
December 1992 UILU-ENG-92-2248
ACT 125

Applied Computation Theory

AN OPTIMAL ALGORITHM
FOR DETERMINING THE SEPARATION
OF TWO NONINTERSECTING
SIMPLE POLYGONS

Nancy Amato

Coordinated Science Laboratory
College of Engineering
UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN
Approved for Public Release. Distribution Unlimited.

REPORT DOCUMENTATION PAGE
lb. RESTRICTIVE MARKINGS

Form Approved
OMB No. 0704-0188

1*. REPORT SECURITY classification

Unclassified _ _ _ _ _
2». SECURITY CLASSIFICATION AUTHORITY

2b. DECLASSIFICATION/DOWNGRADING SCHEDULE

4. PERFORMING ORGANIZATION REPORT NUMBER(S)

UILU-ENG-9 2-2248 (ACT//125)

3. DISTRIBUTION/AVAILABILITY OF REPORT
Approved for public release;
distribution unlimited

6«. NAME OF PERFORMING ORGANIZATION
Coordinated Science Lab
University of Illinois

6b. OFFICE SYM80L
(If applicable)

N/A

7«. NAME OF MONITORING ORGANIZATION
Office of Naval Research

6c ADDRESS (City, State, and ZIP Coda)

1308 W. Main St.
Urbana, IL 61801

7b. ADDRESS (City, Stata, and ZIP Coda)

Arlington, VA 22217

8«. NAME OF FUNOING/SPONSORING
o r g a n iz a tio n joint Services

8b. OFFICE SYMBOL
(If applicable)

9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER

N00014-90-J-1270
Be ADDRESS (City, State, and ZIP Coda)

Arlington, VA 22217
10. SOURCE OF FUNDING NUMBERS
PROGRAM
ELEMENT NO.

PROJECT
NO.

TASK
NO.

WORK UNIT
ACCESSION NO.

11. TITLE (Indude Sacurity Classification)
An Optimal Algorithm for Determining the Separation of Two Nonintersecting Simple Polygons

12. PERSONAL AUTHOR(S)
Amato, Nancy

13a. TYPE OF REPORT
Technical

13b. TIME COVERED
FROM__________ TO

14. DATE OF REPORT (Year, Month, Day) IIS. PAGE COUNT
December 1992 I 16________

16. SUPPLEMENTARY NOTATION

17. COSATI COOES
FIELD GROUP SUB-GROUP

18. SUBJECT TERMS (Continua on reverse if nacassary and identify by block number)
separation, simple polygons, sequential, parallel

19. ABSTRACT (Continue on reverse if nacassary and identify by block number)

Given nonintersecting simple polygons P and Q, their separation, denoted by <r(P, Q), is defined
to be the minimum distance between their boundaries; a pair of points p € P and q € Q realize
cr{P,Q), if d(p,q) = <r(P,<3). We present an optimal Q(N) time algorithm for determining the
separation of two disjoint simple polygons P and Q, and finding a pair of points (p, q), p € P and
q € Q, realizing <r{P, Q), where N = \P\ + \Q\. The best previous algorithm for this problem is due
to Kirkpatrick and requires time 0(N log N). In addition, a parallel version of this algorithm can
be implemented in 0(log N) time using 0{N) processors on a CREW PRAM.

20. DISTRIBUTION /AVAILABILITY OF ABSTRACT
(2 UNCLASSIFIED/UNLIMITED □ SAME AS RPT. □ DTIÇ USERS

21. ABSTRACT SECURITY CLASSIFICATION
Unclassified_____________

22c. OFFICE SYM80L22a. NAME OF RESPONSIBLE INDIVIDUAL 22b. TELEPHONE (Include Area Code)

00 Form 1473, JUN 86 Previous editions are obsolete. SECURITY CLASSIFICATION OF THIS PAGE

UNCLASSIFIED

An Optimal Algorithm for Determining the Separation of Two
Nonintersecting Simple Polygons*

Nancy M. Amato
Coordinated Science Laboratory and Department of Computer Science

University of Illinois at Urbana- Champaign
Urbana, IL 61801

amato@cs.uiuc.edu

Abstract

Given nonintersecting simple polygons P and Q, their separation, denoted by <r(P, Q), is
defined to be the minimum distance between their boundaries; a pair of points p € P and
q € Q realize cr(P,Q), if d(p,q) = a(P,Q). We present an optimal @(iV) time algorithm for
determining the separation of two disjoint simple polygons P and Q, and finding a pair of points
(p, ?), p € P and q € Q, realizing a(P, Q), where N = \P\ + |Q|. The best previous algorithm for
this problem is due to Kirkpatrick and requires time 0(N log N). In addition, a parallel version
of this algorithm can be implemented in O(loglV) time using O(N) processors on a CREW
PRAM.

1 Introduction

The problem of computing the minimum distance between two polygons P and Q has received
much attention in the literature. The two most common variants of this problem are (i) finding
the minimum distance between the boundaries of the two polygons, and (ii) finding the minimum
distance between visible vertices on the boundaries of the two polygons, where two vertices p £ P
and q € Q are said to be visible if pq does not properly intersect P or Q. Note that in the former
variant the minimum distance may be realized by two vertices or by a vertex and an edge, whereas
in the latter variant, the minimum distance is realized by vertices only.

Computing the minimum distance between the boundaries of two nonintersecting polygons P
and Q has been studied extensively; this problem is also known as finding the separation of the two
polygons [DK90], denoted by cr(P,Q). The separation problem has been addressed sequentially in
various cases: when both P and Q are convex their separation can be determined in ©(log N) time
[CW83, E85, CD87, DK90], when only one polygon is convex their separation can be determined
in Q(N) time [CWS85], and when neither polygon is convex their separation can be found in
0(N log N) time by traversing the contour (external skeleton) between the two polygons in the
generalized voronoi diagram [K79], where N = |P| + |Q|.

’ This work was supported in part by the Joint Services Electronics Program (U.S. Army, U.S. Navy, U.S. Air
Force) under contract N00014-90-J-1270.

1

mailto:amato@cs.uiuc.edu

In this paper we study the problem, both sequentially and in parallel, of determining o(P ,Q)
in the most general case, i.e., when P and Q are nonintersecting nonconvex simple polygons. We
present a new sequential algorithm that computes cr(P, Q) optimally in @(iV) time; this improves
on the complexity of the technique proposed in [K79] by a factor of O(loglV). Although the
separation and closest visible vertex problems seem to be closely related, it appears no benefit for
either problem has been gained by this similarity in the past; in fact, the algorithms proposed for
these two problems have differed greatly from one another. However, in this paper we show that
the general strategy used in [A92] to optimally solve the closest visible vertex problem can indeed
be used to optimally solve the separation problem. In particular, although the geometric basis and
the actual implementation of each step of our algorithm differs significantly from that of the closest
visible vertex algorithm of [A92], the overall structure of the two algorithms is the same and we
show that many of the ideas first appearing in algorithms for the closest visible vertex problem
[CW83, AMSS89, A92] prove valuable for the separation problem as well. Our algorithm can also
be implemented in parallel providing, to our knowledge, the first parallel algorithm proposed for
this problem; the complexity of our parallel version of the algorithm is O (log N) time using 0 {N)
processors on a CREW PRAM.

2 Nonintersecting Simple Polygons

As seems natural, the problem of determining the separation of two nonintersecting polygons P and
Q, cr(P, Q), is closely related to the problem of finding the closest visible vertex distance between
P and Q, denoted by C V V (P ,Q). In fact, as we will see below, many of the techniques used
to find C V V (P ,Q) can be adapted to our present problem of determining cr(P,Q). Recall that
<t(P, Q) is either realized by a vertex pair or a vertex and a edge, and note that in the former
case cr(P, Q) = C V V (P, Q) and a pair realizing C V V (P, Q) also realizes <r(P, Q). Thus, in order to
extend the techniques for computing C V V (P, Q) to the more general problem of finding cr(P, Q), we
must augment them to consider vertices and edges of the two polygons, rather than only considering
vertices. Our approach is loosely modeled after the method of computing C V V (P, Q) described in
[A92], which uses some ideas first appearing in the CVV algorithms of Wang and Chan [WC86]
and Aggarwal et al. [AMSS89].

As in the CVV algorithms of [A92], [AMSS89], and [WC86], we reduce the problem of comput
ing <j (P, Q) to solving a number of restricted versions of the problem. Specifically, the primitive
operation is: compute cr(P/, Qf) where P' and Q' are linearly separable subchains of P and Q,
respectively. In this section we describe how the decomposition is accomplished, and in the next
section we show how each subproblem can be solved in time linear in its size. Although the actual
decomposition of the original problem into subproblems is necessarily different than that used in the
CVV algorithm of [A92], in both cases the decomposition is based on a sequence of fine segments
separating P and Q.

There are two general situations that we distinguish: the containing case, when C H (P) C
CH(Q) or CH (Q) C CH (P), and the non containing case (see Fig. 1). Note that in the non con
taining case we can reduce, in O(N) time, the problem of computing cr(P, Q) to that of computing
viP 'iQ '), where P ' and Q' are subchains of P and Q, respectively. Let CH (P) and CH (Q) denote
the convex hulls of P and Q, respectively, and recall that the convex hull of a simple polygon with
m vertices can be found in time O(m) (see, e.g., [PS85]). Even though CH {P) and CH (Q) may

2

(b)

Figure 1: (a) The containing case, (b) The non containing case in which <r(P,Q) = cr(P' ,Q').

intersect, it is a simple matter to verify that the convex polygon separation technique of Dobkin
and Kirkpatrick [DK90] can be used to find the two fines tangent to CH {P) and CH (Q) in time
O(logiV) (see Fig. 1(b)). It is easy to verify that the facing portions of P and Q between these
two tangents (P' and Q', respectively) contain all points of P and Q that could potentially realize
<j(P ,Q), i.e., a(P ,Q) = a(P',Q ') since any pair realizing a(P, Q) must be visible. In the non
containing case, we assume that the subchains P' and Q' are indexed bottom-to-top, and that
\P'\ — np and \Q'\ = nq\ in the containing case, the vertices are also indexed consecutively, but
there is no stipulation as to where the indexing begins.

In the following, the terms “highest” and “lowest” refer to positions of points (which follow
the ordering of the indices of the vertices) on the polygons, and PPi,Pj denotes the subchain
(pt-,pt-+ l ,. . . ,p ;); Qqi,qj is defined analogously. Following [A92], a sequence of (intersecting) fine
segments S(P,Q) = (lo ,lu . . . , /m-l)> where /,• = (l~, i f) , is called a separator of P and Q if, for
0 < i < m, (i) li fl Zt-+i ^ 0, (ii) li H lj = 0 for j 0 {i — l , i , i + 1}, (iii) U does not intersect the
interior of P or Q, (iv) l~ and i f fie on the boundaries of P and/or Q , and (v) each U is maximal
in the following sense: if i f € P and lf+1 € Q, then no point of Q above lf+l is visible from li} and
if i f G P and lf+l € P, then Z,+i intersects the highest point (a vertex) of Q that is visible from
analogous statements hold if i f G Q (see Fig. 2). (In the containing case, all arithmetic is modulo
m and we require Zm_i fl Iq ^ 0.)

Note that property (v) ensures that the interior of each /¿, 0 < i < m, intersects the boundary
of P and/or Q ; more specifically, this property guarantees that each U intersects the boundaries of
both P and Q, either at an endpoint or an interior point. Let p+(i) and q+ (i) denote the highest
points of intersection of U with P and Q , respectively; for convenience, in the non containing case
let p+(j) = pi and q+ (j) = q\ for j < 0, and let p+(k) = pUp and q+ (k) = qnq for k > m - 1. We
assign a subchain P{ of P to segment 0 < i < m, as follows; a subchain Qi of Q is assigned to U
analogously.

Pi = Pp+(t-l),p+(i) if l f G P or i = m - 1
■Pp+(j-l),p+(i-fl) otherwise

3

Figure 2: A set of separating line segments S(P, Q) satisfying properties (i-v).

It is immediate to verify that no point of P or Q appears in more than three such subchains, and
that each pair (P,-, Qi), 0 < i < m, is separated by l{. The following lemma shows that cr(P,Q) can
be determined by computing <t(P,-,Q,), for all 0 < i < m, i.e., if we independently examine pairs
of subchains Pt- and Qi, 0 < i < m, then we will not neglect any pair of points that could realize
* (P,Q).

Lemma 1: Let P and Q be two nonintersecting simple polygons with S(P, Q) as defined above.
If p € P and q G Q are visible, pqC\li ^ 0, and pq fl = 0, then p € Pi and q e Qi.
Proof: Let p 6 P and q € Q be visible points such that pqHli ^ 0, and pq fl Zt-_i = 0. Since pq
does not intersect /t_ i, it must be that p > p+(i - 1) and q > q+ (i - 1). Without loss of generality
assume i f € Q (see Fig. 2), so that q < q+ (i) = i f , i.e., q 6 Qi. Since, by property (v), no point
p' > p+ (i + 1), p' 6 P, is visible from and by hypothesis p and q are visible, we have p < p +(i + 1),
i.e., p G Pi. □

Since it is obvious that <7(7*,^) > cr(P,Q), for all 0 < i < m , the above lemma establishes
that cr(P,Q) = min{cr(P, Qt)|0 < i < m}. We note here that a more complex decomposition
technique is required for the closest visible vertex problem than the above specified method since it
is not necessarily true that CVV(Pi, Qi) > C V V {P , Q), whereas it is trivially true that (j(Pi, Qi) >
°(P,Q)', in fact, it is easy to construct examples in which CVV(Pi, Qi) < C V V (P ,Q), so that the
current decomposition strategy would incorrectly determine CVV(P, Q). Assuming that <r(Pi, Q{)
can be determined in 0(|P,| + |Q,-|) time, as will be established in the next section, we have the
following theorem.

Theorem 1: If P and Q are two non intersecting simple polygons, where N = |P| + \Q\, then
cr(P,Q), and a pair of points realizing it, can be computed optimally in @(iV) time.
Proof: First, the technique of [A92] is used to compute a separator S(P,Q) satisfying properties
(i-v) in O(N) time; this technique constructs S(P,Q), in both the containing and non containing

4

Figure 3: The wedge W (a) for vertex a G A.

cases, by modifying a shortest path between two distinguished vertices in a simple polygon that
lies between P and Q. Then, since each point of P and Q appears in at most three subchains,
and cr(Pi,Qi) can be determined in 0(\Pi\ + |Qt|) time, for all 0 < i < m, we see that cr(P,Q) =
min{(7(Pj, Q,)|0 < i < m} can be found in O(£J=0 |Pt| + |Qt-|) = O(N) time. This is clearly optimal
since it is shown in [CWS85] that £l(N) time is required even if one of P or Q is convex. □

3 Linearly Separable Polygonal Chains

We now consider two disjoint polygonal chains P and Q that are separated by a line Z; we allow
vertices and edges of P and/or Q to lie on the separating line, but no edge may cross the line. The
solution presented to the problem in this section is loosely patterned after the algorithm of [A92]
for determining the closest visible vertices between two linearly separable polygonal chains. In
particular, the algorithm consists of the same general steps as those of the algorithm in [A92], but
the geometric foundation and actual implementation of each step differs in the algorithm presented
here. For this reason, we briefly sketch the algorithm of [A92] for computing CVV{P,Q) before
turning to the problem of determining cr(P, Q), where, in both cases, P and Q are linearly separable
polygonal chains. Without loss of generality we assume that Z is vertical, Q lies to the left of Z,
|P| = rip and |Q| = nq. Let (pi,P2> • • • >Pnp) and (y i,52» • • •, <?n,) denote the sequences of vertices of
P and Q, respectively, indexed bottom-to-top. We begin with some useful definitions.

Consider polygonal chain A and line Z, where no edge of A crosses Z. A point v is A-visible
from a point w if the segment (v,w) does not properly intersect A. Similarly, a point v is A-visible
from a line Z if some point of Z is A-visible from v. For each a € A, W (a) denotes the interior of
the maximal wedge with apex a whose interior contains no vertex of A and all points of Z A-visible
from a. The upper and lower rays defining W(a) are denoted by r(a)+ and r(a)- , respectively, and
a+ and a~ denote r(a)+ D Z and r(a)~ fl Z, respectively. (If r(a)+ fl Z = 0 then a+ = + 00, and if
r(a)~ fl Z = 0 then a~ — - 00.) The angle, in W (a), between the rays r(a)~ and r(a)+ is denoted
by a(a). Finally, let la be the line perpendicular to Z that passes through a, and denote Z fl la by a1
(see Fig. 3). Throughout this paper, d(u, v) denotes the Euclidean distance between points u and
v, x(v) the ^-coordinate of point v, and y(v) the y-coordinate of point v.

5

We first sketch the algorithm of [A92] for computing CVV(P, Q), when P and Q are linearly
separable polygonal chains, and then discuss how this technique can be adapted so that it will
determine the separation of P and Q. The following lemmas, which where established in [A92]
and [WC86], respectively, are used to form subchains P' and Q' of P and Q , respectively, so that
C V V (P', Q') — C V V (P, Q), and P' and Q' have a restricted form that can be exploited to calculate
CVV (P, Q) more easily.

Lemma 2 [A92]: Let P and Q be two polygonal chains that are separated by a line /, and let
p be a vertex of P. U p1 £ W (p), then C V V (p,Q) > C V V (P ,Q), i.e., if p is not perpendicularly
visible from /, then p cannot be a nearest vertex of P to Q. (Removal of these vertices creates a
new chain monotone with respect to /.)

Lemma 3 [WC86]: Let P and Q be two polygonal chains that are separated by a line l such that
P and Q are monotone with respect to l. If a(p) < 90°, then C V V (p,Q) > CV V (P,Q), i.e., p
cannot be a nearest vertex of P to Q.

After pruning P and Q according to Lemmas 2 and 3, a new region P() C W () is constructed
for each remaining vertex of P and Q . (The precise structure for the R() regions will be described
in the separation algorithm.) The following lemma establishes that if (p, q) realizes CVV{P, Q),
then p G R(q) and q G P(p).

Lemma 4 [A92] : Let P and Q be two polygonal chains that are separated by a line l and monotone
with respect to it, a(p) > 90°, and a(q) > 90°, for all vertices p € P and q G Q. If p £ R(q) or
q & R(p) then (p, q) cannot realize C V V (P , Q), p G P and q G Q.

We next consider the nv x nq matrix M whose entries are defined as follows; if np > nq we
instead consider the nq x np matrix that is analogously defined. Let B be some constant that is
greater than the maximal distance between P and Q. For notational convenience, we use q < P(p)
or q > R(p) to indicate that q lies below R(p) or above P(p), respectively.

M [iJ] =
B + nq - j if qj < R(pi) or p,- > R(qj)

< d(pi, qj) if pi G R(qj) and qj G R{pi)
oo otherwise

By Lemma 4, the above matrix M contains the distances between all pairs of vertices that are
candidates for closest visible vertices. Note that if qj £ P(p*) or pi R(qj), then M [i,j] >
B + nq — j > B , and recall that B is greater than the maximal distance between P and Q, i.e.,
if (pi, qj) is not a candidate pair and (pk,qi) is a candidate pair, then M [i,j] > M[k,l]. Further
note that, since R(p) C W(p) and R(q) C W (q), all candidate pairs (p, q) are visible. Thus, a
minimum entry in M will give a closest visible pair for P and Q. We now give the following
definitions. Following [AKMSW87], an m x n matrix consisting of real entries is called monotone
if the minimum entry in its zth row lies below or to the right of the minimum entry in the (i - l)st
row, for all 1 < i < m. (If a row has several minima then we take the leftmost one.) Furthermore,
a matrix is called totally monotone if each of its 2 x 2 submatrices (minors) is monotone. In
[AKMSW87], it is shown that if an m x n, m < n, matrix is totally monotone and every entry of
the matrix can be computed in constant time, then a minimum entry in every row can be found
in 0(m) time. The following lemma establishes that the algorithm of [AKMSW87] can be used to

6

find a minimum entry in each row of M in 0 (N) time. ([AMSS89] was the first to use the totally
monotone matrix techniques of [AKMSW87] for the closest visible vertex problem.)

Lemma 5 [A92]: Let P and Q be two polygonal chains that are separated by a line l and monotone
with respect to it, a(p) > 90° and a(q) > 90°, for all vertices p € P and q € Q. If, for every p € P
and q € Q, the regions R(p) and R(q) are available, then the matrix M described above is totally
monotone and each entry of M can be computed in constant time.

The above discussion gives us the following algorithm for computing C V V (P ,Q).
Algorithm: CV V (P ,Q)

1. Eliminate those vertices of P and Q that are not perpendicularly visible from l (Lemma 2).

2. Form W(p) and W(q) for all remaining vertices p G P and q € Q. Eliminate those vertices
p € P and q € Q that have a(p) < 90° or a(q) < 90° (Lemma 3).

3. Determine the R() regions for all vertices remaining under consideration.

4. Find the smallest entry in the matrix M.

The complexity of the above algorithm is easily seen to be O(iV), where N = |P| + |Q|. It
is easy to verify that Steps 1-3 can be accomplished by linear scans of the relevant subchains. In
particular, Step 1 can be implemented by a single bottom-to-top scan of P or Q. Step 2 requires a
bottom-to-top (to identify the lower rays of 170) and a top-to-bottom (to identify the upper rays of
W ()) scan of P or Q ; in fact, this process is essentially the same as a standard linear time algorithm
for determining the convex hull of a simple polygon (see, e.g., [BE84]). Next, using the W () regions,
Step 3 is accomplished by a top-to-bottom and a bottom-to-top linear scan of both P and Q. (The
precise structure of the P() regions is given below.) Finally, Step 4 is accomplished by using the
O(N) time algorithm of [AKMSW87] to find a minimum in each row, and then determining the
minimum of the row minima. Thus, each step is accomplished in 0 {N) time, yielding the stated
complexity of the algorithm.

We now return to the problem of determining the separation of P and Q, cr(P, Q). Re
call that cr(P,Q) is either realized by a vertex-vertex pair or a vertex-edge pair; i.e., <r(P, Q) =
min{cr(Pv,Qv),cr(Pe,Qv),cr(Pv,Qe)}, where Pv (Qv) and Pe (Qe) represent the vertices and (open)
edges, respectively, of P (Q). Clearly cr{Pv,Qv) = CVV(P,Q), and can be found by the CVV
algorithm described above. Thus, we now concentrate on the problem of determining cr(Pe,Q v);
°{Pv, Qe) can be found analogously. Our goal is to adapt the CVV algorithm of [A92] sketched
above to the present scenario; the modified version of the CVV algorithm that computes <j(Pe, Qv)
will be referred to as the CVE (closest vertex edge) algorithm. We first note that Lemmas 2 and 3
continue to hold if, rather than only vertices of P, we instead consider any point on the boundary
of P, e.g., an interior point of an edge. This fact is readily verified by realizing that there is nothing
special about any interior point of an edge that distinguishes it from a vertex, indeed, such an
“interior point” could in fact be a vertex, and the lemmas would continue to hold. Thus, since
CVV (P, Q) > a(P, Q), Lemmas 2 and 3, respectively, establish that we can eliminate all boundary
points of P and vertices of Q that (i) are not perpendicularly visible from l (Lemma 2), and (ii)
that have a() < 90° (Lemma 3).

7

Figure 4: The region R(qi) for vertex qi E Qv.

The C V E algorithm has a pattern analogous to that of the CVV algorithm. Specifically, we
form W () and then R{) regions for each vertex of Q and each edge of P, and then we define a totally
monotone matrix whose entires contain the distances between all candidates for closest vertex edge
pair and use the algorithm of [AKMSW87] to find a minimum entry in this matrix. Assuming that
P and Q have been pruned according to Lemmas 2 and 3, we construct a new region R(q) C W(q),
for each remaining vertex q E Q. (The WQ regions for each vertex of Q are defined as in the CVV
algorithm.) Specifically, we associate with each vertex qi E Q, two (boundary) points of P, u f and
u f, as follows. The point u f is the highest point of P that satisfies (i) y(qf) < y (u f) < y(uf+1), and
(ii) u f E W(qi) and qi E W (u f) (i.e., qi and u f are visible); if no such point exists then u f = q\.
Similarly, the point u f is the lowest point of P that satisfies (i) y(gT) > y(u f) > y{uf_f), and (ii)
u f E W(qi) and qi E W {u f) ‘, if no such point exists then u f = q\. (The y-coordinate of ufq+1 is
assumed to be +oo and the y-coordinate of u f is assumed to be -o o .) The region R(qi) is bounded
above by the segment (g,-, u f) and the horizontal ray originating at u f , and is bounded below by
the segment (qi,u f) and the horizontal ray originating at u f (see Fig. 4). (The P() regions used
in the C V V algorithm are very similar to the R{) regions described above for gt- E Q, the only
difference being that the points u f and u f of P axe restricted to vertices of P, rather than allowing
them to be any boundary point of P.)

Our task now is to define, and construct, appropriate W () and R() regions for the edges of P.
Since Lemma 2 applies to all points of P, the obvious analog of CVV, Step 1 , is to remove the
portions of P (including, perhaps, portions of edges) that are not perpendicularly visible from l;
clearly this can be accomplished with a linear scan of P. In the CVV algorithm, the Wif) regions
are used for two distinct purposes: (i) to eliminate those vertices v with a(v) < 90° and (ii) to help
construct the R() regions efficiently. (The fact that all vertices remaining under consideration have
a() > 90° is used in the proof of Lemma 4, which is crucial in establishing the correctness of the
algorithm.) With these considerations in mind, we want to define and construct our W {) regions
for edges so that it is easy to eliminate all points p on the boundary of P that have a(p) < 90°.

Consider an edge e = (pi,pi+i) E P, and the wedges W(pi) and W(pi+1) as defined in the C V V
algorithm. Recall that r(p)+ (r(p)~) passes by the highest (lowest) vertex of P that is visible from
p-, denote these vertices by h(p) and l(p), respectively. In the special (and unusual) case in which
h(pi) = h(pi+i) and l{pi) = l(pi+\), we can easily determine which points of e have a() > 90° as
follows. Let Ce denote the circle with diameter d{l{jpf),h{jpi)) that is centered at the midpoint of

8

Figure 5: (a) All points on the portion of e that is external to Ce have a() < 90°. (b) The region
W (e ') for that portion e' of e that has o:() > 90°.

(l(pi),h(pi)) (see Fig. 5(a)). It is easy to verify that all points of e external to Ce have a() < 90°,
and all points of e on the boundary or internal to Ce have a() > 90°. After eliminating those points
of e with « () < 90°, leaving at most one segment e' = (p'vP'i+i), W (e') is defined as follows: W(e')
is bounded above by the ray originating at p'i+l and passing by h(pi), and is bounded below by the
ray originating at p\ and passing by l(pi) (see Fig. 5(b)). Clearly, W (e') contains all points of l
that are visible from every point of e'. Let Q' denote the portion of Q that is external to W (e').
Although there may be points of Q' that are visible to some point of e', it is a simple matter to
verify that cr(e', Q') > cr(P, Q'), i.e., any point of Q external to W(e') that is visible to some point
of e' is closer to some other point of P than it is to e'. Without loss of generality, consider a point
q € Q' that lies above W(e') but is visible from some point of e' (see Fig. 5(b)); in this case it is
easy to see that cr(P, q) < d(h(pi), q) < d(e', q). This property of W(e') will be referred to as W .l.

In general, however, for each e = (pi,pi+1) € P, we do not have h(pi) = h(pi+1) and l(pi) =
l(pi+1). Our solution to this problem is simply to partition each edge into a number of segments so
that within each segment this special property holds. In fact, as we will see later, this partitioning
is rather simple and can be accomplished by the same scans that were used in the CVV algorithm
to determine the W () regions. In the following we denote the partitioned set of edges of P by
E' = {et|l < i < ne}, where et- = (vt~, v f) and y{v~) < y(vf)\ later we will show that ne = 0 {n p).

Given the W() regions for the partitioned set of edges, their P() regions are defined similarly
to those of the vertices q 6 Qv. We associate with each edge e,- = 6 E' two vertices, u~
and u f, of Q. The vertex u f is the highest vertex of Q that satisfies (i) y (v f) < y (u f) < y(uf+1),
and (ii) u f G W(et) and v f e W (u f). Similarly, the vertex u~ is the lowest vertex of Q that
satisfies (i) y(v~) > y(u~) > yiu^if), and (ii) u~ G W(et-) and v~ € W(u~). The region R (a)
is bounded above by (v f , u f) and the horizontal ray originating at u f and is bounded below by
(v~, u~) and the horizontal ray originating at u~ (see Fig. 6); if u f (u~) does not exist, then P(et)
is bounded above (below) by the horizontal ray originating at v f (v~), i.e., u f = v f (u~ = v~).
The sufficiency of the R() regions is established by the following lemma.

9

Figure 6: The region R(e{) for edge segment e,- G E'.

Lem m a 6: Let P and Q be two polygonal chains (or portions thereof) that are separated by a line
l and monotone with respect to it, where E' = {et|l < i < ne} is the set of partitioned edges of P
described above, and a(p) > 90° and a(q) > 90°, for each point p € E' and each vertex q G Q. If
p & R(q) or q & P(e), for some p € e, then (e,g) cannot realize cr(P, Q), where e G E' and q is a
vertex of Q.
Proof: Assume qj & P(et) or e,- fl R(qj) = 0. Clearly if some p G et- = and qj are not
visible, then (et-, qj) cannot realize cr(P,Q); therefore we assume some p G et- and qj are visible.
Without loss of generality, assume qj lies below P(e,), the other cases are similar. If qj & W (et),
then, by W .l, d(e{,qj) > d(l(v^),qj) > cr(P,Q), where Z(u“) is the lowest vertex of P visible from
v~. Thus, we now assume qj G W (et) and qj & P(e*) (see Fig. 6); therefore, by definition of P(ei),
there must be some edge e*. 6 E', k < i, such that qj hes below W(ejt). Again, by W .l, we have
d(ek,qj) > d(l(v^),qj) > a(P,Q). Moreover, since oc(x) > 90°, for all x G e*., and both e* and qj
he outside W(ejt), we have d(e{,qj) > d(ek,qj) > <j (P, Q). □

The previous lemma establishes that we can use the RQ regions in the CVE algorithm in the
same manner that they were used in the C W algorithm. Specifically, we consider the ne x nq
matrix M, defined as follows, where B is, once again, a constant greater than the maximal distance
between P and Q; if ne > nq we instead consider the nq x ne matrix that is analogously defined.

B + nq ~ j
< d(ei, qj)

oo

if qj < P(et) or et- > R(qj)
if p G R(qj) and qj G P(e,), for some p G e{
otherwise

It is clear, by Lemma 6, that M contains the distances between all edge-vertex pairs that are
candidates for <j(P, Q), and thus a minimum entry in M will yield a (Pe, Qv). The following lemma
establishes that the algorithm of [AKMSW87] can be used to find the minimum of each row in M.

Lem m a 7: Let P and Q be two polygonal chains (or portions thereof) that are separated by a fine
l and monotone with respect to it, where E' = {et |l < i < ne} is the set of partitioned edges of P,

10

Figure 7: The edges et- and ej must lie in /(e ,) and f (e j) , respectively. In this case d(e{,qk) <
d(ei,qi) and d(ej,qi) < d{ej,qk).

and oc(p) > 90° and a(q) > 90° for each point p G E' and each vertex q G Q. If, for every e G E'
and q G Qv, the R() regions are available, then the matrix M described above is totally monotone
and each entry can be computed in constant time.
Proof: It is clear that each M[i,j] can be computed in constant time since we are given R(e{) and
R(qj), 1 < i < ne and 1 < j < nq.

We first establish (i) if M[i, j] = then M[i', j] = B+nq— j , and (ii) if M[i,j] = d(et-, qj),
then M[i',j] ^ oo, for all 1 < i < i' < ne. To establish claim (i) we argue as follows. Since
M[i,j] = B + nq - j , either et- lies above R(qj) or qj lies below Ji(e,-). If et- fies above R(qj), then
e,/ must also he above R(qk), and = B + nq — j. If qj lies below R(ei), then qj must also
lie below -R(et/), and M[i',j] = B + nq — j. The following argument estabhshes claim (ii). Since
M[i,j] as d(ei,qj), it must be that x € R{qj), for some x € et-, and qj € R(e{), and if = oo,
then it must be that e,-/ hes below R(qj) or qj fies above i2(e,;). However, et/ cannot lie below R(qj)
since x € R(qj), for some x 6 e,-, and et-/ is above et-, and qj cannot lie above R(ei>) since qj 6 R(ei)
and R(ei) is below R(e{i).

To see that M is totally monotone, consider the 2 x 2 submatrix M of M formed by the inter
section of rows i and j , i < j , and columns k and l, k < l; note that M is not monotone if and
only if (a) M[i,l\ < M[i, k] and (b) M\j, k] < It is easy to verify that (M[z, As], M[i, /]) G
{ (B + nq - k , B + nq - /), (B + nq - k, d(et-, qi)), (d(et-, ^) , d(et-, g/)), (B + - k, oo), (¿(e;, %), oo),
(oo,oo)} (an analogous set can be constructed for the possible values of (M[j, k], M\j, /]), by re
placing i with j). Since condition (a) cannot be satisfied if M[i,l\ = oo, the first three values in
the above set are the only possibilities in which M might not be monotone.

If M[i, k] = B+nq—k and M[i , Z] = B-{-nq—Z, then, as was established above, M fj, k] = B-\-nq—k
and M\j,l\ = B + nq - Z, and M is monotone. If M[i, k] = B + nq - k and M[i,l\ = d(e{,qi),
then, as established above, M\j,k] = B + nq - k and M\j,l] G {B + nq - Z, d(ej, qi)}; since,
M [7, A:] = B + nq — + — Z > cZ(ej, 5/), M is monotone.

The final possibility to consider is when M[i, k] = <Z(e;, qk) and M[i, Z] = cZ(et-, qi). In this case, as
established above, M[j, k] ± 00 and M[?', Z] ^ 00, i.e., {M\j, fc], Af[7, Z]) G {(B + nq - k, B + nq - Z),
(B + n9 — k,d(ej,qi)), (cZ(ej, g*), d(ej, ^/))}. If M[;', fc] = B + nq — k, then M is monotone, i.e.,

11

M\j, k] > M (j, Z] since B + np - k > B + nq - l > d(ej, qi). The remaining case is when M\j, k] =
d(ej,qk) and M\j, Z] = d(ej,qi). This means that v~ G R(qk), v~ G P(g/), v* G P(gfc), and
y t £ R(qi), since e,- hes below ej, qk lies below qi, and E' is monotone with respect to Z. Thus,
v f and v~ axe both visible from qk and qi, and v f , v j , qk, and qi form a convex quadrilateral.
It is easy to verify that e, must he in the region /(e j) bounded by Z, the segment (vf,qk), and
the line, Zj/, through the segment (vf,qi) (see Fig. 7); by definition ej lies to the left of Z, ej must
lie below (vf,qk) since v f and qk are visible, and ej must lie below Zj/ since qi G R(ei) C W (ei).
Similarly, it can be shown that ej G /(e j) . Let bki denote the perpendicular bisector of (qk,qi)‘,
clearly bki cannot intersect both /(e j) and /(e j) . Since every point below (above) bki is closer to ej
(ej) than it is to qi (qk), it is clear that d(ei,qk) < d(e,,qi) and/or d(ej,qi) < d(ej,qk). Thus, it is
not possible that d(ei,qi) < d(e{,qk) and d(ej,qk) < d(ej,qi), which is the only case in which M is
not monotone. □

Thus, the CV E algorithm can be summarized as follows.
Algorithm: C V E (Pe,Q v)

1. Eliminate the portions of P and vertices of Q that axe not perpendicularly visible form Z
(Lemma 2).

2. Partition the edges of P into a new set set of edges E' so that h(x) = h(y) and l(x) = l(y)
for all G e, for each edge e G E'. Eliminate those edges, or portions thereof, that do not
have a() > 90°, and form the W () regions for all remaining edges (Lemma 3). Form the W ()
regions for each vertex of Q and eliminate those vertices with o:() < 90° (Lemma 3).

3. Using the W () regions for edges of P and vertices of Q , determine the R() regions for each
remaining edge of P, and vertex of Q.

4. Find the smallest entry in the totally monotone matrix M defined above.

It is cleax that all steps, with the exception of Step 2, can be accomplished with the same
techniques and within the same time bounds as in the CVV algorithm, i.e., they are all accomplished
in 0 (N) time, where N = \P\ + |Q|. We now explain how an edge e = (j?i,Pi+1) G P can be
partitioned into segments Sj, 1 < j < k, where Sj — (uj,Uj+i), u\ = pi and Uk+1 = Pi+i, so that
h(x) = h(y) and l(x) = l(y) for all x,y G Sj, 1 < j < k. (Recall that h(x) (l(y)) denote the highest
(lowest) vertices of P visible from x G P.) Without loss of generality we show how to partition
e into segments Sj, 1 < j < k', k' < k, so that h(x) — h(y) for all x,y G Sj; a similar process
is used to ensure that l(x) = l(y) for all x,y G Sj. Clearly, if h(jpi) = h(pj+i) no subdivision is
necessary. Next note that h(pi) > pi+i, and if h(pi) = pj+i then h(x) = pi+1 for all x G e and
no subdivision is required (recall that we are dealing with open line segments since the vertices
were tested separately). So we assume h(jpi) > pj+i and h(pi) ^ h(pj+i) ; it is easy to verify that
h(jpi) > h(pi+\), i.e., it is not possible that pj+i < h(jpi) < h(pi+1). Recall that the rays r(p)+
(and thus the vertices h(p)) were determined by a top-to-bottom scan of P, and moreover, that
this scanning process actually computed the successive convex hulls Cj = CH(jpi Upj+i U ... U pn),
l < i < np, i decreasing. Thus, after determining h(pi+1) we have Cj+i, and note that h(pi) G Cj+i,
and in particular r(pi)+ is the ray originating at pi and tangent to Cj+i. Now it is clear that the
scanning (up) of C*+i to form Cj will actually determine the points on e which have different h()
values (see Fig. 8). Thus, once again, the same scanning process used in the CVV algorithm to

12

f

Figure 8: The segments of e = (j>i,Pi+1) axe labeled with the index of the highest vertex of P that
is visible from them.

form the W () regions can be used in the CVE algorithm. We can also see that the number of new
endpoints (‘Vertices”) introduced in this manner is at most np, since a particular edge of can
only introduce one point as it disappears, and if it doesn’t disappear it cannot introduce any new
points. Thus, the total number of endpoints (and thus edges) we end up with after partitioning
all edges is at most 3np, i.e., the original np endpoints combined with the additional np from the
top-to-bottom and the additional np from the bottom-to-top scans of the partitioning process.

The above discussion establishes the following theorem.

Theorem 2: If P and Q are two linearly separable polygonal chains, where N — |P| + |Q|, then
a(P, Q), and a pair of points realizing it, can be computed optimally in @(iV) time.
Proof: Since cr(Pv, Qv) can be computed by the CVV algorithm in O(N) time, and the above
discussion establishes that a(Pe,Q v) and a(Pv,Q e) can be determined in 0 (N) time by the C V E
algorithm, it is clear that cr(P,Q) - min{a{Pv, Qv), cr(Pe, Q„), a(Pv, Qe)}, can be found in 0 (N)
time as well. This is clearly optimal since it is shown in [CWS85] that Cl(N) time is required even
if one of P or Q is convex. □

4 A Parallel Implementation

The parallel complexity of the separation problem has only been addressed in the special case in
which both polygons are convex: [AG88] gives an algorithm for a CREW PRAM having N 1/A?
processors that requires 0 (k 1+€) time, and in [DaK89] it is shown that time 0(log W /(l + logp)) is
sufficient on a CREW PRAM with p processors. Note that both of the above algorithms essentially
achieve constant time if a linear number of processors is available. Since voronoi diagrams (and thus

13

also generalized voronoi diagrams) can be constructed in 0 (log2 iV) time using 0 {N) processors
on a CREW PRAM [ACG87, ACGOY88], the separation of two nonintersecting simple polygons,
in the most general case, can be found within these same time and processor bounds by a naive
parallelization of Kirkpatrick’s sequential approach [K79].

As we have seen, the separation problem can be solved by the same primitive operations and
techniques that were used to solve the C V V problem in [A92]. Since [A92] also gives a parallel imple
mentation of the C V V algorithm requiring O(logiV) time and using O(N) processors on a CREW
PRAM, it is clear that <j(P, Q) can be computed within these same time and processor bounds, even
when P and Q are nonintersecting, nonconvex simple polygons. Thus, a parallel implementation
of the separation algorithm given here improves the time complexity by a factor of O (log IV) over
the naive adaptation of the parallel voronoi diagram algorithms of [ACG87, ACGOY88].

References

[ACGOY88] A. Aggarwal, B. Chazelle, L. Guibas, C. O’Dunlaing, C. Yap, Parallel Computational
Geometry, Algorithmica 3 (1988), pp. 293-327.

[AKMSW87] A. Aggarwal, M. Klawe, S. Moran, P. W. Shor, R. Wilber, Geometric Applications
of a Matrix Searching Algorithm, Algorithmica 2(2) (1986), pp. 195-208.

A. Aggarwal, S. Moran, P. Shor, S. Suri, Computing the Minimum Visible Vertex
Distance Between Two Polygons, Proc. of WADS 1989, and Lecture Notes in Com
puter Science 382, Eds. F. Dehne, J. R. Sack, N. Santoro, Springer Verlag, Berlin,
(1989), pp. 115-134.

N. Amato, Computing the Minimum Visible Vertex Distance Between Two Noninter
secting Simple Polygons, Proceedings of the 1992 Conference on Information Sciences
and Systems Vol. II, Princeton, NJ, (1992), pp. 800-805. (Also, Coordinated Science
Laboratory Tech. Report, No. UILU-ENG-92-2206 (ACT 120), University of Illinois
at Urbana-Champaign.)

M. Atallah, R. Cole, and M. Goodrich, Cascading Divide-and-Conquer: a Technique
for Designing Parallel Algorithms, Proc. of 28th Annual Symposium on Foundations
of Computer Science (1987), pp. 151-160.

M. Atallah and M. Goodrich, Parallel Algorithms for Some Functions of Two Convex
Polygons, Algorithmica 3 (1988), pp. 535-548.

B. Bhattacharya and H. El Gindy, A New Linear Convex Hull Algorithm for Simple
Polygon, IEEE Inform. Theory c29 (1984), pp. 571-573.

B. Chazelle and D. Dobkin, Intersection of Convex Objects in Two and Three Di
mensions, Journal of the ACM 34 (1987), pp. 1-27.

F. Chin and C. Wang, Optimal Algorithms for the Intersection and the Minimum
Distance Problems between Planar Polygons, IEEE Trans, on Computers c32 (1983),
pp. 1205-1207.

[AMSS89]

[A92]

[ACG87]

[AG88]

[BE84]

[CD87]

[CW83]

14

[CWS85]

[DaK89]

[DK90]

[E85]

[K79]

[PS85]

[WC86]

F. Chin, C. Wang, J. Sampson, An Unifying Approach for a Class of Computational
Geometry Problem, The Visual Computer - Internat. Journal of Computer Graphics
1(2) (1985), pp. 124-133.

N. Dadoun and D. Kirkpatrick, Optimal Parallel Algorithms for Convex Polygon
Separation, Technical Report #89-21, Department of Computer Science, University
of British Columbia, Vancouver BC, Canada (1989).

D. Dobkin and D. Kirkpatrick, Determining the Separation of Preprocessed Polyhedra
- A Unified Approach, ICALP (1990), pp. 400-413.

H. Edelsbrunner, On Computing the Extreme Distance Between Two Convex Poly
gons, Journal of Algorithms 6 (1985), pp. 213-224.

D. Kirkpatrick, Efficient Computation of Continuous Skeletons, Proc. of the 20th
Annual Symposium on the Foundations of Computer Science (1979), pp. 18-27.

F. Preparata and M. Shamos, Computational Geometry, Springer-Verlag, New York
(1985).

C. A. Wang and E. P. F. Chan, Finding the Minimum Visible Vertex Distance Be
tween Two Nonintersecting Simple Polygons, Proc. of the Second ACM Annual Sym
posium on Computational Geometry (1986), pp. 34-42.

15

