the

reliability of COTS microprocessors by supporting research devoted to bringing commercial

supercomputing technology into space. The design of highly reliable computer systems requires

a thorough understanding of errors in the underlying COTS components, of which a

microprocessor is the principal part. There are many factors that make a microprocessor more

susceptible to radiation induced upsets. However, there is currently little data for analyzing and

1

detecting transient errors in microprocessors. The research described in this paper is part of the

REE project and employs a new method for detecting errors in a microprocessor due to radiation.

A high-level software tool has been created to detect and characterize radiation-induced errors in

space borne applications running on COTS components.

1.2 Software Tool Description

The software tool developed for this research runs on a microprocessor to measure the error

rate and estimate the location of any errors encountered. It is broken down into separate routines

for each testable hardware unit in a microprocessor and it keeps count of the number of errors

found in each unit. In this research, a testable hardware unit can be defined as a collection of

circuitry where most transient errors occurring in that circuitry can be detected and attributed to

that circuitry in a high-level language. Typically, a microprocessor is made up of many

hardware units, several of which are testable. Chapter 5 describes in further detail the general

hardware units of a microprocessor and which ones are considered to be testable from a high-

level language.

Each routine in the program uses a sequence of computations that are performed millions of

times in a loop as a way of testing the specific hardware. The operations in each routine are

chosen in such a way as to maximize the switching activity in the corresponding circuitry. Also,

the error latency in a given unit is minimized by flooding it with millions of operations per

second. This increases the error coverage by utilizing as much of the circuitry as possible as fast

as possible.

There are many advantages of this self-monitoring software tool for error measurements. It

has excellent potential for accurate localization of a single-event upset (SEU) to within a small

functional block. Errors found by this tool will have a latency of only a few instruction cycles in

most cases. Also, the probability of capturing an SEU is very high with the use of enhanced

signal activities and the creation of sensitized paths. The tool is portable to different systems and

can be used during long space missions to periodically measure the error rates. The error rates

can vary during a long mission due to a changing environment and possibly due to aging of the

electronics on the chip. Such a tool can give an early warning to the system of increased error

rates.

2

Some assumptions are made for the tool to work successfully. The type and frequency of

the errors are assumed to be such that the error rate is not so high as to crash the monitoring tool

very frequently. The only data in that case would be the system crash rate, not an error rate. The

errors that do not cause an immediate crash are the most worrisome. They are also far more

likely than catastrophic errors, and if they are not detected early, they can multiply and lead to a

system crash or to additional new errors. For these reasons, the most interesting case for

measurement is for infrequent SEUs.

3

2 RELATED WORK

Determining the suitability of COTS microprocessors for space applications is a subject of

ongoing research. Normally, this involves predicting the expected single-event upset (SEU) rate

in the microprocessor when it is flown in space. This is generally done using ground-based

radiation tests where the device to be tested is exposed to an appropriate particle beam, and

subsequently checked to determine if there have been any state changes. The results from these

tests are used to predict the underlying SEU rate of the device. Over the last several years, many

ideas related to testing the effects of SEUs on microprocessors have been presented:

• In [2], software tools are presented for predicting the rate and nature of observable SEU-

induced errors in microprocessor systems. These tools are built around a commercial

microprocessor simulator and are used to analyze real satellite application systems.

• In [3], the impact of physical fault injection of transient faults on processor execution is

assessed. The fault injection is based on two complementary methods using (1) heavy-

ion radiation, and (2) power supply disturbances. Approximately 12,000 transient faults

were injected into the target microprocessor, a Motorola MC6809E 8-bit CPU, running

three different workloads. Three error-detection mechanisms (two software-based

mechanisms and one watchdog timer) were combined and used to detect as many errors

as possible.

• Also, in [4], two generations of the 80Cx86 microprocessor family and two floating

point digital signal processors (DSP) were tested for single-event effects (SEE). The

SEE rates for each of the device types were measured and the upset vulnerability was

correlated to the size of the program running on each processor.

• In [5], the SEU rates of the Pentium MMX and Pentium II microprocessors using proton

irradiation are determined. An evaluation of the performance of these microprocessors

in the space radiation environment is also presented. Test software was used to

determine the SEU behavior of the ALU, FPU, registers, and cache memory functional

blocks of the microprocessors. A comparison is given of each processor’s susceptibility

to proton irradiation in various modes of operation.

4

• Similarly, in [6], SEE test results are given for the Intel 80386 family and the 80486

microprocessor. Both single-event upset and latchup conditions were monitored.

• Another study by Asenek [7] predicts the rate of observable SEU-induced errors in a

microprocessor system by measuring the errors in terms of the SEU application cross-

section as opposed to the SEU cross-section as a function of the device’s technology

only. A software tool is used to do the predictions as the microprocessor executes real

application software. Results obtained from simulating the nature of SEU-induced

errors are shown to correlate with ground-based radiation test data.

Although this work offers useful information on the susceptibility of a particular

microprocessor to transient errors, the data is still somewhat limited. They all present data for

specific microprocessors and do not attempt to localize the errors. Also, none of the tools is

portable to other systems. It is more desirable to produce results that can be applied to any

system and to run the tools on any microprocessor, which is what this research attempts to do.

Another area of related work is that done by the NASA Remote Exploration and

Experimentation (REE) project itself. The REE Project is working to incorporate a custom, but

architecturally insensitive, software implemented fault tolerance (SIFT) middleware layer, as

well as a generic library of algorithm-based fault tolerance (ABFT) techniques, to enable the

direct use of latest generation commercial hardware and software components in future space

systems. This strategy will allow high throughput computation even in the presence of relatively

high rates of radiation-induced transient upsets as well as in the presence of permanent faults.

Previous work in this area includes:

• A first-generation testbed presented in [8] is created to test the above concepts. The

testbed is equipped with fault injection capabilities and is constructed out of COTS

hardware and software. The methodology used to develop a detailed radiation fault

model for the REE testbed architecture is discussed. Also, result checking is suggested

as a way of enforcing hardware/software reliability. Result checking relies on

developing tests that can confirm the validity of operation output. Their work focuses on

computation errors inherent in the system, rather than on environmentally induced faults.

• Huang and Abraham [9] introduce ABFT—a technique that encodes matrices using

checksum matrices. These are then used to detect and correct faults in matrix

5

operations. They address matrix operations performed using processor arrays with

regard to detecting errors generated by a faulty processor within the array.

• Jou and Abraham [10] present an ABFT error detection scheme for FFT networks. The

method employs an encoding and decoding scheme to detect single errors.

Other work at the microprocessor level have primarily focused on vulnerability assessment

and software detection methods:

• In [11] a detailed analysis of the vulnerability of the Z80 microprocessor, based on ion-

bombardment testing, is presented.

• In [12], a simulation tool called DYNAMO is used to study the effects of transient faults
in large digital circuits.

• In [13], a series of experiments aimed at error analysis through the physical insertion of

faults have been conducted at the NASA AIRLAB test-bed facility. An experimental

analysis is presented to study the susceptibility of a microprocessor-based jet engine

controller to upsets caused by current and voltage transients.

• In [14], a hierarchical error detection framework for a software implemented fault

tolerance (SIFT) layer is proposed for a distributed system. A four-level error detection

hierarchy is proposed in the context of Chameleon, a software environment for providing

adaptive fault-tolerance in an environment of COTS system components and software.

The design and implementation of a software-based distributed signature-monitoring
scheme is described.

• In [15], the design and evaluation of a preemptive control signature technique (PECOS)

for on-line detection of control flow errors is presented. The technique uses assertions

that can be embedded in the assembly language code and that are triggered by control

flow instructions in the code. PECOS can detect errors in control flow that spans

multiple subroutines or source files as well as control-flow, which is determined at

runtime. Software-based error injection techniques are used to evaluate PECOS.

• In [16], PECOS is used in combination with a data audit subsystem to eliminate fail-

silence violations, reduce the incidence of crashes, and eliminate hangs. Software-

implemented error injection is performed to evaluate the system.

All of the above studies are based on low-level hardware-specific techniques. The research

described in this paper differs in that the tool used to detect and locate transient errors is portable

6

across multiple platforms and can be used in a multitude of setups. The goal in using COTS

microprocessors is to reduce cost and increase performance. Our tool supports that by providing

error analysis while not limiting the type of microprocessors or systems to be used.

7

3 TRANSIENT ERROR OVERVIEW

A transient error is an error that can appear and disappear within a very short period of time.

They are temporary or nonpermanent and may arise in a working circuit during its operation due

to a variety of noise sources [12]. For example, internal noise sources such as power transients

and capacitive and inductive crosstalk are common causes, as well as external noise sources such

as cosmic particle hits (e.g., alpha particles) [6]. Cosmic particles are the common cause of

transient errors in space applications; therefore, it is the alpha particle hits that are of most

interest in this work. However, the other sources of transient errors can be used for test

purposes.

3.1 Single-Event Upsets

A single-event upset (SEU) is a type of transient error that is commonly caused by alpha

particle radiation. A SEU is a soft error introduced when an ionizing heavy ion penetrates the

depletion region of a reversed-biased pn-junction. The heavy ion affects only stored information

by changing bit values from 0 to 1 or vice versa. The majority of heavy ions affect only single

bits. No hardware is damaged by the ions. The SEUs are assumed to occur randomly both in

time and in position within a circuit. Typically the transient introduced by an alpha particle lasts

only for a very short period of time, on the order of a fraction of a nanosecond [3].

Transient faults and SEUs are produced in today’s microprocessors in several ways. Such

things as lower supply voltages and lower transistor threshold values make a microprocessor

more susceptible to transient errors. Also, lower noise margins, current leakage, and charge

injections in dynamic circuits contribute to the susceptibility of microprocessors to SEUs. The

higher density of interconnects and the high slew rate of logic signals together make crosstalk

due to capacitive coupling a serious problem. Some circuit defects such as resistive shorts and

opens are missed by the manufacturing tests.

3.2 Analysis of Transient Faults

It has been reported that transient faults account for 80% or more of the failures in digital

systems [12]. The effect of these transient faults is to change the behavior of the digital circuit in

8

some unexpected manner, often producing incorrect results. If the digital system is a critical

application, such as a biomedical, space, military, or avionic application, the results could be

catastrophic. If the critical areas in the circuit that are more susceptible to transient-fault

disturbances are identified, appropriate actions may be taken to prevent those catastrophes.

To analyze the nature of SEU-induced errors in microprocessor systems, it is useful to

predict the rate of observable SEU-induced errors in microprocessor systems and to identify and

classify the errors into different categories. It is also useful to understand whether the occurrence

of an SEU will cause a system to fail catastrophically or to simply lose service for short duration.

This is essential in justifying its suitability for a particular application or mission.

SEUs affecting data are associated with upsets in the execution units such as the ALU, FPU,

or data cache. SEUs affecting control result in program flow errors (sequencing errors), upsets

in the instruction fetch unit or the branch prediction unit. These are more severe than data errors

since SEUs affecting control would be expected to cause an exception. However, SEUs

affecting data are particularly troublesome because they typically have fewer obvious

consequences than an SEU affecting control. It should be noted that since memory will be error

detecting and correcting, faults to memory would be largely screened; most data faults will

therefore affect the microprocessor or its cache.

In [7], results were obtained from simulating the nature of SEU-induced errors in a

microprocessor as well as results from radiation tests causing SEUs. The experiments in this

paper used an 8052 microprocessor system executing the COTS2 operating system program [7].

For the radiation tests, of the 131 observed errors, approximately 31% were due to transient

errors, 64% were resets, 5% were propagated errors. This data is useful because it gives us a feel

for the type and frequency of errors we should expect in a microprocessor exposed to radiation.

3.3 Fault Models

Fault models are typically used to help us characterize the behavior of errors. We make the

assumption that faults behave according to some fault model. This allows us to specifically

define the types of faults that will be considered and the behavior these faults will have [14].

Also, we can represent the behavior of physical occurrences. Several defects are usually mapped

to one fault model. Fault models are not 100% accurate, but they make problems tractable and

represent the types of faults that can occur. The general fault model used for transient faults in

9

this research includes incorrect signal values caused by coupled disturbance. These disturbances

include those due to particle irradiation. The fault models and types of errors expected for

specific microprocessor units are presented in Chapter 5.

Since the software tool designed in this project is intended for use in space applications

where radiation exposure is imminent, a radiation fault model proves to be helpful. In a non

radiation hardened system, faults due to radiation are not prevented, but rather allowed to occur.

The error (the logical manifestation of the fault as seen by the system or software) or a

subsequent manifestation due to propagation of the error is then detected and handled by the

software [8]. Clearly, the design of such a system is dependent on a detailed understanding of

the types of faults that will occur, the errors generated by these faults, and the rate at which they

will appear.

It is useful to predict what types of errors will be generated, under what conditions the

system will become bogged down in error handling, and under what conditions errors will

propagate through the system error detection and containment boundaries. It is for this reason

we have developed the software tool described in this paper. Its ultimate purpose is to output a

real-time error rate so that decisions can be made on the vulnerability of the system as well as

individual components of the processor.

The principle faults for the REE environments are single bit flips; however, there is an

expectation that multiple bit flips will become more prevalent due to shrinking feature sizes [8].

In this fault mode, several physically adjacent cells may be disrupted by the passage of a single

energetic particle. However, these single-event multiple upsets are still relatively rare and for

this research, they are not considered.

From a high-level point of view, faults due to radiation can be grouped into two types:

• Latch faults include latches, flip-flops, memory cells, and any other structure that

persistently stores a bit. ‘Visible’ latches are included, such as data registers, as are

‘invisible’ latches, which are used to implement structures such as instruction pipeline

stages and processor register reservation scoreboards [8].

• Gate faults occur when a SEU happens at approximately the same time as a clock

transition, thus causing the gate to flip its effective bit value [8].

Due to the tight timing required for a gate fault to propagate to, and be latched by, a register,

faults in latches are tens of thousands of times more likely than faults at the gate level, or

10

combinatorial logic. As the clock rate increases, this difference will shrink due to the increased

fraction of time available for combinatorial logic to present erroneous values to registers, which

may then latch these transients [8].

The goal of this section is to provide a basic idea of what types of faults are expected from

radiation and how these faults relate to errors that may be produced. More information on these

types of faults and the fault model structure can be found in [8]. The types of errors expected in

specific functional blocks of a microprocessor from this fault model can be found in Chapter 5.

Also, the functional modules of each unit are examined to determine the effects of errors on their
behavior.

11

4 SOFTWARE ERROR DETECTION TECHNIQUES

Many software fault detection techniques have been implemented in the past. However, all

of these techniques attempt to change the original application code in some way, or they are

coded completely in machine language, which makes them very difficult to port to other systems.

Also, they are often nondeterministic in that it is unknown what instruction sequences will be

executed and what the results of various operations in the application will be at any given time.

The tool described in this thesis is a stand-alone program that was written from scratch in a high-

level language, therefore making it deterministic as well as portable. It is known in advance

what instructions will be executed and what the results of those instructions should be. This

allows the use of some common software error detection techniques such as time redundancy and

consistency checks to detect the transient errors occurring in a COTS microprocessor.

4.1 Time Redundancy

Time redundancy is a method that uses the repetition of computations in ways that allow

errors to be detected. Figure 1 illustrates this idea with a block diagram. The fundamental

concept is to perform the same computation two or more times and compare the results to

determine if a discrepancy exists. If an error is detected, the computations can be performed

again to see if the disagreement remains or disappears [17]. If the discrepancy remains, then

there is a permanent error present; however, if the discrepancy disappears, then a transient error

has occurred.

4.2 Consistency Checks

Consistency checks are used as another means of capturing transient errors in software.

They use a priori knowledge about the characteristics of information to verify the correctness of

that information. For example, when adding two known numbers, such as 2 and 3, we know

that the result should be 5. If the result is not 5 at the moment it is checked, then some sort of

error is present. Combining this idea with the time redundancy method above, the addition can

be performed several times, and if the result is consistently something other than 5, there is most

12

likely a permanent error present. However, if the result is 5 most of the time and something

other than 5 the rest of the time, then there is likely a transient error occurring.

Time

to+nA

Figure 1: Time Redundancy Example.

The software program described in this paper uses consistency checks as the primary

methods of detecting errors. A loop consisting of a group of operations that are checked for

correctness upon completion is executed millions of times. Figure 2 illustrates the basic

flowchart used for each routine when testing the functional units of the microprocessor.

13

Figure 2: Flowchart for Functional Unit Routines.

14

5 PROCESSOR MODEL

To aid in localizing any errors encountered, the microprocessor is represented in terms of its

functional hardware units. A fault model is then developed for each of these functional units. In

this way, computations can be generated to test each unit without the detailed knowledge of how

the instruction sequencing and control section for each unit are implemented. Also, some units

can be broken down into smaller units if it is possible to localize errors to smaller areas in the

circuitry. For example, the integer unit can be broken down into an add unit, a subtract unit, a

multiply unit, etc., because they all use different hardware that can be tested explicitly from a

high-level program. However, some units, such as the branch processing unit, cannot be broken

down further because it is impossible to write a high-level computation that will exclusively test

its subunits such as the branch prediction hardware.

Also, for portability purposes, some basic assumptions are made about the processor when

developing the software tool. First, it is assumed that the registers are of size 32 bits. Second, it

is assumed that certain execution and control units exist in all COTS processors. It is understood

that there are other units unique to specific processors, for example a vector unit; however, these

are not targeted directly in this version of the software tool. Third, because there are many ways

to implement each functional unit, we will concentrate on obtaining high switching on the inputs

and outputs and assume that this will maximize the activity in any given design.

The execution units assumed to be common to all COTS processors as well as their subunit

circuitry that can be tested are as follows:

• Integer units 1 and 2

• Addition

• Subtraction

• Multiplication

• Division

• Logical AND

• Logical OR

• Logical XOR

• Register unit

15

• Floating point unit

• Addition

• Subtraction

• Multiplication

• Division

• Data cache unit

• Load/store unit

The control units assumed to be common to all COTS processors are:

• Instruction fetch unit

• Branch processing unit

The instruction fetch unit encompasses components such as the instruction cache, the

instruction register, the dispatch unit, and any other hardware involved in fetching instructions.

The branch processing unit includes hardware such as the branch target instruction cache, the

branch history table, control registers, and any other circuitry involved in branch prediction.

There are other units not mentioned above that are extremely difficult to test from a high-

level program and are therefore left out when generating the test routines. For example,

detecting errors occurring in the memory management unit (MMU), the reservation stations, the

completion unit, and the bus interface unit cannot be thoroughly and exclusively accomplished in

a high-level program. Also, differentiating between errors in the LI and L2 cache is difficult.

But, even though errors in these units are not tested for explicitly, many other operations that are

performed will utilize these units, and if errors occur, it is possible that they will be detected
indirectly.

The preliminary version of the tool developed in this research was written for a Motorola

PowerPC processor - the MPC750. A block diagram of this processor is shown in Figure 3. The

MPC750 processor contains all of the units described previously and provides a basis for the

software tool. The results presented in Chapter 12 are gathered from testing the tool on the
MPC750.

16

Figure 3: MPC750 Processor Block Diagram.

The following chapters present more detail on how the testing was done for each unit.

However, it should be pointed out that the work for this research was split between two students

and, as a result, only certain units are discussed in this thesis. For a detailed description on how

the data cache and the floating point unit were tested, please refer to the thesis to be written by

Hari Kommaraju [18].

17

6 TESTING THE INTEGER UNITS

It is assumed that any COTS processor used in the space applications will have at least two

integer units. Typically, these integer units have slightly different purposes. In the MPC750

processor shown in Figure 3, integer unit 1 is used for all integer computations, whereas integer

unit 2 is used only for addition. There may be other integer units in other processors, but we will

assume that it is sufficient to test for two.

In general, integer unit 1 is assumed to encompass the following operations:

• Addition

• Subtraction

• Multiplication

• Division

• Logical AND

• Logical OR

• Logical XOR

Each of the above operations uses different logic within the integer unit and each requires a

different operational code (opcode) value in the corresponding instruction. Any errors found

while performing the above operations can be attributed to the particular logic for that operation.

Integer unit 2 is assumed to provide only addition. The specific details of how the processor

decides which integer unit an addition instruction will be allocated to are unknown. As a result,

integer unit 2 must be tested in conjunction with integer unit 1. To guarantee that integer unit 2

is utilized, integer unit 1 must be busy. This is accomplished by issuing integer multiplies in

between integer additions. Since integer unit 2 can only do additions, the multiplications are sent

to integer unit 1 and the subsequent additions will be sent to integer unit 2.

Any error in the integer units can be covered with the appropriate fault model. Each integer

operation can be broken down into several identical logic gates that can be referred to as cells.

Each cell represents the computation for one “slice” of the data. For example, the adder cell

performs the addition of 3 bits and the logical AND cell performs the AND of 2 bits. The general

fault assumption at the cell level is that a faulty cell can change its behavior in any arbitrary way,

18

as long as it remains a combinational circuit [19]. Also, an appropriate cell fault model can
cover any fault in the intercell array.

The operations used for each integer routine are either independent or dependent

computations. The independent computations are executed in a separate loop from that of the

dependent computations. Independent computations are executed one after another, and then the

consistency checks are performed after the last computation completes. The idea is to fill up the

arithmetic pipeline by flooding it with operations. This will exercise the pipeline hardware and

control, and it will indirectly check for some types of control flow errors. If the program

erroneously jumps from the middle of the computations to the middle of the consistency checks,

then the next consistency check will fail.

The dependent computations are performed so that one operation must complete before the

next one can execute. Several operations are performed in a row, and then a single consistency

check is performed at the end. These types of instructions will introduce bubbles in the pipeline

and exercise different pipeline control than that of the independent computations. They will also

check for some types of control flow errors. If the program erroneously jumps from the start of

the dependent computations to the end of the dependent computations, then the final consistency
check will fail.

The pipeline control for independent and dependent instructions is different and can be

exercised by performing the independent and dependent operations described above. Dependent

operations in a pipeline typically require more complex control than independent operations, and

this is a good way to check the functionality of that hardware. Code examples for the

independent as well as the dependent operations can be found in most of the sections that follow.

The logical operations are only tested with independent computations because they typically do

not take many clock cycles to execute.

6.1 Addition
The fault model used for integer addition is the multiple cell fault model (MCFM), which

means that all of the cells can be faulty [19]. In the MCFM, an adder can be tested by a

minimum test set of size 11 independent of the number of cells in the array. An example of the

minimum test set is given in Table 1. Each test vector has a periodic pattern. For any arbitrary

adder, the test set in Table 1 tests every cell with all input combinations. If there is a faulty cell,

19

at least one of the two sum outputs of this faulty cell and its next cell will be different from the

correct value. Therefore, this test set is sufficient to completely test any ripple carry adder under

MCFM. Consistency checks in the program are used to catch these errors. Figure 4 shows a

code excerpt with the independent operations along with the consistency checks. Figure 5 also

shows a small code excerpt with some of the dependent additions where each subsequent

addition depends on the previous result and a final check is performed at the end.

Table 1: Minimum Test Set for Ripple Carry Adders Under MCFM [19].

vector co xoyo x iy i X&2 X3y3 x5y5 . . .

t l 0 00 00 00 00 00 00 . . .

t2 0 00 01 00 01 00 01 . . .

Ö 0 01 00 01 00 01 00 . . .

t4 0 00 10 00 10 00 10 . . .

t5 0 10 00 10 00 10 00 . . .

t6 0 00 11 00 11 00 11 . . .

t7 0 11 00 11 00 11 00 . . .

t8 (t8’) 1(0) 00(10) 00 11 00 00 11 . . .

t9 (t9’) 1(0) 01(11) 01 01 01 01 01 . . .

tlO (tlO’) 1(0) 10(11) 10 10 10 10 10 . . .

t i l (t i l ’) 1(0) 11 11 11 11 11 11 . . .

Note that in Table 1, control over the carry bit, Co, is required in some of the vectors (t8 -

til) . However, from a high-level program, it is difficult, if not impossible, to explicitly set the

carry-in bit. As a result, these vectors must be modified. The Xoyo bits for vectors t8-tl 1 are

modified so that the carry will be rippled through as intended. The new vectors are labeled t8’-

tl 1’ and represent the changes made in parenthesis shown in the table.

20

ChecklntegerAddition()
register int RO, Rl;

for (int i=0; i < LOOP_ITERATIONS; i++) {
RO = 0x00000000 + 0x00000000; // vector tl
Rl = 0x00000000 + Oxaaaaaaaa; // vector t2

if (R0 != Oxaaaaaaaa) UpdateStats(Err, ia);
if (Rl != Oxffffffff) UpdateStats(Err, ia);

_ J __

Figure 4: Example Code for Independent Integer Addition Operations.

ChecklntegerAddition()
register int R0;

for (int i=0; i < LOOP_ITERATIONS; i++) {
R0 = 0x00000000;
R0 = R0 + OxOfffffff;
R0 = R0 + OxOfffffff;
R0 = R0 + OxOfffffff;

if (R0 != OxfffffffO) UpdateStats(Err, ia);
}

Figure 5: Example Code for Dependent Integer Addition Operations.

6.2 Subtraction
The fault model used for subtraction is the same as that for addition. Also, the same

functional vectors are used. A separate routine is used for subtraction because subtraction

involves one more step than addition - a 2’s complement step - and the instruction code for

subtraction will be different. The common implementation for subtraction is to take the 2’s

complement of the subtrahend and add it to the minuend.

It is possible that the subtraction hardware uses hardware for addition to generate the result.

It is therefore recommended that the routine for addition be executed immediately before the

routine for subtraction. If no errors are present in the addition routine, then any errors occurring

in the subtraction routine are most likely due to the extra hardware required for subtraction.

21

6.3 Multiplication
There are several algorithms and hardware designs for implementing multiplication. The

goal in this program is to use vectors that will maximize the switching of the multiplication

steps. Ideally, we would like every bit in the multiplicand, the multiplier, and the product to

change value during each cycle. However, this is difficult to do without knowing the exact

hardware implementation in the system. The best that we can do is to choose operands that

maximize switching at the inputs and also at the outputs. Table 2 shows the vectors used for

integer multiplication along with the number of bits that are switching in the inputs and outputs

from one multiplication to the next. To clarify, between the first and second multiplies, i.e., lines

1 and 2 in the table, 16 bits switch in the first input, 16 bits switch in the second input, and 16

bits switch in the output. Both signed and unsigned numbers of the same magnitude are used.

Table 2: Vectors for Integer Multiplication.

Multiplicand Input Bits
Switching Multiplier Input Bits

Switching Product Output Bits
Switching

0x00000000 0x00000000 0x00000000
0x0000ffff 16 0x0000ffff 16 OxfffeOOOl 16
0x00000000 16 Oxaaaaaaaa 16 0x00000000 16
Oxffffffff • 32 0x00000001 17 Oxffffffff 32
0x00005555 24 0x00005555 7 0xlC718e39 17
0x00000001 7 Oxffffffff 24 Oxffffffff 17
0x0000aaaa 9 0x0000aaaa 24 0x71c638e4 17
0x00004924 9 0x00004924 9 0xl4e58dl0 17
0x0000ffff 11 0x00000002 15 OxOOOlfffe 16
0x00009249 10 0x00009249 7 0x539758Dl 18
0x00002492 11 0x00002492 11 0x05396344 18

Also, dependent multiplications are performed where each subsequent multiply depends on

the previous result and a final check is performed at the end. Table 3 shows the computations for

each step, each intermediate value, the final result expected, and the number of bits switching in

the output between each computation. While these methods do not accomplish perfect switching

among the bits for each output, they are satisfactory in attempting to catch errors in the

multiplication loop.

22

Table 3: Dependent Integer Multiplication Vectors.

Multiply Operation Intermediate result Bits Switching
in the Output

UiRO = OxOOOOOOOf; OxOOOOOOOf
uiRO = uiRO * 0x0000001b; 0x00000195 5
uiRO = uiRO * 0x0000001b; 0x00002ab7 5
uiRO = uiRO * 0x0000001b; 0x0004814d 12
uiRO = uiRO * 0x0000001b; 0x0079a31f 11
uiRO = uiRO * 0x0000001b; 0x0cd43445 16
uiRO = uiRO * 0x00000002; 0xl9a8688a 18
uiRO = uiRO * 0x00000002; 0x3350dll4 18
uiRO = uiRO * 0x00000002; 0x66ala228 18
uiRO = uiRO * 0x00000002; 0xcd4 34 4 50 18

Final Result 0xcd434 450

6.4 Division
Division involves several of the same issues addressed in creating the vectors for

multiplication. Again, it is difficult to maximize the switching in the hardware without knowing

the exact implementation. The vectors are chosen so that the bits in the dividend, divisor, and

quotient are switching as frequently as possible in a high-level program. Table 4 shows these

vectors along with the number of bits that are switching in the inputs and outputs from one

divide to the next. Both signed and unsigned integers with the same magnitude are tested.

Table 4: Vectors for Integer Division.

Dividend Input Bits
Switching Divisor Input Bits

Switching Quotient Output Bits
Switching

0x00000000 Oxffffffff 0x00000000
Oxffffffff 32 0x00000001 31 Oxffffffff 32
Oxcccccccc 16 0x00000004 2 0x33333333 16
0x33333333 32 0x00000003 3 Oxllllllll 8
Oxaaaaaaaa 16 0x22222222 9 0x00000005 9
0x55555555 32 0x55555555 24 0x00000001 1
0x80000000 17 0x08888888 23 OxOOOOOOOf 3
Oxeeeeeeee 23 0x00000002 8 0x77777777 21
0x11111110 31 0x00000002 0 0x08888888 31
Oxcccccccc 23 0x00000003 1 0x44444444 15
Oxffffffff 16 OxOOOOffff 14 0x00010001 10
OxffffOOOO 16 OxOOOOffff 0 0x00010000 1
OxOOOOffff 32 OxOOOOOOOf 12 0x00001111 5
Oxffffffff 16 OxffffOOOO 20 0x00000001 4
0x00000001 31 Oxffffffff 16 Oxffffffff 31
0x44444444 9 0x00000002 31 0x22222222 24

23

As in the multiplication routine, some dependent divisions are performed where each

subsequent divide depends on the previous quotient and a final check is performed at the end.

Table 5 shows the computations for each step, each intermediate value, the final result expected,

and the number of bits switching in each intermediate result. While this does not accomplish

perfect switching among the bits for each intermediate result, it is satisfactory in attempting to

catch control flow errors in the division loop.

Table 5: Dependent Integer Division Vectors.

Divide Operation Intermediate result Bits Switching
UiRO = Oxf0000000; OxfOOOOOOO

uiRO = uiRO / 0x00000001; OxfOOOOOOO 0
uiRO = uiRO / OxOOOOOOOf; 0x10000000 3
uiRO = uiRO / OxOOOOOOOf; 0x01111111 8
uiRO = uiRO / OxOOOOOOOf; 0x00123456 9
uiRO = uiRO / OxOOOOOOOf; 0x000136b0 9
uiRO = uiRO / OxOOOOOOOf; 0x000014b6 5
uiRO = uiRO / OxOOOOOOOf; 0x00000161 9
uiRO = uiRO / OxOOOOOOOf; 0x00000017 6
uiRO = uiRO / OxOOOOOOOf; 0x00000001 3

Final Result 0x00000001

6.5 Logical AND
The vectors used for the logical AND operation are derived so that every input combination

for each cell in the AND gate array is implemented. These vectors are easy to develop since

there are no carry bits and every gate in the computation is independent of the others. The truth

table for a single AND gate cell is shown in Table 6. The columns labeled ‘x’ and ‘y’ represent

the inputs, and the column labeled ‘x AND y’ represents the output for the corresponding inputs.

If there is a fault in any gate in the cell array, one of these input vectors will propagate the error

to the output so that it can be detected.

Figure 6 shows an example of the code using the input vectors outlined in Table 6. The

format of the code for all of the integer routines is essentially the same. The operations are

performed with the defined vectors and then subsequent consistency checks are executed to

check for errors. This process is then repeated in a loop.

24

Table 6: Truth Table for AND Function.

X y x AND y
0 0 0
0 l 0
1 0 0
1 1 1

In addition to the input vectors described in Table 6, other random vectors are used to

increase the number of logical AND operations to be executed. It is important to flood the

hardware with enough operations so that it is constantly in use and so that the error latency is

minimized.

CheckLogicalAND()

register int RO, RI, R2, R3;

for
RO
R1
R2
R3

(int i=0; i < LOOP_ITERATIONS
= 0x00000000 & 0x00000000; //
= 0x00000000 & Oxffffffff; //
= Oxffffffff & 0x00000000; //
= Oxffffffff & Oxffffffff; //

; i++)
inputs
inputs
inputs
inputs

00
01
10
11

if (R0 != 0x00000000)
if (R1 != 0x00000000)
if (R2 != 0x00000000)
if (R3 != Oxffffffff)

UpdateStats(Err, la) ;
UpdateStats(Err, la);
UpdateStats(Err, la);
UpdateStats(Err, la);

Figure 6: Example Code for the Logical AND Routine.

6.6 Logical OR
The routine to test the logical OR hardware is similar to that of the logical AND. Table 7

shows the truth table for the logical OR function. As in the logical AND routine, all of the

possible inputs combinations into the logical OR hardware are tested. Figure 7 exemplifies the

code used in testing the logical OR routine. Also, as in the logical AND routine, other input

vectors are used to flood the hardware with computations, each of which aims to maximize

switching in the hardware.

25

Table 7: Truth Table for OR Function.

X y x OR y
0 0 0

0 l 1

1 0 1

1 l 1

CheckLogicalOR()

register int RO, Rl, R2, R3;

for (int i=0; i < LOOP_ITERATIONS; i++) {
RO = 0x00000000 | 0x00000000; // inputs 00
Rl = 0x00000000 | Oxffffffff; // inputs 01
R2 = Oxffffffff | 0x00000000; // inputs 10
R3 = Oxffffffff | Oxffffffff; // inputs 11

if (R0 != 0x00000000) UpdateStats(Err, lo);
if (Rl != Oxffffffff) UpdateStats(Err, lo);
if (R2 != Oxffffffff) UpdateStats(Err, lo);
if

1
(R3 != Oxffffffff) UpdateStats(Err, lo);

Figure 7: Example Code for the Logical OR Routine.

6.7 Logical XOR
The logical XOR routine follows the same ideas as that of the logical AND and the logical

OR routines. The truth table for the logical XOR operation is shown in Table 8, along with a

code excerpt in Figure 8. Again, other vectors are also used to flood the hardware with

computations.

Table 8: Truth Table for XOR Function.

X y x XOR y
0 0 0

0 1 1

1 0 1

1 1 0

26

CheckLogicalXOR()

register int RO, Rl, R2, R3;

for (int i=0; i < LOOP_ITERATIONS; i++) {
RO = 0x00000000 A 0x00000000; // inputs 00
Rl = 0x00000000 A Oxffffffff; // inputs 01
R2 - Oxffffffff A 0x00000000; // inputs 10
R3 = Oxffffffff A Oxffffffff; // inputs 11

if (R0 != 0x00000000) UpdateStats (Err, lx);
if (Rl != Oxffffffff) UpdateStats(Err, lx);
if (R2 != Oxffffffff) UpdateStats (Err, lx);
if (R3 != 0x00000000) UpdateStats(Err, lx);

Figure 8; Example Code for the Logical XOR Routine.

27

7 TESTING THE REGISTER UNIT

The register unit should be one of the units tested the most. If there are errors present in the

register unit, then the entire microprocessor will produce faulty results. The processor is

assumed to have 32 general purpose registers (GPRs), each 32 bits wide.

7.1 Fault Model
Errors occurring in the register unit are classified in one of the following ways:

1. No register is accessed or a nonexistent register is accessed.

2. An incorrect register is accessed.

3. One or more of the bits in the register data is wrong.

By moving specific data to and from registers in the C program, checking the values, and

then repeating, the above types of errors can be detected. However, the test does not guarantee

that all registers will be utilized as desired. A C program can only recommend that a register be

used for a variable. This is achieved with the declaration of register before the type of

variable, for example, register int x. The compiler will do its best to use a register for

the particular variable.

7.2 Functional Vectors
The functional vectors for the register unit are simple to derive. By changing the value of a

register to a value that is exactly opposite of its previous value, the switching in the bits will be

maximized and there will be a higher likelihood of detecting an error. For example, if we load a

register with 0x33333333, check the result, then load the register with Oxcccccccc and check the

result again, we accomplish the high level of switching in the bits. Also, it is important to use

unique data values for each register when testing them so that if the wrong register is chosen, as

in condition 2 above, the consistency check does not coincidentally get the correct value. Figure

9 shows an example of a portion of the code.

28

CheckRegisterUnit()

register int RO, Rl, R2 r

for (int i=0; i < LOOP ITERATIONS; i++) {
RO = 0x00000000;
R1 = 0x11111111;
R2 = 0x22222222;

if (R0 != 0x00000000) UpdateStats(1, ru) ;
if (Rl != Oxllllllll) UpdateStats(1, ru) ;
if (R2 != 0x22222222) UpdateStats(1, ru) ;

RO = Oxffffffff; // exact opposite
R1 = Oxeeeeeeee; // of previous values.
R2 = Oxdddddddd;

if (RO != Oxffffffff) UpdateStats(1, ru) ;
if (Rl != Oxeeeeeeee) UpdateStats(1, ru) ;
if

}
(R2 != Oxdddddddd) UpdateStats(1, ru) ;

Figure 9: Example Code for the Register Unit.

29

8 TESTING THE LOAD/STORE UNIT

The purpose of the load/store routine is to test the hardware associated with loads and stores.

This includes the hardware for the effective address calculation, any load or store queues, and

any other related hardware involved in the load/store unit. Note that this routine is not intended

to explicitly test the memory or the data cache. A separate routine is used to test the data cache

and is explained in the thesis to be written by Hari Kommaraju [18].

8.1 Fault Model
The fault model for a load or store operation assumes the following types of errors:

1. An error in the memory address of the load or store. This can be due to a bit flip in the

address or to an incorrect calculation of the effective address.

2. An error in the data for the load or store.

8.2 Functional Vectors
The functional vectors for the load/store unit attempt to catch the errors described in the

fault model above. Arrays are used to allocate areas in memory and transfer data to and from

these locations. The data that is transferred is chosen in such a way as to maximize the switching

of the bit values in each memory location. The following paragraph outlines this process.

First, ten integer arrays with sixteen locations each are allocated and initialized to specific

values, for example, i n t a [1 6] = {O xaaaaaaaa , O xaaaaaaaa , ... }. Tenarraysare

chosen so that a reasonable amount of memory is allocated each time the routine is called.

Second, the data from one initialized array is transferred to the corresponding location of another

array. This operation consists of loading the value from one location and storing it to another.

Third, the values in each location of the array with new data are checked for the correct value.

This involves an additional load operation. Finally, some dependent load and stores are executed

to prevent any compiler optimizations. Figure 10 shows an example of the code.

By transferring the data from one array to another in this manner, any bits that have been

erroneously flipped in the data will be detected in the consistency checks. Similarly, any bits in

30

the address of the memory location that are changed or erroneously calculated will result in the

wrong memory location being accessed and will also be detected in the consistency check.

CheckLoadStoreUnit()
int g [16] = {0x33333333, 0x33333333, ..., 0x33333333};
int h[16] = {Oxcccccccc, Oxcccccccc, ..., Oxcccccccc};

for (int i=0; i < LOOP_ITERATIONS; i++) {
h[0] = g [0];
h[l] = g [1]; . . .
h [15] = g [15];

if (h[0] != 0x33333333) UpdateStats(Err, lsu);
if (h[l] != 0x33333333) UpdateStats(Err, lsu); . . .
if (h[15] != 0x33333333) UpdateStats(Err, lsu) ;

// Dependent loads and stores
g[0] = Oxcccccccc; // Opposite of previous value
g [l] = g[0]; . . .
g [15] = g[14];

if (g[0] != Oxcccccccc) UpdateStats(Err, lsu);
if (g[l] != Oxcccccccc) UpdateStats(Err, lsu); . . .
if (g[15] != Oxcccccccc) UpdateStats(Err, lsu);

// Copy back the contents for the next loop
g [0] = h[0];
g[l] = h [1];
g [15] = h [15];

Figure 10; Example Code for the Load/Store Unit.

31

9 TESTING THE INSTRUCTION FETCH UNIT

The instruction fetch unit encompasses all of the hardware involved in the instruction fetch

cycle. This typically involves hardware such as the instruction register, an instruction cache, and

perhaps an instruction queue. There may be other hardware as well. The general idea of testing

the instruction fetch unit is by means of executing instructions. The instruction cache behaves as

any cache, but cannot contain just any data. It must contain valid instructions. Potential cache

faults result in an alteration of these instructions that may lead to errors in the program.

9.1 Fault Model
An operation in a high-level program can be viewed as a sequence of one or more machine-

level instructions, where every instruction represents the elementary data-transfer and data-

manipulation operations for a given architecture. Figure 11 shows an example of some C

program statements that are converted to possible machine-level instructions.

C Code Possible Corresponding
Machine-level instructions

int R1 = 4 ;
int R2 = 8;
int R3 = 55;
RO = Ri + R2 - R3;

if (RO != 12) Err++;

mov Rl, 4
mov R2, 8
mov R3, 55
add RO, Rl, R2
sub RO, RO, R3
beq RO, 12, #done
addi RO, RO, 1
done:

Figure 11: Example Machine-Level Instructions.

The general form of an instruction is shown in Figure 12, where the opcode is the operation

code for the given instruction and A, B, and C are the addressing fields. The addressing fields

can be one of the following:

• a register number,

• a constant value,

• or an offset.

32

opcode A B C
Figure 12: General Instruction Format.

Errors in the instruction fetch unit are related to the machine-level instructions and will

occur under one or more of the following events:

1. One or more instructions become inactive; therefore, the operation is not executed

completely.
2. Instructions that are normally inactive become active. This includes an instruction

opcode that gets changed in such a way so that another instruction gets activated. For

example, if the opcode for the ADD instruction is 0001 and the opcode for the OR

instruction is 0011, it is conceivable that the ADD instruction opcode may get changed

to the OR instruction in the event of a SEU.

3. One or more of the addressing fields of the instruction is changed to the wrong value.

4. A branch to an incorrect address somewhere within the software tool that was not

intended.

In the first case, if the operation is not executed completely, then the final result will be

incorrect and the check instruction will catch the error. In the second case, either a wrong, but

valid instruction will get executed, or an invalid instruction will get executed. If a valid, but

wrong instruction gets executed, the check instruction should catch the error unless the wrong

instruction is a branch. If that is true, as long as the branch jumps to a location within the

program space as in the fourth case, the program is capable of reporting the error. However, if

the branch jumps outside of the program space, an exception will occur and the program will

crash. If an invalid instruction gets executed, an illegal instruction exception will occur and also

cause the system to crash. If an error occurs in one of the addressing fields, several scenarios

are possible:

1. The wrong register is used.

2. An invalid register is used.

3. An error in the constant value is used.

4. An invalid constant is used.

5. A wrong offset value is used.

6. An invalid offset is used.

33

In 1 and 3, the error will be detected by the check instruction. In 2, 4, and 6, the system will

most likely generate an exception and the system will crash. In the case of 5, if the error in the

offset causes the instruction to jump to another location in the program, the error will most likely

be detected. If the error causes the program to jump to a location outside of the program space,

the system will generate a segmentation fault and crash.

In general, any instructions that are affected in such a way so that an illegal instruction is

generated, or that a branch to an illegal portion of memory is executed, the operating system will

produce a segmentation fault and crash the program. These types of errors are highly likely and

there is nothing that can be done when they occur. It is the less severe, wrong but still legal

instructions that our program hopes to detect and report.

The above fault model is fairly straightforward, but it is still difficult to explicitly test the

instruction fetch unit and even more tricky to attribute errors to its hardware. The general idea

behind the test routine in this program is to execute several types of operations and monitor the

types of errors found. For example, if there are errors occurring in many different places in the

instruction fetch routine (i.e., errors in more than one type of operation), we can make the

hypothesis that there are upsets somewhere in the instruction fetch unit. This correlates with the

assumptions that any SEUs occurring will be localized to a specific area and are fairly

infrequent.

In addition, by comparing the output from the routine for this unit with the output from other

units, it is possible to further conclude that certain types of errors are most likely occurring in the

instruction fetching hardware. As an example, if the integer operations or the floating point

operations do not produce any errors when running their individual routines, but they all produce

errors when running the instruction fetch routine, then there is most likely a problem in the

instruction fetching hardware.

9.2 Functional Vectors
As stated in the previous section, the test code for this unit executes various instructions of

different types. Each instruction performs a data manipulation or a data transfer, and at the

completion of the instruction, the expected value is checked. If there is an error in the instruction

performing the operation to be checked such that the processor is able to continue executing, it

should be caught by the following consistency check.

34

A portion of the code used to check the instruction fetch unit is shown in Figure 13. The

actual routine has more operations included. It can be seen that there are many types of

computations performed and that unless there are multiple types of errors found, it cannot be

assumed that the errors are occurring in the instruction fetch unit. In that case, further tests must

be run. But, if there are multiple errors detected in this routine, then the situation is reported and

the appropriate action can be taken.

void ChecklnstructionFetchUnit()

register long iRO, iRl, iR2, iR3, iR4, iR5, iR6, iR7, iR8;
register double fRO, fRl, fR2, fR3, fR4, fR5, fR6, fR7, fR8;
long i [4] = {12, 3, 192, 48};
double m [4] = {12001.2, 3000.3, 192019.2, 48004.8};

for (int i=0; i < LOOP_ITERATIONS; i++) {
iRO = i [0]; // load
if (iRO != 12) { ErrType = 1; goto END; }
iR4 = iRO + iRl; // integer add
if (iR4 != 15) { ErrType = 2; goto END; }
fRO = m[0]; // load
if ((int)(fR0*10) != 120012) { ErrType = 1; goto END; }
fR4 = fRO + fRl; // floating point add
if (fR4 != 15001.5) { ErrType = 6; goto END; }
iR4 = iR6 - iR4; // integer sub
if (iR4 != 240) { ErrType = 3; goto END; }
fR4 = fR6 - fR4; // floating point subtract
if (fR4 != 240024.0) { ErrType = 7; goto END; }
iR6 = iR4 * iR5; // integer multiply
if (iR6 != 3600) { ErrType = 4; goto END; }
fR6 = fR4 * fR5; // floating point multiply
if (fR6 != 3600720036.0) { ErrType = 8; goto END; }
iR7 = iR7 / 10000; // floating point divide
if (iR7 != 4095) { ErrType = 5; goto END; }
iR8 = iR7 / iR5; // integer divide
if (iR8 != 273) { ErrType = 5; goto END; }

END: if (ErrType != PrevErrType) {
printf("Err in IFU: Multiple Instructions have errors.\n");
UpdateStats(1, IFUnit);
PrevErrType = ErrType;

} else SameErrs++;

Figure 13: Example Code for the Intruction Fetch Unit.

35

10 TESTING THE BRANCH PROCESSING UNIT

The branch processing unit includes any hardware used in branch prediction or branch

control, for example the branch target instruction cache, the branch history table, and perhaps

some control registers. The routine to test the branch processing unit aims at detecting any

control flow errors occurring as a result of corrupted branches or branch addresses.

10.1 Fault Model
Errors expected in the branch processing unit are as follows:

1. The target address for the branch is wrong

2. One or more errors in the control registers associated with branch processing

3. One or more errors in the status bits

Errors in the actual prediction for a given branch cannot be detected from a high level

program. If a SEU affects the prediction for a certain branch, no error will be produced. The

worst that will happen is the processor will have to backtrack and re-execute the branch with the

correct path.

10.2 Functional Vectors
The branch processing unit is tested using an if-then-else tree. A pictorial

representation of the if-then-else tree is shown in Figure 14. Each circle in the tree

represents an i f statement. If the condition of the i f statement evaluates to true, then the right

branch of the tree is followed; otherwise the left branch is followed—i.e., i f condition = TRUE

then go right, else go left. At the end of each path resides a leaf node containing a numerical

value called the condition code. Each condition code is unique and represents a specific path in

the tree.

To use this tree structure in testing the branch processing unit, we begin by defining a global

variable to be set to the value of the condition code of the expected path to be taken in the tree.

We will call this variable ConditionCode. Next, we represent the left branch of every node

in the tree with a 0, or FALSE value, and the right branch of every node with a 1, or TRUE

value. Also, we define a set of bits—one for each level in the tree—to be used as the condition

36

for each if statement. The Condi tionCode variable is set to correspond to value of the

condition bits. For example, a ConditionCode value of 10 will correspond to the condition

bits—starting with level one— 1010 (right, left, right, left).

Figure 14: If-Then-EIse Tree for the Branch Prediction Unit.

As stated above, if the bit for a particular level in the tree is 0, or FALSE, then the left

branch will be taken; otherwise, the bit is a 1, or TRUE, and the right branch will be taken. In

this way, we can control the flow of the program. We check for errors when we reach a leaf

node. If the ConditionCode variable is set to what we would expect it to be at this node,

then no error exists. However, if the ConditionCode variable is set to something different

than expected, an error has occurred. In addition to checking for the expected value of the

ConditionCode variable at each node, we also set the condition bits for each if statement to

new values and update the ConditionCode variable so that a different path in the tree is

executed the next time through. Once all the paths in the tree have been taken, the process

repeats. Figure 15 shows a code example using a two-level tree with the above strategies.

The actual routine for this unit uses a tree with six levels. The idea is to create a big enough

tree with enough branches so that if a control-flow error occurs and the branch address is

corrupted, there will be a reasonable probability that it will branch somewhere else in the tree

and the error will be detected because the value of the ConditionCode variable will be

wrong. Also, if the status bits or the control registers are corrupted, then a branch may not

follow the appropriate path, and again the error will be detected.

37

int ConditionCode;

void CheckBranchProcessingUnit() {

register unsigned short bO = 1, bl = 1;
ConditionCode=3;

for (done = 0; done < LOOP_ITERATIONS; done++) {
if (bO) {
if (bl) {

if (ConditionCode != 3) { UpdateStats(1, BPUnit); }
else { ConditionCode = 2;

bO = 1;
bl = 0;

}
else {

if (ConditionCode != 2) { UpdateStats(1, BPUnit); }
else { ConditionCode = 1;

bO = 0;
bl = 1;

else {
if (bl) {
if (ConditionCode != 1) { UpdateStats(1, BPUnit); }
else { ConditionCode = 0;

bO = 0;
bl = 0;

}
else {

if (ConditionCode != 0) { UpdateStats(1, BPUnit); }
else { ConditionCode = 3;

bO = 1 ;
bl = 1;

}
}

} if (bO)
} // for loop

Figure 15: Example Code for the Branch Processing Unit.

38

11 FAULT INJECTION METHODS

Fault insertion, the deliberate injection of faults into a system, is a useful validation method

in any system development process where the error handling and detection is a vital concept.

Typically, fault insertion techniques fall into two main categories: physical, or hardware fault

insertion, and simulated, or software fault insertion. For this tool, only physical fault insertion

techniques are used because these are most representative of the types of errors that the tool is

trying to detect. Also, in using simulation-based fault insertion techniques, a software model of

the system is required which is difficult and expensive to obtain.

The most commonly used physical fault injector is heavy-ion radiation [20], but in some

cases electromagnetic fields or power supply disturbances are also used. For this thesis, we

present results for power supply disturbances only. Radiation experiments and other tests are

scheduled at JPL in the near future. In addition, there are no known effective methods of using

electromagnetic fields to produce transient errors inside the microprocessor. As a result, power

supply disturbances are our best method for producing errors inside the processor so that we may

test our software tool.

11.1 Radiation Injection
Bombarding integrated circuits with heavy-ion radiation or a high-energy proton beam can

cause SEUs in the circuits of the processor. Irradiation of a circuit must be performed in a

vacuum. This is due to the fact that air molecules attenuate heavy ions. Also, the packaging of

the circuit has the potential to prevent the heavy ions from reaching the depletion regions. Such

things as heat sinks and cooling towers will get in the way of radiation insertion.

11.2 Power Supply Disturbances
Disturbing the power supply is a simple way to cause errors in the system. This actually

models some of the errors happening on Earth due to power surges and disturbances common in

industrial applications. This method was used in [3] and [21] in conjunction with heavy-ion

radiation on a MC6809E processor. Short voltage drops were caused at the power supply pin of

the CPU using a MOS power transistor. A test CPU and a reference CPU were run in lock step

39

and the external buses were compared while the power supply pin of the test CPU was being

disturbed. For this project, we do not have visibility of the external buses on our test boards and

cannot compare the values of a reference CPU to a test CPU. However, we accomplish the

power supply disturbances by connecting a variable, digital power supply source to the power

supply pin of the microprocessor. On our test boards, we are able to access the pin that leads

directly to the CPU and only the CPU. Chapter 12 explains this setup in further detail.

Although the reduction in power supply voltage reduces power consumption, the real trade

off is the increase of delay. If the power supply voltage is scaled down while all other

parameters are kept constant, the propagation delay time will increase. This, in turn, will affect

the critical path in the system causing it to take longer to execute. If the critical path does not

complete in the time allotted, an error is likely to occur. This is precisely the behavior we are

hoping for. Results are presented in the next section for these tests.

40

12 EXPERIMENTAL RESULTS

Preliminary results on the validity of our tool have been obtained from one of the fault

injection methods described in the previous section, namely power supply disturbances. As

explained, power supply disturbances are currently the only available method we have at our

facility to test our tool. However, further experiments using alpha-particle radiation are

scheduled to take place at JPL in the future. Disturbances in the power supply are used as a way

to cause errors in the microprocessor that may be detected by our software program.

When doing fault injection using radiation or power supply disturbances, we do not know

where the fault is going to happen. Therefore, all parts of the chips should be exercised by using

all the functional units, e.g., floating-point as well as integer units. If we fail to do this, a fault

may happen somewhere and never show up as an error. If we exercise all units and output the

results, we can detect errors happening almost anywhere in the chip.

12.1 Experimental Setup

As explained in Chapter 5, the PowerPC MPC750 is the processor for which the preliminary

version of our tool is based. The test boards containing the MPC750 processor are based on an

embedded system and are referred to as single board computers (SBCs). In our case, the board is

referred to as the SBC750.

The experimental setup for our tests includes several parts:

• the target system under test - WindRiver’s SBC750,

• a Hewlett Packard E3631A Power Supply,

• a host computer,

• debugging software, and

• HyperTerminal software used to obtain the serial communication between the host

computer and the target.

Figure 16 shows an example of the hardware setup used for these experiments.

41

Figure 16: Sample Hardware Setup.

Once the hardware setup is ready, our tool is downloaded to the target board as part of the

firmware. Then, from a HyperTerminal window on the host computer, the program is run and

the output is monitored. Any occurrences of errors are reported through the use of print

statements to the HyperTerminal window. An EEPROM is included on the board and some of

the statistics are also written to this memory. The EEPROM is nonvolatile and can only be

erased if explicitly told to do so. Therefore, any data written to this area does not get lost when

the board is reset. This is useful when the program hangs, or if an error occurs while printing to

the HyperTerminal window.

The firmware that is loaded onto the board is another product of WindRiver. It is called

visionWARE and provides the basic communication with the target along with components such

as device drivers, diagnostics, flash programming, and network support. A user’s manual for

setting up the hardware and running the tool is included in Appendix A.

12.2 Program Output

The program is designed to output statements that give helpful information about the state of

the system. If an error is detected, the program will print the error, it will print which routine

detected the error, and it will print some statistical information. All of the statistical information

is calculated in one routine called UpdateStats(). The UpdateStats() routine is called

every time an error is detected, as well as when each routine completes. It keeps track of how

long each routine has been executing along with some basic statistics. If an error is found, the

information printed includes

42

• the line of code corresponding to the consistency check that failed,

• the total number of errors found in the particular routine,

• the error rate of the particular routine,

• the mean time between errors (MTBE), and

• the total number of errors found up to that point.

The error rate is calculated by dividing the number of errors by the total running time of the

routine up to the time of the error. The MTBE is calculated by dividing the running time by the

number of errors. It is difficult to be more precise or to add additional calculations without

significantly increasing the overhead of the program. The next section discusses the overhead in

more detail.

12.3 Overhead

The overhead in this program includes the code to start up the program, to check for errors,

to calculate the statistics, to print the information to the screen, and for basic flow control. Over

half of each routine includes instructions that are involved in the consistency checks, the print

statements, and the flow control. This leaves a reasonably high level of probability that errors

will occur in one of the overhead instructions instead of one of the test instructions. However,

even if errors occur in these other statistical-type instructions, it is still possible for the program

to detect that there is a problem.

12.4 Programming Issues

One of the main programming issues faced when attempting to test our program is the

problem of compiler optimizations. Most compilers offer high levels of optimizations that intend

to improve the code and make it faster to execute on the processor. In our case, however, we do

not desire such optimizations. “Smart” compilers may regard many of our computations as

unnecessary. These compilers have only the final result in mind and will nullify our attempts at

testing specific hardware for errors. For example, the compilers might change a conditional

branch to an unconditional branch if the condition is a constant value.

Another issue is the amount of CPU time that the program uses. If transient errors are

present, our diagnostic program requires the majority of the CPU time when executing.

43

Otherwise, any applications running at the same time that require intensive CPU usage will

likely be the main culprit for any errors. The operating system alone requires a certain amount of

CPU time that is unavoidable, but exactly how much CPU time will vary. We ran an experiment

to determine the approximate amount of CPU time our program would obtain when no other

applications other than the operating system were running. The results are presented in the next

section.

A third issue is to reduce the error latency as much as possible by flooding the execution

units with millions of operations. Once a fault occurs, it may take several clock cycles before it

propagates to an observable error. By maximizing the number of computations performed in

each unit, this error latency is minimized. Table 9 outlines the number of computations that are

performed in each routine along with the approximate number of operations executed every

second.

The speed of the MPC750 is 233 MHz, so in the best case, we can expect 233x106

operations per second. That is, one operation occurring per clock cycle. In that case, if a

transient error were to occur, it will be detected on the very next clock cycle. From the table, we

can see that the logical operations are approximately equal to this best-case scenario. Keeping in

mind that the running time and the operations per second in the table are approximate, it should

also be noted that logical operations are performed two at a time, one in each integer unit.

Therefore, the best-case scenario for the logical operations is actually twice the speed of the

processor—466 MHz. The error latency for the logical routines is then estimated as two clock

cycles. The error latency for other routines can be estimated in the same way.

The overhead involved in each routine should also be taken into account when considering

the number of operations per second. For every operation used to test a particular unit, there is a

consistency check involved. The consistency check operations are not included in the count for

the total operations in Table 9, but the time that they take to execute is included in the

approximate running time.

Another issue involving overhead includes operating system requirements. In our test

environment, the board we used did not have an operating system running on it. In commercial

systems, however, there will be an operating system that will require some amount of CPU time.

To gauge approximately how much CPU time a typical operating system needs, we ran our

program on an HP PA-RISC Unix machine while no other programs were running. Using the

44

Unix-based time command, we found that our program will get approximately 80% of the CPU

cycles, and the operating system requires about 20% of the CPU cycles. The percentages were

produced based on the program’s total CPU time, as a percentage of elapsed time.

Table 9: Operations and Running Times for Each Routine.

Routine
Operations

per loop
Number
of loops

Total
Operations

Approx.
Running

Time

Approx.
Operations
Per Second

Register Unit 40 8,000,000 320,000,000 6.34 s 50.47x10°
Instruction Fetch Unit 32 8,000,000 256,000,000 92.04 s 2.78x10"

Integer Addition 40 8,000,000 320,000,000 9.35 s 34.22x10'’
Integer Subtraction 40 8,000,000 320,000,000 9.12 s 35.09x10°

Integer Multiplication 58 8,000,000 464,000,000 18.21 s 25.48x10°
Integer Division 50 8,000,000 400,000,000 33.72 s 11.86x10°

Logical AND 20 8,000,000 160,000,000 0.71 s 225.35x10°
Logical OR 20 8,000,000 160,000,000 0.64 s 250.00x10°

Logical XOR 20 8,000,000 160,000,000 0.71 s 225.35x10°

Integer Unit 2 40 adds &
multiplies 8,000,000 640,000,000 48.75 s 13.13x10°

Floating Point Add 20 8,000,000 160,000,000 0.82 s 195.12x10°
Floating Point Subtract 20 8,000,000 160,000,000 0.82 s 195.12x10°
Floating Point Multiply 20 8,000,000 160,000,000 0.83 s 192.77x10°
Floating Point Divide 20 8,000,000 160,000,000 0.82 s 195.12x10°

Branch Processing Unit 7 8,000,000 56,000,000 6.09 s 9.20x10°

Load/Store Unit 320 loads,
192 stores 80,000 40,960,000 13.24 s 3.09x10°

Data Cache 2 3,300,000 6,600,000 15.97 s 0.41x10°

12.5 Results

This section shows the results obtained from various experiments. The hardware test setup

and some of the issues involved have been discussed in the previous sections. The results

presented here include those for the following experiments:

• power supply disturbances,

• weak radiation exposure, and

• temperature increases coupled with power supply disturbances.

45

12.5.1 Power supply disturbances

The most interesting results obtained were those from the power supply disturbances. Four

different boards were used to verify consistent behavior on identical platforms. The power

supply disturbances were generated by attaching the HP digital power supply unit to the power

supply pin of the processor and then reducing the voltage. Table 10 gives a summary of the data

gathered. The purpose of these tests was to determine if our software would be able to detect

errors occurring in the microprocessor. The goal was not to obtain an accurate number of how

many power supply disturbances will result in hangs or how many errors will be detected. We

simply wanted to verify program functionality.

In the table, the “No. Tests” column enumerates the number of tests resulting in a problem

with the program, whether it was a hang, or some kind of error. The “Voltage Range” is the

range of voltages used to produce the errors. The lower voltage in the voltage range represents

the threshold voltage at which the program could not operate at all. The upper voltage in the

range represents the lowest value that the voltage could be reduced to without causing the

program to result in an error or hang. The “Hangs” column represents the number of tests from

column 2 that resulted in a hang. Similarly, the “Program Detected” column represents the

number of tests from column 2 that resulted in an error detected by the program.

Table 10: Results from the Power Supply Disturbance Experiments.

Board No. No. Tests Voltage Range
(in Volts)

Control F ow Errors Detected
Hangs Program Detected

1 45 1.99-2.10 31 14
2 35 2.00-2.08 26 9
3 25 2.10-2.29 18 7
4 25 2.08-2.20 17 8

We expect that the errors produced in the microprocessor will fall under one of two main

categories: control flow errors and data errors. Control flow errors (sequencing errors) are

associated with upsets in the program counter (PC), certain special function registers (e.g. control

registers), and status registers. Data errors, on the other hand, are associated with upsets in the

data memory, counters, etc. Control flow errors are generally more severe than data errors,

which simply change data words.

46

The types of errors detected by our program due to the power supply disturbances appeared

to be control flow errors. There were no data errors found. Either the program would hang and

no error statements were printed, or error statements were printed and the program would

eventually hang. The latter were classified as program detected control flow errors. Sometimes,

the errors detected by the program were caught by the branch processing unit, and other times

the print statements would output at the wrong times, indicating erroneous jumps in the program.

Also, when the power supply voltages were dropped and held constant, multiple runs at the same

voltage resulted in similar outputs. In those cases, the program would usually fail in the same

location and produce the same type of errors. Power supply drops are modeled by delay faults

and delay faults will affect the critical path in the system. If the exact same program is run at the

same voltage, then the same critical path will usually be affected and the program will fail in the

same place every time.

12.5.2 Weak radiation exposure

A third experiment involved exposing the microprocessor to a weak radiation source

emanating from an ionization chamber out of a smoke detector. Inside the ionization chamber is

a small amount of Americium-241 (perhaps 0.0002 g). The radioactive element Americium has

a half-life of 432 years, and is a good source of alpha particles. Although the amount of

radiation in a smoke detector is predominantly alpha radiation, it is of extremely small quantity.

Also, almost all of the alpha radiation particles cannot penetrate a sheet of paper, and it is

blocked by several centimeters of air. This is why a special facility is needed to do the radiation

testing that involves a vacuum and a particle beam.

The ionization chamber was removed from the smoke detector and placed directly on top of

the microprocessor. The microprocessor has a cover over it and because most alpha particles

cannot penetrate paper, they also cannot penetrate a metal cover. However, the motivation

behind this experiment was to see if enough particles actually did get past the cover of the

processor and into the circuitry to cause an error. The laws of probability suggest that it is

possible for a few of the particles to penetrate the metal cover.

If an error were to be detected by our tool during the time that the ionization chamber is

placed on the microprocessor, we would be able to express confidence that our program is

working as intended. However, the program was run for several days with the Americium-241

47

radiation in place and no errors were found. This does not prove anything negative about our

program; it simply tells us that further tests are required. It does provide an interesting

experiment, however.

12.5.3 Temperature increases coupled with power supply disturbances

The last type of experiments involved raising the temperature of the processor environment

while at the same time lowering the power supply voltage. The idea here was to run our tool at

the lowest voltage possible without producing any errors or hangs, and then increase the

temperature in hopes of generating different types of errors than those of dropping the power

supply voltage alone. Significant increases in temperature will reduce the performance of the

processor causing the gates to switch at a slower speed. This is similar to the delay faults caused

by power supply drops. Unfortunately, our methods of temperature increase were informal and

unregulated and did not produce any significant results. However, the idea may be useful and

provide supportive data if more official laboratory setups were available to perform the

experiments.

48

13 CONCLUSIONS AND FUTURE WORK

The goal of the NASA HPCC Remote Exploration and Experimentation (REE) project is to

transfer commercial supercomputing technology into space. The difficulty NASA is

encountering is that radiation hardened components are both extremely expensive and lag several

generations behind the commercial state of the art components.

The goal of this project is to provide a tool to help evaluate and analyze the vulnerability of

microprocessors exposed to alpha-particle radiation in space applications. Its intention is to

provide information on the current state of the system and collect as many in-flight transient

errors as possible to try and prevent any catastrophic events. By identifying and localizing errors

occurring in the processor, appropriate action can be taken to prevent or alleviate further errors

from occurring before the system as a whole crashes or becomes unstable.

We have shown many advantages of using this type of self-monitoring software tool for

error measurements. It has excellent potential for accurate localization of a single-event upset

(SEU) to within a small functional block. The error latency can be brought down to one to a few

instruction cycles in most cases. Also, the probability of capturing an SEU is very high. The

tool is designed to be portable to different systems as well as to be used during long space

missions to periodically measure the error rates. Such a tool can give an early warning to the

system of increased error rates.

We have presented results from power-supply disturbances as a method for physical-fault

injection in the evaluation of the software tool. The results show that our tool is capable of

detecting errors within the microprocessor as well as successfully reporting those errors.

Although the tool is currently in a preliminary state, it has excellent potential to provide the type

of reliability and error detection that the REE project is looking for. However, there are still

areas of possible improvement and testing to be done before the final version is solidified.

The tool described in this paper is in a preliminary state. There is still considerable work

left to do before the research is complete:

• The most important aspect yet to be done is the radiation testing. Bombarding integrated

circuits with radiation will cause the SEUs in the circuits that our tool is designed to

detect and locate. This type of hardware fault insertion introduces faults within the chip

49

in several ways. The results from these tests will give us a feel for how often the system

crashes and how many of the errors produced cause the system to hang. It will also give

us information on how resilient and robust our program is when encountering errors.

• Another important factor includes extensive testing on other architectures. We primarily

focused on the PowerPC architecture for the experimental results. Although, we did

compile and run an early version of the program on the HP PA-RISC architecture as well

as the x86 (AMD and Pentium) architecture to check for syntax errors and compilation

issues. But, further testing is needed to ensure that the routines will catch a significant

portion of errors on other platforms.

• Other tests that will be useful involve ground-based testing. The tool can be valuable in

everyday environments where error rates may be abnormally high and a tool such as this

one is needed to constantly monitor the state of a system. Power surges, internal noise

sources, and capacitive and inductive crosstalk are all common causes of ground-based

transient errors. The effectiveness of our software tool in these situations would be

significant in determining its range of applications.

• It may be useful to add additional routines in the program to further test different parts of

the hardware. Some other units that were not explicitly tested in our program may

require further investigation into the feasibility of testing them from a high-level

program.

50

REFERENCES

[1] J. R. Kimbrough et al., “Single event effects and performance predictions for applications
of RISC processors,” IEEE Transactions on Nuclear Science, vol. 41, pp. 2706-2714,
December 1994.

[2] V. A. Asenek, C. I. Underwood, and M. K. Oldfield, “Predicting the rate and effects of
single event upsets on satellite application software using a microprocessor simulator,” in
2nd Round Table on Micro/Nano Technologies for Space, ESA, ESTEC, October 1997.

[3] G. Miremadi, J. Karlsson, J. U. Gunneflo, and J. Torin, “Two software techniques for on
line error detection,” in Proceedings o f the 22nd Annual International Symposium On
Fault-Tolerant Computing, pp. 328-335, July 1992.

[4] S. H. Crain, W. R. Crain, K. B. Crawford, S. J. Hansel, P. Yu, and R. Koga, “Single event
effects test results for the 80C186 and 80C286 microprocessors and the SMJ320C30 and
SMJ320C40 digital signal processors,” in Proceedings o f the IEEE Radiation Effects
Data Workshop, 1998, pp. 51-57.

[5] D. M. Hiemstra, and A. Baril, “Single event upset characterization of the Pentium MMX
and Pentium II microprocessors using proton irradiation,” IEEE Transactions on Nuclear
Science, vol. 46, no. 6, pp. 1453-1460, December 1999.

[6] A. Moran, K. LaBel, M. Gates, C. Seidleck, R. McGraw, M. Broida, J. Firer, and S.
Sprehn, “Single event effect testing of the Intel 80386 family and the 80486
microprocessor,” IEEE Transactions on Nuclear Science, vol. 43, no. 3, pp. 879-885,
June 1996.

[7] V. Asenek et al., “SEU induced errors observed in microprocessor systems,” IEEE
Transactions on Nuclear Science, vol. 45, no. 6, pt. 1, pp. 2876-2883, December 1998.

[8] J. Beahan, L. Edmonds, R. D. Ferraro, A. Johnston, D. S. Katz, and R. R. Some,
“Detailed radiation fault modeling of the Remote Exploration and Experimentation
(REE) first generation testbed architecture,” in IEEE Aerospace Conference, 2000, pp.
279-281.

[9] K.-H. Huan, and J. A. Abraham, “Algorithm-based fault tolerance for matrix operations,”
IEEE Transactions on Computers, vol. 33, no. 6, pp. 518-528, 1984.

[10] J.-Y. Jou and J. A. Abraham, “Fault-tolerant FFT networks,” IEEE Transactions on
Computers, vol. 37, no. 5, pp. 548-561, May 1988.

[11] J. Cusick et al., “SEU vulnerability of the Zilog Z-80 and NSC-800 microprocessors,”
IEEE Transactions on Nuclear Science, vol. NS-32, pp. 4206-4211, December 1985.

51

[12] M. Turmoil, R. Granat, and D. S. Katz, “Software-implemented fault detection for high-
performance space applications,” in Proceedings o f the IEEE International Conference
on Dependable Systems and Networks, 2000, pp. 107-116.

[13] P. Duba and R. K. Iyer, “Transient fault behavior in a microprocessor - A case study,” in
Proceedings o f the IEEE International Conference on Computer Design: VLSI in
Computers & Processors, 1998, pp. 272-276.

[14] S. Bagchi, B. Srinivasan, K. Whisnant, Z. Kalbarczyk, and R. K. Iyer, “Hierarchical error
detection in a software implemented fault tolerance (SIFT) environment,” IEEE
Transactions on Knowledge and Data Engineering, vol. 12, no. 2, pp. 203-224, March
2000.

[15] S. Bagchi, Z. Kalbarczyk, R. K. Iyer, and Y. Levendel, “Design and evaluation of
preemptive control signature (PECOS) checking for distributed applications,” submitted
to IEEE Transactions on Computers, Special Issues on Embedded Fault-tolerant
Computer Systems, 2001.

[16] S. Bagchi, Y. Liu, Z. Kalbarczyk, R. K. Iyer, Y. Levendel, and L. Votta, “A framework
for database audit and control flow checking for a wireless telephone network controller,”
to appear in Proc. o f Conference on Dependable Systems and Networks, DSN’01, July
2001 .

[17] B. W. Johnson, Design and Analysis o f Fault-Tolerant Digital Systems. Reading, PA:
Addison-Wesley, 1989.

[18] H. Kommaraju, master’s thesis in progress, Department of Electrical and Computer
Engineering, University of Illinois at Urbana-Champaign, 2001.

[19] W.-T. Cheng and J.H. Patel, “A minimum test set for multiple-fault detection in ripple-
carry adders,” IEEE Transactions on Computers, vol. C-36, pp. 891-895, July 1987.

[20] J. Karlsson, U. Gunneflow, and J. Torin, “Use of heavy-ion radiation from
252Califomium for fault injection experiments,” in Proceedings Of 1st IFIP Working
Conference On Dependable Computing for Critical Applications, pp. 79-84, August
1989.

[21] G. Miremadi and J. Torin, “Evaluating processor-behavior and three error-detection
mechanisms using physical fault-injection,” IEEE Transactions on Reliability, vol. 44,
no. 3, pp. 441-454, September 1995.

APPENDIX A REETOOL USER’S GUIDE

The REETool is intended to run continuously in the background of a computer system. It is

currently being tested using a MPC750 PowerPC processor on a single board computer

(SBC603/740/750). The intention of this tool is to be compiled and run on any processor,

however this user’s guide describes how to run the tool on the SBC603/740/750.

A.1 Setting Up the Board With the Serial Connection

To set up the board and run the program, the following things are needed:

• A host computer with the vDESKTOP software installed

o The software for vDESKTOP is on the CD entitled “SINGLE BOARD

COMPUTER Software & Documents”

• An available serial port

• An available Ethernet port

• The SBC750 board along with the Ethernet transceiver that comes with it

First, install the vDESKTOP software that comes on the CD entitled “SINGLE BOARD

COMPUTER Software & Documents.” The setup file is located in the vDESKTOP directory on

the CD. Second, connect the serial port on the test board with either the COM1 or COM2 port

on the host computer. Third, connect the board to the network by first attaching the Ethernet

transceiver to the JP28 slot on the board and then connecting the network cable to the

transceiver. Read the following sections to learn how to use vDESKTOP and to run the

program.
NOTE: The Ethernet connection is needed only if file transfer is to be done. There is

already a version of firmware flashed on the board containing the software tool. Only a serial

connection is needed to run the tool. However, to update the firmware along with a new version

of the tool, the Ethernet connection is required. See Section A.2 below.

Additional information for setting up the serial connection and using vDESKTOP can be

found in the “visionWARE SBC.doc” file on the “SINGLE BOARD COMPUTER Software &

Documents” CD under \hsidocuments\visionWARE.

53

A.2 Using vDESKTOP

Once vDESKTOP has been installed, it can be used to obtain a serial connection with the

board. VDESKTOP uses tftp to transfer files between the host and the target board. The

Ethernet transceiver is required by the tftp daemon. If no file transfer is to be done, then the

Ethernet transceiver and network connection do not need to be connected.

There are three components in vDESKTOP: vCOM, vSHELL, and vFILE. VCOM uses a

HyperTerminal to establish a serial connection with the board. Any input and output will be

done in this window. VSHELL sets up the network parameters for the board. A valid Ethernet

address, subnet mask, and gateway are needed for the Ethernet connection to work. The vFILE

component brings up a file viewer so that files may be transferred between the host and the

target.

A.2.1 Establishing a serial connection

To establish a serial connection,

• first click on the vCOM icon to bring up the HyperTerminal window,

• make sure the correct COM port is selected by right clicking in the

HyperTerminal window and choosing Communications,

• make the connection by either clicking the circular arrow button, or selecting

connect in the Tools drop-down menu.

When a connection is made, there will be a BKM> prompt in the vCOM window. If it

does not work at first, try resetting the board, disconnecting and reconnecting in the

HyperTerminal window.

A.2.2 Downloading the visionWARE file and updating the firmware

The tool is incorporated with the firmware file that was created with the visionWARE

development kit. The development kit creates a binary file that can be used to update the

memory containing the current firmware. This file, in general, is named

update_projectname.bin. In this case it is named update_REETool.bin. To transfer the file to

the target, make sure the target is on and bring up the vDESKTOP application.

Once a serial connection is made (see Section A.2.1), click on the vFILE button. This

will start the tftp daemon and allow the transfer of files. In the file browser window, find the

update REETool.bin file on the host directory structure, right click on it, and choose download.

Once the file is downloaded, you should be able to see a list of all the files located in RAM on

the target to confirm that it is there. Next, go to the vCOM window and click in it next to the

BKM> prompt so that you can type in this window. Type the following command to update the

firmware:

update \\your_hostname\wpdate_KEET ool.bin

When the firmware has been updated, there will be a floating-point exception that has

occurred. This is not a problem, just reset the board and the new firmware should take effect.

A.3 Running the Program

To run the program, type ‘reetoof following by any command line options. Table 11 shows

the command line options available when running the REETool. For example, if you wanted to

test only the instruction fetch unit and the branch processing unit, you would type ‘reetool -ifu -

bpu’. Or, if you wanted to run all of the routines, then type ‘reetool -all’. To see a listing of the

options from vDESKTOP, type ‘help reetoof, or type ‘help’ to see all available commands. It

does not matter what order the command line options are typed. The order has no effect on how

the program is run.

A.4 Statistical Output

Output from the program is accomplished with print statements that send the output

through the serial port to the HyperTerminal window (vCOM) in vDESKTOP. If errors are

found, a statement with the check that failed is printed (in verbose mode) along with the current

error rate and the mean time between errors (MTBE).

55

Table 11: Command Line Options for REETool.

Command Line Option Description
-all Check all units
-ru Check Register Unit
-ifu Check Instruction Fetch
-ia Check Integer addition
-is Check Integer subtraction

-iu2 Check Integer unit 2
-la Check logical AND
-lo Check logical OR
-lx Check logical XOR
-im Check Integer multiplication
-id Check Integer division

-bpu Check Branch Processing Unit
-fpua Check Floating Point Unit Addition
-fpus Check Floating Point Unit Subtraction
-fpum Check Floating Point Unit Multiplication
-fpud Check Floating Point Unit Division
-fpu Check All Floating Point Unit Operations
-lsu Check Load/Store Unit
-dc Check Data Cache
-alii Check All the Integer Units (ia, is, im, id, iu2)
-alll Check All the Logical Units (la, lo, lx)

-once Run the routines specified only once.
-V Verbose mode - prints out more detailed

information about any errors found.

A.5 Making Changes to the Program

Changes to the REETool can easily be accomplished with the visionWARE development kit.

Once this kit is installed, the project for REETool can be loaded from the Project-^ Open Project

menu. The source code for all the available drivers and diagnostics is included in this project.

The source code for REETool is located under the User Components-^REETool-^ Source Files

folder.

After the changes have been made, the project should be built by choosing the
Build->Build vWARE command, or by clicking the build icon in the icon bar. Make sure that
the build is a ROM version, not a RAM version. This can also be chosen in the build menu or
from the icon bar. The ROM version creates the update_projectname.bin file that is used to
update the firmware on the board. Once the new build file has been created, it can be loaded to
the target as described above in Section A.2.

56

