
December 1995 UILU-ENG-95-2241
ACT-136

Applied Computation Theory

Algorithms for All Single Deletions in a Minimum
Spanning Tree, Simulataneously

Bevan Das and Michael C. Loui

Coordinated Science Laboratory
College of Engineering
UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN

Approved for Public Release. Distribution Unlimited.

UNCLASSIFIED
jgfljftiTV ¿La M iEiI a Fiö I T O ìh is fia <5£

REPORT DOCUMENTATION PAGE
Form Approved
OMB No. 0704-0189

I

1*. REPORT SECURITY CLASSIFICATION

Unclassified
1b. RESTRICTIVE MARKINGS

None
2«. SECURITY CLASSIFICATION AUTHORITY 3. DISTRIBUTION/AVAILABILITY OF REPORT

Approved for public release;
distribution unlimited2b. DECLASSIFICATION / DOWNGRAoTn G SCHEDULE

4. PERFORMING ORGANIZATION REPORT NUMBER«)

UILU-ENG-95-2241 ACT-136
5. MONITORING ORGANIZATION REPORT NUMBER«)

6«. NAME OF PERFORMING ORGANIZATION

Coordinated Science Lab
University of Illinois

6b. OFFICE SYMBOL
(If applicable)

____RlA_________

7«. NAME OF MONITORING ORGANIZATION

6c ADDRESS (City, Stato, and ZIP Codo)

1308 W. Main St.
Urbana, IL 61801

7b. ADORESS (City, State, and ZIP Code)

8«. NAME OF FUNDING/SPONSORING
ORGANIZATION

National Science Foundation
8b. OFFICE SYM80L

(If applicable)
9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER

8c ADORESS (City, Stato, and ZIP Codo) 10. SOURCE OF FUNDING NUMBERS

PROGRAM
ELEMENT NO.

PROJECT
NO.

TASK
NO.

WORK UNIT
ACCESSION NO.

11. TITLE (Includo Security Qassification)
Algorithms for All Single Deletions in a Minimum Apanning Tree, Simulataneously

12. PERSONAL AUTHOR(S)

Bevan DAs and Michael C. LouiKj . LU U1
13b. TIME COVERED 14. DATE OF REPORT (Year, Month, Day) IS. PAGE COUNT

FROM TO December 1^95
13«. TYPE OF REPORT

Technical
16. SUPPLEMENTARY NOTATION

17. COSATI COOES 18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number)

FIELD GROUP SUB-GROUP minimum spanning tree, edge deletion, node deletion,
graph algorithm, parallel algorithm

19. ABSTRACT (Continuo on reverse if necessary tnd identify by block numbor)

Let T be a minimum spanning tree of a biconnected graph G — {V,E) with weighted
edges. Let m = \E\ and n = |V|. We present sequential and parallel algorithms for deter­
mining the minimum spanning tree of each graph G — t for all edges t in T and each graph
G — v for all v in V, simultaneously.

For an edge t in T, define the replacement for t to be the minimum weight edge e that
connects the two components of T after t is deleted. For a node v in T, define the replacement
for v to be the minimum weight set of edges, R(v), that connect the &t {v) — 1 components of
T after v is deleted, where 5t (v) is the tree degree of i). Our sequential algorithms for finding
all edge replacements and for finding all node replacements run in 0 (m) and 0 (m + na(n))
time, respectively, assuming that the edges are sorted by weight. Our parallel algorithms
for these problems run in O(logn) and 0 (log2 n) time, respectively, using m processors on a
CREW PRAM.

20. DISTRIBUTION/AVAILABILITY OF ABSTRACT
(3 UNCLASSIFIED/UNLIMITED □ SAME AS RPT.

22«. NAME OF RESPONSIBLE INDIVIDUAL

21. ABSTRACT SECURITY CLASSIFICATION

□ OTIC USERS Unclassified
22b. TELEPHONE (Includo Aros Codo) 22c. OFFICE SYMBOL

DO Form 1473, JUN 86 Previous editions are obsolete. SECURITY CLASSIFICATION OF THIS PAGE

UNCLASSIFIED

Algorithms for All Single Deletions
in a Minimum Spanning Tree,

Simultaneously

Be van Das and Michael C. Loui1

Department of Electrical and Computer Engineering
and Coordinated Science Laboratory

University of Illinois at Urbana-Champaign
b-das@uiuc.edu, m-loui@uiuc.edu

December 6, 1995

Abstract

Let T be a minimum spanning tree of a biconnected graph G = (V, E) with weighted
edges. Let m = \E\ and n = |V|. We present sequential and parallel algorithms for deter­
mining the minimum spanning tree of each graph G - t for all edges t in T and each graph
G — v for all v in V, simultaneously.

For an edge t in T, define the replacement for t to be the minimum weight edge e that
connects the two components of T after t is deleted. For a node v in T, define the replacement
for v to be the minimum weight set of edges, R(v), that connect the ST(v) - 1 components of
T after v is deleted, where 5t (v) is the tree degree of v. Our sequential algorithms for finding
all edge replacements and for finding all node replacements run in 0(m) and 0(m + na(n))
time, respectively, assuming that the edges are sorted by weight. Our parallel algorithms
for these problems run in O(logn) and 0 (log2n) time, respectively, using m processors on a
CREW PRAM.

K ey words: minimum spanning tree, edge deletion, node deletion, graph algorithm,
parallel algorithm.

xBoth supported by the National Science Foundation under Grant CCR-9315696.

mailto:b-das@uiuc.edu
mailto:m-loui@uiuc.edu

1 Introduction
We consider two problems in this paper: All Edge Replacements (AER) and All Node
Replacements (ANR). Informally, the problem AER considers all single edge deletions in a
minimum spanning tree (MST); the problem ANR considers all single node deletions in a
MST. Let undirected graph G = (V, E) have n nodes and m edges, and let T be the MST
of G, where w(e) is the weight of edge e. For a single edge deletion, let G - e denote the
graph (V, E — e). Similarly, let G — v denote the graph after node v is deleted, that is,
(V — v, E - {(u, v)\u € V }). Formally, the problem AER is to determine the MST for each
graph G - e, for all e in E simultaneously (a total of m MSTs). Likewise, the problem ANR
is to determine the MST for each graph G — v, for all v in V simultaneously (a total of n
MSTs).

We assume that G is biconnected, or equivalently, that G is connected and has no artic­
ulation points. As a result, each graph G — e or G — v is connected. In the closing comments
in Section 6, we discuss how the algorithms are affected if G is not biconnected.

We also assume, without loss of generality, that the edge weights are distinct. If two
different edges have the same weight, then we break ties lexicographically: for an edge
e = (ti,v), we use the triple (tu(e),imn(ii,v),max(ii,i;)) in the tie breaker. Consequently,
the MST of each graph is unique.

The main results of this paper are four algorithms, two sequential and two parallel. The
two sequential algorithms, Find Edge Replacements (FER) and Find Node Replacements
(FNR), solve AER and ANR, respectively. Likewise, the two parallel algorithms, Find Edge
Replacements-Parallel (FERP) and Find Node Replacements-Parallel (FNRP), solve AER
and ANR, respectively.

FER finds all edge replacements in 0(m) time sequentially, assuming that the edges have
been sorted by weight by the algorithm that determined T. (For example, the Prim-Dijkstra
MST algorithm [Pr 57] sorts the edges as it grows the MST.) The replacement for a tree edge
t is r*(i), the minimum weight nontree edge that connects the two components of T - 1. A
nontree edge e has no replacement, because T is the MST of G -e . FER determines r*(t) for
each tree edge t in the following manner: add the nontree edges to T in order of increasing
weight w(ei) < w(e2) < .. .; form and contract the fundamental cycle C{ek) for each e*; and
stop when there are no more edges to consider.

FNR, like FER, forms and contracts the cycles C(ek) for the nontree edges in order of
increasing weight. With the edges sorted previously by weight, FNR finds all node replace­
ments in 0(m + na(n)) time, where a(n) is the inverse of Ackermann’s function; if the edges
are not sorted by weight, FNR takes 0(m log n) time. The replacement for a node v is R*(v),
the minimum weight set of nontree edges that connects the components of T — v. Since there
axe 5t (v) components of T - v, where ST(v) is the degree of v in T, R*(v) has 5T(v) - 1
edges. Consequently, for a leaf y, R*(y) has zero edges, that is, R*(y) = 0.

The node replacement R*(v) is the MST of a multigraph CG(v) [CH 78], which we call
the component graph of v. Each component of T — v induces a subgraph in G — v\ CG{v)
is formed by replacing each component with one node. Intuitively, FNR simulates KruskaPs
algorithm [Kr 56] on each CG(v), since KruskaPs version of the greedy MST algorithm
considers nontree edges in order of increasing weight. To ensure that the simulation is
correct, FNR initially replaces each node v with a star of 6T(v) nodes. FNR then proceeds

1

in the manner of FER.
The parallel algorithm FERP finds all edge replacements in O(logn) time, using m

processors on a CREW PRAM. FERP is similar to a parallel ear decomposition algorithm
of Maon, Schieber, and Vishkin [MSV 86]: Both FERP and the algorithm of Maon et al.
use parallel tree contraction to partition the tree edges.

FNRP finds all node replacements in parallel in 0(log2n) time, using m processors on
a CREW PRAM. FNRP combines the ideas of FNR with the mechanism of FERP. Like
FNR, FNRP simulates a greedy MST algorithm on each CG(v): FNRP uses FERP to find
the minimum outgoing edge from each connected component in CG(v). Specifically, FNRP
simulates Sollin’s algorithm [BGH 65], which constructs the MST of a graph in O(logn)
iterations. Because each iteration runs FERP, each iteration takes O(logn) time, hence the
total time for FNRP, 0 (logn x logn) = 0(log2n) time.

The most significant results in this paper are FNR and FNRP. FNR provides the best
time bound for finding all node replacements sequentially, except when the graph is dense.
For most graphs, where m — o(n2) with edges sorted or m = o(n2/logn) without edges
sorted, FNR improves upon the 0 (n 2) time of the algorithm of Chin and Houck [CH 78],
which also found all node replacements. FNRP fills a gap: whereas sequential algorithms for
ANR and parallel algorithms for AER have been presented elsewhere, no parallel algorithm
for ANR has previously been published.

Furthermore, FERP provides two techniques that may be useful in the design of other
parallel algorithms. First, we show how to handle vector-valued inputs in the parallel tree
contraction; usually, each node has only one input value. Second, we represent an 0 (n 2) size
lookup table implicitly with just 0(m) values. This smaller size lookup table reduces the
number of processors required from n2 to m.

In addition, all the algorithms in this paper increase the reliability of other algorithms that
use MSTs during execution. For example, information broadcast, network synchroniztion,
and deadlock resolution may use MSTs as a basic building block. For these algorithms, it
can be useful to reconnect a MST after an edge or node deletion.

FER and FERP are not the best known algorithms to find all edge replacements. We
present FER because of its simplicity and its relation to FNR. We include FERP since it is
used in FNRP and it introduces two general techniques for the design of parallel algorithms.
For the best sequential time bound, Dixon, Rauch, and Tarjan present a sequential algorithm
that verifies MSTs in 0(m) time [DRT 92]; combined with a graph transformation of Tarjan
[Ta 79, p. 713], the algorithm of Dixon et al. finds all edge replacements in 0(m) time.
Their algorithm does not require that the edges are sorted by weight while T is determined.
(For example, the Fredman-Tarjan MST algorithm [FT 87] does not sort the edges.) In
comparison, FER runs in O(m logn) time if the edges are not sorted by weight.

Similarly, for the lowest parallel work bound, Dixon and Tarjan describe a parallel al­
gorithm to verify MSTs in O(logn) time using 0 ((m + n)/logn) processors on a CREW
PRAM [DT 94]. This parallel algorithm of Dixon and Tarjan, combined with the graph
transformation of Tarjan [Ta 79], finds all edge replacements in O(logn) time with 0(m + n)
work, which is optimal.

The rest of this paper discusses previous research related to MST updates and presents
the technical details of the algorithms. Section 3 describes the sequential algorithms FER
and FNR, Section 4 describes the parallel algorithm FERP, and Section 5 describes the

2

parallel algorithm FNRP.

2 Related Research
Chin and Houck provide the basic framework for AER and ANR [CH 78]. They present
0 (n 2) time sequential algorithms for both AER and ANR. Furthermore, they prove that
T — t 4- r*(t) is the MST of G — t and that T — v + R*(v) is the MST of G — v, where the +
indicates a union with the edges of T.

As noted in Section 1, the time bound for finding edge replacements has been improved.
Dixon et al. present an 0(m) time sequential algorithm [DRT 92], and Dixon and Tarjan
present an optimal work O(logn) time parallel algorithm on the CREW PRAM [DT 94].
Both algorithms use the graph transformation of Tarjan [Ta 79].

Single edge update algorithms lead to naive algorithms that compare favorably for dense
graphs. A naive algorithm for AER is to perform a single edge update n— 1 times, one for each
tree edge. For sequential algorithms, after 0(m) time for preprocessing the graph, the single
edge update algorithm of Frederickson [Fr 85], combined with the sparsification technique
of Eppstein et al. [EGIN 92], takes 0(y/n\og(m/n)) time per update. Thus, this naive
algorithm takes 0 (n v/nlog(m /n)) time to solve AER. Our FER algorithm is faster than the
naive algorithm on sparse and moderately dense graphs, with m = o(n^\og(m/n)).

For parallel algorithms, Das and Ferragina [DF 94] present an O(logn) time algorithm
that takes 0 (n 2/3) work on an EREW PRAM for a single edge update of an MST. Applied
to each tree edge, a naive algorithm based on [DF 94] takes O(logn) time with 0 (n 5/3) work
on an EREW PRAM. FERP requires less work on sparse and moderately dense graphs, with
m = o(n5/3).

As stated previously, FERP is based on the parallel ear decomposition algorithm of
Maon et al. [MSV 86]. In related work, Pawagi and Kaser [PK 93] present parallel algo­
rithms for single and multiple edge and node deletions, each using n2/\ogn processors on
a CREW PRAM. The time bounds for the single edge deletion, k edge deletion, single
node deletion, and k node deletion algorithms are, respectively, O(logn), 0 (logn + log2 Jfc),
0 (logn + log2 ST(v)), and 0 (logn 4- log2 ju), where \i = m in{l + ¿ v€ deleted set ST(v), n}.
However, the algorithms of Pawagi and Kaser cannot be used to efficiently solve AER and
ANR. For example, the k edge deletion algorithm handles k edge deletions from a single
MST, while FERP produces output representing n — 1 different MSTs.

AER and ANR consider only single edge and single node deletions; several results have
been published for more general MST updates. There are several distributed algorithms
for computing and maintaining MSTs; Pasquini and Loui [PL 94] give an overview of these
algorithms, in addition to presenting a fault-tolerant distributed MST algorithm. Rauch
Henzinger and King [RHK 95] present several randomized connectivity algorithms that take
polylogarithmic time per update, including algorithms for maintaining a MST for a ^-weight
graph, approximating a MST in a graph with weights in a specific range, and maintaining
a maximal spanning forest decomposition of order k. Finally, Kapoor and Ramesh [KR 95]
present an algorithm for enumerating spanning trees of a graph in order of increasing weight,
in 0 (N log n + mn) time, where N is the number of spanning trees in the graph.

3

3 Sequential Algorithms
In the sequential algorithms, the MST for each graph G — e and G — v is represented by the
replacement edge or replacement set of edges. The FER algorithm uses the variable r(t) for
t's edge replacement. Initially, r(t) is set to null; after FER terminates, r(t) = r*(t), where
r*(t) is the correct edge replacement for t, defined in Section 1. Similarly, FNR computes
a set R(v) (defined in Section 3.2) to be v’s node replacement. Section 3.2.7 shows that
R(v) = R*(v), where R*{v) is the correct node replacement for v, defined in Section 1.

3.1 FER—Find Edge Replacements
In essence, FER considers cycles corresponding to nontree edges ek, one per stage k, in order
of increasing edge weight. In stage fc, the algorithm sets the r(t) for each tree edge t in the
current cycle to ek. To indicate that these tree edges have had their replacements set, FER
contracts the cycle; the nodes in the current spanning tree that are visited by the cycle are
grouped into one supemode in the spanning tree for the next stage.

3.1.1 Overview of FER

As a precondition, FER assumes that the MST T for G has been found, and that the nontree
edges e1}. . . , em_n+1 have been sorted by weight, w(ei) < w(e2) < • • • < u/(em_n+1). For the
remainder of the paper, the subscript k of ek indicates that ek is the kth minimum weight
nontree edge. If the MST algorithm does not also sort the edges, then sorting the edges
requires only time O(m logm) precomputation.

At the beginning of stage k, the supernodes and the edges that have not been contracted
form a multigraph Gk. Let Tk be the MST of Gk. Each edge in Tk corresponds to an edge
in T. For example, suppose t = (y, z) is in T and y and 2 are not contained in the same
supernode in Tk. Let y be in supernode y' in Tk and 2 be in supernode z' in Tk\ the edge
between y' and z' in Tk corresponds to t (Gk might also have other, nontree edges between
y' and z'). Similarly, each nontree edge in Gk corresponds to a nontree edge in G. For
ease of notation, we refer to a nontree edge of Gk as e, instead of writing “the edge in Gk
corresponding to the nontree edge e in G.”

The notation CkDTk in this context means the edges of Tk that are in Ck, in other words,
Gk — ek. Suppose that ek = (u, v), where u and v are nodes contained in supernodes in Tk.
We write that a node y is in Ck — {w, v} if y is contained in some supernode in Ck and y is
neither u nor v.

The invariant and termination conditions for FER formalize the details of each stage.
Let rk(t) be the value of r(t) at the beginning of stage k. The invariant for FER is that
immediately before stage k ,l < k < m - n + l, r*-i W = r*(t) if and only if r*(t) = ey for
some j < k. In words, just before stage fc, r(t) is correct for every tree edge t that has some
edge Cj as its replacement, where j < k. During stage k, r(t) is set to ek for each t in CkDTk.
To mark that the edge replacements for these tree edges have been found, FER contracts
Ck H Tk into one supernode in Tk+l. Hence, FER terminates after stage k i ik = m - n + l
(no more nontree edges to consider) or if T*+i has only one supernode (no more tree edges
to consider). In general, FER may terminate before stage m — n + 1.

4

T

/ \o 0
u' v’

Figure 1: Constructing cycle from lowest common ancestor. Supernode l1 = lea(u',v') in 7*.

The pseudocode for FER is as follows:

Stage k
/* Derive Tk+i from Tk */
If endpoints of ek are in same supernode in Tk, then

Tk+i := Tk
Else

Determine cycle Ck by finding l1
For each t € Ck H Tk, set r(t) :=
Contract Ck fl Tk, producing Tk+i

We will not formally argue the correctness of FER. It is simple to check that FER
terminates. Furthermore, because all of Ck fl Tk is contracted during each stage k and
because the nontree edges are considered in order of increasing weight, it is straightforward
to verify that FER determines the correct replacement for each tree edge in T.

The next section explains how to determine the cycle Ck and how to contract Ck H Tk.

3.1.2 Determining and Contracting the Cycles

Let ek = (u,v) correspond to edge (u',v') in Gk. The cycle Ck consists of three portions:
ek, the path from v! to lea(u',v'), and the path from v' to lea(u',v'), where lea(u',v') is the
ancestor in Tk, not T. Let l' = lea(u\ v') in Tk, as shown in Figure 1.

In each stage, FER first checks whether u and v are contained in the same supernode,
that is, whether vl = v' . If v! = v', then l’ = v! - v' and Ck = ek. Consequently, FER
proceeds to the next stage and considers ek+i. To check whether v! = v', FER uses two find
operations per edge, for a total of O(m) find operations.

If u7 7 ̂ v' , FER determines l1, then uses l' when contracting Ck. To determine l' given
Tk,u', and v', FER traverses up Tk, alternating between a path from u' and a path from v':
p{u'),p(v'),p{p(u')),p(p{v,))) -----FER stops at the first supernode that appears previously
on the other path; this supernode is l'. For example, in Figure 1, l' = p{p(v')) = p{p{p{u'))),
so the sequence stops at p{p(p{u'))). The supernode l' is found in at most 2\Ck fl 7*| alter­
nations, taking 0(\Ck H Tk\) find operations.

5

delete v

C r: ::o
CGfvJ

Figure 2: Component graph for node v, 5t (v) — 4.

Once l1 is determined, FER contracts Ck in a similar fashion: from vl up to l' and from
v' up to l'. The elementary operation in contracting Ck is contracting each tree edge. For
each tree edge t = (x',p(x ')) in Cjt, the contraction of t is the union of x’ and p(x'). Hence,
to contract t, FER uses one find operation (to determine p(x')) and one union operation. In
total, FER contracts Ck using 0(\Ck H Tk\) find and union operations.

In summary, FER determines l1 and contracts Ck for each stage in 0(\Ck H Tk\) find
and union operations. Because of the contractions, for i ^ j , C{ fiT,- has no edges in common
with Cj n Tj. Hence,

X) \Ck n Tk\ = |T| = n — 1,
k

and FER uses 0(n) operations to determine and contract all the Ck fl TV The disjoint set
union algorithm of Gabow and Tarjan [GT 85] can perform these O(n) operations in 0 (n)
time, if the union operations follow a predefined tree structure. Since FER only takes the
union of a supernode and its parent in Tjt, each union corresponds to an edge in T. Hence,
FER uses T as the predefined tree structure. For example, FER requires that, given x' in
Tfc, p(x') can be determined in a small amount of time; the data structure in the algorithm
of Gabow and Tarjan provides this information in 0(1) time.

However, the total time for FER is 0 (m), not 0 (n). Because FER checks whether ul = v'
for each e*, FER uses 0(m) operations total. The algorithm of Gabow and Tarjan performs
these operations in 0(m) time. (On a side note, the lowest common ancestor algorithm of
Harel and Tarjan [HT 84] can be used to determine l' for each stage in total time 0 (n).)

3.2 FNR-Find Node Replacements
The Find Node Replacements (FNR) algorithm determines the node replacement for each v
in V. The basic strategy of FNR is the same as FER’s: consider the nontree edges in order
of increasing weight, form a cycle in each stage, and contract some of the edges in that cycle.
For FNR, we refer to the basic operation as merging the two endpoints of an edge instead of
contracting the edge. Therefore, for FNR, we describe the contraction of each cycle in terms
of which pairs of supernodes are merged.

Chin and Houck [CH 78] show that the edges in R*(v) correspond to the edges in the
MST of a multigraph CG(u), which we call the component graph for v. CG(v) is formed
from G by deleting v, and replacing each subgraph induced by a component of T — v with
a single node. Figure 2 shows CG(v) for a node with 5t {v) = 4.

6

Figure 3: Counterexample to naive algorithm for ANR

To compute the MST of CG(v) for each v separately takes too much time. Instead,
FNR simulates Kruskal’s algorithm [Kr 56], a greedy MST algorithm, on CG(v) for all v
simultaneously. In the process, FNR determines a set of edges R(v); in Section 3.2.7, we
show that R(v) = R*(v).

3.2.1 Flawed Naive Algorithms for ANR

Let T(v) be the set of tree edges incident on v. A naive algorithm for ANR would set R(v)
equal to {r(t)|f € T (v)}. However, for some edge t in T(v), v might be an endpoint of r(t);
hence, r(t) would not be in R*(v) (in fact, r(t) would not be in G — v).

Let E(v) be the set of edges in G incident on v. A less naive algorithm for ANR would
modify the definition of r(t) so that the replacement edge is not incident on v. In other
words, the less naive algorithm defines rv(t) = argmin{u;(e)|e 0 T,< € C(e),e g E (v)}
and sets R(v) = {rv(t)|t € T (v)}. However, this less naive algorithm does not correctly
determine R(v). For example, let ST(v) = 4, with tree edges s,s',t, and t! incident on v,
and let nontree edges 1, 2, and 3 be as in Figure 3. For this example, rv(s) = rv(s') = 1
and rv(t) = rv(t') = 2, so that {rw(t)|t € T(v)} = { 1, 2}. However, R(v) = {1 ,2 ,3 }, because
three edges are needed to connect the components of T — v.

3.2.2 Transformation

FNR transforms G into a new graph GN to closely simulate the greedy MST algorithm on
each CG(v). First, FNR replaces each node v with <$T(u) nodes vx, . . . , vg1 where <5 = 5T(v).
These nodes have a one-to-one correspondence with the nodes in CG(v), so that taking the
union of Vi and vj, for example, is equivalent to merging the zth and jth nodes of CG(v).
Second, FNR connects the new nodes with 5T(v) - 1 star edges fyi, v{), making vx the central
node.

FNR uses a star instead of a clique for two reasons. Each star adds 0(ST(v)) edges, for a
total of 0 (n) edges; a clique would add 0((ST(v))2) edges, for a total of 0(n2). In addition,
a star has a natural tree structure: the central node vj is the “parent” of the star.

Still, FNR sometimes merges two nodes v{ and Vj, where i > 1 and j > 1. In this case, the
union of Vi and Vj does not correspond to the predefined union tree. These non-tree unions
of FNR contribute an a(n) increase in the time, where a(n) is the inverse of Ackermann’s
function.

7

Figure 4: Transformation of node v with St (v) = 4 and u = p(v)

Let GN = (VN, EN) and let TN be the MST of GN. Figure 4 shows one node v that has
been replaced by 6t {v) nodes. These new nodes are called v’s star nodes. Each star edge
(vi,v*) in v’s star is contained in TN; we extend the parent notation from T to TN so that
Vi = p(vi), i > 1. TN consists of these star edges plus edges corresponding to the edges of T:
For each tree edge t = (u,v) in T with u = p(v), the corresponding edge in TN is
for some i, with U{ = p(yi). EN also contains edges corresponding to the nontree edges of
E — T: For each nontree edge e = (x\ y) in E — T, the corresponding edge in EN is (xt, y{).
That is, all nontree edges are incident on the central node v\ in each star. Finally, let EN{v)
be a set of edges in GN that are incident on one of Vi, W2, • • •, t/j.

3.2.3 Overview of FNR

After transforming G to GN, FNR proceeds in stages similar to the stages in FER. In stage
k of FNR, Gf? is the analogue of Gk, and is the MST of Gj^. For the component graphs,
let CGk(y) correspond to G%. The supernodes in CGk{v) contain nodes of CG(v) that have
been merged in stages 1, — , A:—1. Also, the edges e1}. . . , are not in CGk(v). Intuitively,
for each v in the cycle of e*, FNR determines whether ek connects two different supernodes
in CGk{v). Because FNR considers edges in order of increasing weight, ek is the minimum
weight edge connecting these two supernodes and is part of the MST of CG(v). Therefore, the
endpoints of ek in CGk{v) are merged into one supernode in CGjt+i(u). Otherwise, that is,
when ejt is a self-loop in CGk(v), FNR does nothing during stage &, and CGk+i(v) = CGk(y).

Formally, let ek = (u, v) in GN and let (u',v') in G% correspond to ek. Ck is the cycle
formed by adding (u',v') to T £ . Suppose that l' = lea(u\v') in Tj?. Basically, FNR adds ek
to R(v) if node v € Ck , except possibly for the nodes in u',v', and l'. By v e Ck , we mean
that at least one of v’s star nodes is the endpoint of an edge in GN that corresponds to
an edge in Ck .

Next, FNR contracts . The basic operation is the union of two supernodes. The
general case is the union of a supernode x' and p(x'), its parent in . Let t = (xt,p(xi))
in TN correspond to x\ where xt is in x ’s star. If t is a star edge, then the union of x' and
p(x') corresponds to the merge of two components in CG(x) by the greedy MST algorithm.
If t is not a star edge, then the union of x' and p(x') corresponds to the contraction of an
edge in T.

8

k

(a) Cb) (c)

Figure 5: Cases for u', one endpoint of e*: (a) the cycle (b) contents of v! when x ^ u\
(c) contents of v! when x = u__

Because e* is incident on u and v in TN, FNR has additional constraints for the union
of v! and p(u') and the union of v' and p(v'). In addition, FNR may have a special case for
the union of two children of l'. The next section describes how to handle these cases.

The invariant for FNR formalizes the correspondence between and CG,t(v), for each
v. The star nodes of v that are contained in supernode v1 of G% comprise one supernode in
CGk{v). In other words, the unions taken in stages 1, . . . , k — 1 correspond to the merges
of supernodes in C G i(v),. . . , CGk-i(v). For example, suppose supernode v' in G% contains
v*i»* • • and no other star nodes of v. The invariant ensures that Vu,...,Vu are all
contained in one supernode in CGk{v)\ furthermore, the invariant implies that no other star
nodes of v are in that supernode in CGk(v).

The termination conditions for FNR are similar to the conditions for FER: after stage k,
stop if Tĵ +1 has only one supernode ot if k = m — n + 1.

3.2.4 Endpoints o f e* and Special Case o f Union

In this section we describe how FNR handles the endpoints of and their lowest common
ancestor. As in Section 3.2.3, = (u,v) corresponds to (u‘ ,v‘) in G%. FNR checks whether
it should take the union of u' and p(u') and the union of v' and p(v'). Since the cases are
similar to each other, we describe the case for u' .

To determine whether to take the union of u! and p(u'), FNR checks the tree edge adjacent
to ek. For v! , let t = (x,p (x)) be the edge in TN that corresponds to [u' ,p(u')) in T^, as in
Figure 5(a). When x ^ u, as in Figure 5(b), ek is not incident on as a result, FNR adds
ek to R(x) and takes the union of u! and p(u') in Tĵ . When x = u, as in Figure 5(c), FNR
checks whether u is a leaf in TN. If so, then R*(u) = 0, and although ek is incident on u,
FNR takes the union of vl and p{u'). Otherwise, when x — u and x is not a leaf, FNR does
not take the union of u! and p(u') and does not add e\t to R(v).

Also as in Section 3.2.3, let l1 = lca^ ',* /) in T^. We assume that vl ^ v'\ otherwise,
Ck = ek and FNR proceeds to stage k + 1. Without loss of generality, l1 ^ u1. Define cL to
be the “left” child of l' in the path v! l1 and let edge s in T^ be the edge corresponding
to (cL,l ') in If l' ^ v' as well, then define cR to be the “right” child of l' in the path
v' ^ l1 and let s' in TN be the edge corresponding to {cR,l'). Otherwise, when l1 = v' , cR
and s' are defined to be nu ll. Figure 6 illustrates this notation: Figure 6(a) shows CN(ek)
in the initial tree TN; Figures 6(b) and (c) show two cases when l' ^ v'\ and Figure 6(d)

9

(a) (b) (c) (d)

Figure 6: Special case for l': (a) CN(ek)', (b) s and s' in same star; (c) s and s' not in same
star; (d) s’ = n u ll__

shows the case when l' = v’ . In the figure, li is the lowest common ancestor of u and v in
TN, and li and lj are the star nodes in the paths u li and v li, respectively.

The special case of union occurs when s and s’ are in the same star, as in Figure 6(b).
The edges s and s' are in the same star when ¿1, and lj are in different supernodes in Gk .
In this case, FNR takes the union of cl and cr. Let l be the node in V corresponding to
hiUj and lj. In CGk{l), the supernodes containing U and lj are merged.

Otherwise, s and s' are not in the same star, as in Figures 6(c) and (d). In Figure 6(d),
s' = nu ll, so s and s' are trivially not in the same star. FNR takes the union of cl and l'
and of Cr and l'. Because l' is the parent of Cl and Cr, these unions are the general case of
union.

3.2.5 Details of FNR

In each stage k, FNR decides whether to add e*, to R(v) for each v in Ck . To keep track of
which nodes have been considered, FNR uses the boolean variables p(v^ i), which are defined
with respect to tree edges incident on v’s star nodes. For each V{ in t/’s star, for each t in
TN incident on v, p(vi,t) is initially fa lse . Let pk(vi,t) be the value of p(vi,t) at the end of
stage k. In general, during stage k, FNR changes p(v{,t) to true if t corresponds to an edge
in C f, ek is not in En (v), and pk-i(vi,t) = fa lse .

For a leaf node 2 in T, R*(z) = 0. In this case, for the corresponding leaf Z\ in TN, FNR
initially sets p{zi,t) = true, where t is the one tree edge in TN incident on z\. As a result,
FNR trivially determines that R{z) = 0.

During stage k, FNR contracts C£ by taking the union of supernodes along the cycle.
Let ek correspond to (u',v') in Ck and let l' = lea(u',v') in Tk , as in Section 3.2.3. The
general case of a union consists of the union of a supernode in Tk and its parent. Let x'
and p(x') be these supernodes, and let t = (xi,p(a;l-)) in TN correspond to (x',p(x')). FNR
checks whether p(xi,t) = p(p(xi),t) = true; if so, then FNR takes the union of x' and p(x').

Let cl, cr, s, and s' be as defined in Section 3.2.4. If s and s' are not in the same star,
then the union of l' and cl and the union of l’ and cr fall under the general case of union.
Otherwise, s and s' are in the same star, with Zi, Zt, and lj in different supernodes of G^, as
in Figure 6(b). In this case, to record that FNR takes the union of cl and cr, FNR changes

10

p(lits) and p(lj,s') to true, but p{h,s) and p(h,s') remain fa lse . In addition, after the
union of cL and cR, two tree edges connect l' and the new supernode. One of these edges is
removed to ensure that is a tree, instead of a multigraph.

Figure 7 shows that pseudocode of FNR.

3.2.6 Exam ple o f F N R

This section illustrates how FNR operates and how FNR handles its special cases. Let G be
the graph shown in Figure 8(a), with the solid lines representing its MST T. The nontree
edges ex,e2,e3, and e4 are represented by dashed lines and are labeled by their weights,
1,2,3, and 4, respectively.

Figure 8(b) shows TN. Node 6 has been replaced by a four-node star and node c has been
replaced by a three-node star. For the first stage, T ? = T N, and cycle C f passes through
d i,63, 6i , 64, and f x. In this stage, l' = 6X, edge s = (6X, 63), and s' = (61, 64). Because s and
s' are in the same star in TN, FNR takes the union of 63 and 64. Hence, s and s' are not
contracted, but s' is deleted (otherwise, T2N would have two tree edges from 6X to b ^ d ifi).
On the other hand, both d\ and f\ are leaves in , so (63,d i) and (64, / 1) are contracted.

The resulting tree I is shown in Figure 9. In stage 2, s = (ai, 61) and s' = null. Hence,
s and s' are not in the same star in TN, so s is contracted. In addition, because e2 is in
EN(c), FNR does not take the union of ci and 61. As a result, Tf has ai6i62 as a supernode
instead of Ui 6i62Ci .

In stage 3, as shown in Figure 10(a), the edge in G f corresponding to e3 = (6X, h-x) is
incident on supemode ax6i62 in T3N. In the cycle C^, the edge (a16162,c1) corresponds to
t = (62, cx) in TN. Therefore, e3 is not adjacent to t in TN, and FNR contracts t. After all
the tree edges in C* are processed, the resulting tree T ? is as shown in Figure 10(b). In a
similar manner, the edge (a16i62c1c3/i1, 6364d i/i) corresponds to (61} 63) in TN, which is not
adjacent to edge e4 = (¿1,^1) in TN; therefore, FNR contracts (a16162c1c3/ i i ,6364d1/ 1).

After stage 4, consists of one supernode, hence FNR terminates. (In addition, k =
m - n + 1.) At this point, R(a) = R(d) = R (f) = R(g) = R(h) = 0, because all these nodes
are leaves in T. R(b) = {e x,e2,e4} and R(c) = {e3) e4}*

3.2.7 C orrectness o f F N R

First, we review Chin and Houck’s result [CH 78]. They prove that the set of edges in the
MST of CG(v) is the correct set of edges to replace v. Let T(v) be the set of edges in T — v.

Lem m a 1 [CH 78, Lemma 2, p. 334] U R*iv) *s the set of edges in the minimum spanning
tree of CG(v), then T(v) U R*{v) is the set of edges in the minimum spanning tree of G — v.

As a result of Lemma 1, to show that FNR is correct, we only need to prove that R(v) is
the set of edges in the MST of CG(v) for each v, that is, R(v) = R*(v). As an intermediate
step, we show that the FNR invariant correctly makes the relationship between CG(v) and
Gn explicit.

Lem m a 2 (F N R Invariant) Nodes vu ,...,vu are the only star nodes of v in supemode
u' of G% if and only if Vu, . . . , vu comprise one supemode of CG¡¿{v).

11

Preprocessing
Replace each v in V with star

Stage k
/* Derive T?+l from T f */
If endpoints of e* are in same supernode in Tj ,̂ then

T N __rpN
1 k+l

Else
Determine C£ by finding l'

/* General case of union */
For each (x',p(x')) in C£ fl

except edges corresponding to s and s'
Let t = (x,-,p(xt)) in TN correspond to (x',p(x'))

and let X{ be in x ’s star and p{x{) be in y’s star
If p(xi,t) = fa lse and e*. EN(x), then

Add ejt to R(x)
Set p(x{,t) := true

If p(p(xi),t) = fa lse and e* £ EN(y), then
Add eh to R(y)
Set p(p(xi),t) := true

If p(xi,t) = p(p(xi),t) = true, then
Take union of x' and p(x')

/* Special case for l' * /
If s and s’ are in same star in TN, e.g., Z’s star, then

Take union of and cr
Add ejt to i?(Z)
Remove (cr, Z') from Tĵ +1

Else
Take union of cl and l1 and union of cR and Z',

similarly to case of (x',p(x')) above

Figure 7: Pseudocode for FNR

12

- - « O f ta;
T — T

Ca) Cb>)

y»
2

Figure 9: Example for FNR, second stage
a b b 1 1 2

p N
3

a b b c c h

p N
4

b b d f
3 4 1 1

(a) (b)

_______ Figure 10: Example for FNR, third and fourth stages

13

Proof: Fix node v in V. We prove the lemma by induction on k. The base case is k = 1:
CGi(v) = CG(v) and G f = GN. Initially, there is a one-to-one correspondence between the
star nodes of v and the nodes of CG(v), so the lemma is true for k = 1.

For the inductive step, assume that the inductive hypothesis holds for k. We show that
the lemma holds in one direction for k -f 1: if vn ,...,vu are the only star nodes of v in
supernode ul of C?£+1, then ut i , . . . , Vu comprise one supernode of CGk+i{v)- The opposite
direction is easy to prove, and the details are left to the reader.

The proof of the inductive step considers several cases for e* and its relation to v in G ̂ .
In general, each case leads to one of two possibilities in GGfc(u): either e* is a self-loop in
GGfc(v), or ek connects two different supernodes in CGk{v). If e*. is a self-loop in CGk(u),
then CGk+i(v) = CGjt(u). If e* connects two different supernodes in CGk{v), then there
is one supernode in CGk+i{v) that contains the star nodes in the original two supernodes.
The case analysis of the rest of the proof shows that the same change occurs in G%-

Kruskal’s algorithm and FNR consider one nontree edge at a time. Suppose e*, is a self­
loop in G%. Consequently, by the procedure of FNR, G j^ = G%. There are two cases for
e* corresponding to CGk(y)\ either e* is incident on a star node of v, so that e* 0 GGjt(u);
or e* is not incident on a star node of v, so that by the inductive hypothesis, ek is a self-loop
in CGk(v). In either case, CGk+i(v) = CGk(y). Therefore, for each supernode v! of G%+i,
the star nodes of v that axe contained in v! comprise one supernode of CGk+i{v)-

Suppose that e* is not a self-loop in G%- We say that node v is in Cf? if one of v’s star
nodes is contained in a supernode in . Also, by v\ = lca(ek), we mean that v\ is the
lowest common ancestor of the endpoints of e* in TN. We consider three subcases: v is not
in cS\ v is in C£ and V\ ^ lca(e*;); and v is in C£ and v\ — lca(ejb). The second subcase
corresponds to the general case of a union, and the third subcase corresponds to the special
case relating to l'.

When v is not in Cjf, the supernodes in Gjf that contain star nodes of v are not changed
during stage k. Likewise, e* is a self-loop in CGjk(u), so that CGk+i(v) = CGk(v).

When v is in C£ and vi ^ lca(efc), only one star edge of v, (vl5 v*), might correspond to
an edge in Cf?. If v\ and V{ are in the same supernode in G f , this supernode is not affected
during stage k of FNR. Likewise, by the inductive hypothesis, e* is a self-loop in GG^(u),
so that CGk+i(v) — CGk{v). On the other hand, if Vi and V{ are in different supernodes
in <%, say u1 and v1, then FNR takes the union of u! and v' in stage k. Likewise, by the
inductive hypothesis, e* connects two different supernodes in CGk(y) that are merged into
one supernode in CGk+i{v), preserving the inductive hypothesis.

Finally, when v is in Cg and v\ = lca(ejb), two star edges of v, say (ul 5u,) and (vi,Vj),
might correspond to edges in Cf?. If vi ,vt-, and Vj are each in different supernodes in G f,
then FNR takes the union of the supernodes containing v{ and Vj. Note that the endpoints
of ek are descendants of V{ and Vj, respectively. Therefore, by the inductive hypothesis, in
GGjk(u), ejk connects the supernodes containing V{ and vy, and these two supernodes are
merged into one supernode of CGk+i{v). If one, but not both, node of v{ and Vj is in the
same supernode of G^ as ui, then FNR takes the union of Vi's supernode and the other
supernode. Likewise, a corresponding merge occurs between supernodes of GGjt(u). Finally,
if Vi,Vi, and Vj are all in the same supernode in G f, then by the inductive hypothesis, e* is
a self-loop in CGk(y). In both situations, the supernodes containing u’s star nodes are not
affected. □

14

As a corollary of Lemma 2, FNR correctly simulates Kruskal’s algorithm on each com­
ponent graph. Therefore, FNR determines the set of edges in the MST of each CG(v).

T heorem 1 FNR determines the correct node replacement for each node v in V.

3.2.8 Tim e Analysis for F N R

For FNR, the transformation from G to GN takes 0(m) time total: 0 (£ v<5t (v)) = 0(n)
time for the new star nodes and edges, and 0 (m) time for the new endpoints of nontree
edges.

As with FER, the number of operations to contract each Cjf is proportional to ¡C^DT^.
In addition, in each stage k where the endpoints of e* are not in the same supernode in TJf*,
at most four edges in u' ^ l' and v' l' are not contracted. In total, \C% fl T^\ = |TN|;
because only 0(n) star edges are added in the transformation from T to TN, \TN\ < 2|T|.
Hence, the number of operations to determine and contract the cycles is

E \c kn T?\ <|T*| + £ 4 = 5|TW| =
k \C?nT?\>0

Because some unions might not be in the predefined union tree, the time for these operations
is 0 (n a (n)), where a(n) is the inverse of Ackermann’s function.

Finally, FNR takes 0(m) time to check the endpoints of each e*. Therefore, the total
time for FNR is 0(m + na(n)).

4 FERP—Find Edge Replacements in Parallel
The algorithms FERP is the parallel analogue of FER. FERP takes O(logn) time, using
m processors on a CREW PRAM. This section provides the motivation for the structure
of FERP by first describing a similarity between the sequential algorithm FER and ear
decomposition. Next, an overview of FERP is given, followed by the details of the tree
contraction step used in FERP and a method of a compact representation for values used in
the tree contraction step.

4.1 FER and Ear Decomposition
The sequential algorithm FER determines and contracts the cycles Ci, C2, • • •, in turn, one
after the other. The parallel algorithm FERP cannot afford to do so; otherwise, the running
time of FERP could be the same as for FER. The challenge for FERP is to determine
and contract the cycles in parallel, that is, at the same time. To meet that challenge, we
consider the similarity between the outputs of FER and of one particular method of ear
decomposition.

FER partitions the tree edges of E into subsets indexed by the nontree edges. Specifically,
the subsets of the partition are F(e) = {t\r(t) = e}. F(e) is a subset of the cycle C(e).
Likewise, the parallel ear decomposition algorithm of Maon et al. [MSV 86] partitions the
tree edges of E into subsets indexed by the nontree edges. In this latter algorithm, the

15

Figure 11: Contrast between FER and ear decomposition: t is assigned to F(e i) and to
P (e2), not P (ei). jF(ei) consists of edges t and t', and P(e2) consists of edges t, s, and s'.

subsets are called ears; the ear P(e) (to be defined in the next paragraph) is also a subset
of the cycle C(e).

On the other hand, the two algorithms use different partition rules. Let the level of
nontree edge e be the level in T of the lowest common ancestor of the endpoints of e, where
the root of T is at level 0. FER assigns tree edge t to F(e) if e is the minimum weight
nontree edge such that t e C(e). The algorithm of Maon et al. assigns t to P(e) if e is the
minimum level nontree edge such that t € C(e). For example, in Figure 11, t € C(ei) and
t e C(e2). Suppose that u/(e!) < vu(e2) and level(ei) > level(e2). In this case, FER assigns
t to F(e 1), but the algorithm of Maon et al. assigns t to P{e2).

In summary, the similarity between FER and the algorithm of Maon et al. suggests that
the basic structure of FERP should be be similar to the structure of the algorithm of Maon
et al., which is a parallel algorithm that takes time O(logn), using m processors, on a CREW
PRAM.

4.2 Details of FERP
The major steps of FERP follow the basic structure of the algorithm of Maon et al. The
main difference is in the tree contraction step. The steps of FERP are as follows:

1. Root T and compute the parent and level of each node

2. Sort the nontree edges by weight

3. Determine the level of each nontree edge

4. Use tree contraction to determine r(t) for each tree edge t = (u,v), where u is the
parent of v

(a) Let f(u ,i) = min{u;(e)|e = (u,v) £ T,level(e) < ¿}, for 0 < i < level(a). f(u ,i)
is the minimum weight of a nontree edge incident on u such that the lea of the
edge’s cycle is at or above level i in T.

(b) r(t) is the edge whose weight is vu*(t) = min{/(x,level(u))|x € Tt,}, where Tv is
the subtree of T rooted at v. The conditions ensure that r(t) is the nontree edge
of minimum weight such that one endpoint is in v’s subtree and the lea of r(t)’s
endpoints is an ancestor of u, that is, t is in C(r(t)).

16

FERP uses well known algorithms to carry out the all the steps. To root T and compute
the parents and levels of nodes in T, FERP uses an Euler-tour technique (see for example
[Ja 92, pp. 108-118]). To sort the nontree edges by weight, FERP uses Cole’s parallel
merge-sort algorithm [Co 88]. Last, to determine the levels of the nontree edges, FERP uses
a parallel lowest common ancestors algorithm, such as the algorithm of Schieber and Vishkin
[SV 88]. Each of these steps takes O(logn) time. The sorting requires m processors, while
the other steps use only n processors, on a CREW PRAM.

For the final step, to set r(t) for each tree edge t, FERP evaluates the expression w*(t)
by tree contraction. This tree contraction step takes O(logn) time, using m processors,
on a CREW PRAM. The next section explains in more detail how FERP does the tree
contraction.

In summary, FERP consists of a finite number of steps that each take O(logn) time,
useing either n o r m processors on a CREW PRAM. Hence, FERP takes O(logn) time,
using m processors, on a CREW PRAM.

4.3 Tree Contraction to Set Edge Replacements
FERP uses the tree contraction algorithm of [RMM 93, pp. 187-190] to evaluate the ex­
pression w*(t) for each t in T. Normally, when each node in the tree has one input value,
the tree contraction takes O(logn) time, using n /log n processors on a CREW PRAM; in
FERP’s case, where each node u has a vector }(u ,i) of inputs, the tree contraction takes
m processors. This algorithm rims on trees of unbounded degree, provided two conditions
are satisfied: the rake operation takes at most O(logc) time when applied to a node with c
children that are leaves; and the rake and compress operations can be applied to different
parts of the tree asynchronously. In this section, we show these two conditions are satisfied.

First, we define a function h(u, i) on the nodes in T. For each node u, h(u, i) is the
minimum of the f(v ,i) values in Tu, the subtree of T rooted at u. That is,

h(u, i) = min{f(v,i)\v e Tu}.

Let t = (u,v) be an edge in T, where u = p(v). The replacement edge r(t) connects the
two components of T - v\ hence, one endpoint of r(t) is in the subtree of v and the level
of r(t) is at most level(u), as shown in Figure 12. In other words, r(t) is the edge with
weight h(i/, level(u)) = h(v, level(v) — 1). Therefore, the tree contraction algorithm actually
computes h(v, level (v) - 1) for each v in V.

For each internal node u in T, let D(u) be the set of u’s children. The tree contraction
algorithm maintains the following invariant:

h{u, i) = m in{/(u , i), min{min(6(v, ¿), h(v, i))|v 6 £>(u)}}, ' (1)

where b(v, i) is called the label of v for level i. The value of 6(v, i) is adjusted through­
out the computation to maintain the invariant; initially, b(y, ¿) = The value of
min(b(v),h(v,i)) is called the level i contribution of v to its parent u.

The rake operation eliminates all the leaves while maintaining the invariant (1). Let Tk
be the tree after the A:th rake and suppose y is a leaf in Tk. Since y is the only node in

17

Tv

Figure 12: The correspondence between r(t) and h(v, level (it)): to connect T —t, one endpoint
of r(t) is in Tv and level(r(t)) < level(zz).___

D (u)

Figure 13: A rake applied to node u. Before the rake, /i(u, i) is not known, and after h(u, i)
has been evaluated.___

Ty, h(y,i) = /(y , z) for all z. Consider a node such that all its children are leaves. The
invariant (1) reduces to

h(u,i) = min{/(zz,z),min{min(6(z;, z), f(v, z))|v € D (u)}}. (2)

A rake applied to u removes all the leaves in D(u) and evaluates h(u, i), as shown in Figure 13.
We show in Section 4.4 how FERP can look up the value of f(u ,i) in 0(1) time, using m
processors in total for each rake. Similarly, FERP looks up the values of 6(u, i), which also
takes 0(1) time; this step uses at most m processors for one rake. Afterwards, Equation (2)
computes the minimum of 2\D(u)\ + 1 values, which takes 0(\og\D(u)\) time, using \D(u)\
processors. Therefore, the rake applied to u takes 0(log|D(u)|) time, which satisfies the
first condition of the tree contraction algorithm.

The compress operation shortens each chain in the current tree. A chain in a tree is a
set of nodes such that each node has only one child. Suppose that u, v, and x form a chain
such that u = p(v) and v = p(x). Then a compress applied to this chain removes v from the
tree and sets u = p(x). Figure 14 shows the effect of this compress. Let b'(x,i) be the value
of x ’s label after the compress. By the invariant (1), we have

h(u,i) = m in{/(u , z),min(6(t;, ¿),/i(v, z))}
= m in{/(ti, z), min(6(v, z), min{f(v , z), min(6(x, z), h(x, i)) }) }
= m in{/(u , z), min(min(6(z;, z), f(v, z), 6(x, z)), h(x, z))}
= min{/(zz, z), min(6'(x, z), h(x, z))}.

18

_________________Figure 14: A compress applied to the chain u, v, and x.__________________

That is, b'(x,i) = min((6(v, i), /(v , i), b(x, i)). The update to x ’s label requires no 6(-,z),
/(• ,:), or h(-,z) values from x ’s strict descendants. Therefore, this compress is independent
of a rake applied to different parts of the tree. Hence, the second condition of the tree
contraction algorithm is satisfied.

The next section shows how to look up the f(u ,i) and b(u,i) values in 0(1) time, using
only m processors.

4.4 Computing f (u,i) and b{u,i)
For the FERP tree contraction step, the f(u, i) and b(u, i) values could be stored in a lookup
table of size 0(n x d), where d is the height of T. In the worst case, d — ft(n), so that the
size of the table for / and b would be Q(n2). To ensure a constant lookup time, FERP would
need f2(n2) processors, which is more than we have available. Instead, we use a compact
representation for the f(u, i) and 6(u, i) values that requires only m processors for a constant
lookup time.

First, we discuss how to represent the f{u ,i) values. Let 5E(u) be the nontree degree
of node u in graph G, that is, the number of edges in jE — T incident on u. The key idea
is that we represent 5E(u) values for each node u, because there are only 5E(u) nontree
edges incident on u. The portion of the compact represenation for u has 5E(u) entries; each
entry has two components, a level number and an edge weight. For example, suppose that
u has exactly three incident nontree edges at levels ¿1, 2*2, and ¿3, where ¿1 < i2 < ¿3. For
* < *i> /(?m) is undefined, because u has no incident nontree edges with a level less than
¿1. Furthermore, for ¿1 < i < = /(u , ¿1); similarly, for i2 < i < i2, f {u ,i) = f {u ,i2)
and for 13 < i < level(u),f(u ,i) = f As a result, to represent all f(u ,i) values, for
0 < i < level(u), we only need the entries (¿1, f{u, ¿1)), (¿2, f(u , i2)), and (¿3, f(u, ¿3)). For
all nodes in total, the compact lookup table uses E uev ¿e M < 2m entries.

To determine f(u ,i) given u and z, we use SE(u) processors, one for each entry in u’s
portion of the lookup table. Each processor looks at the level numbers for its entry and
its neighbor s entry, to check whether i is between these two level numbers. The processor
that has i in its range of levels then returns the / value in its corresponding entry. For the
example of the previous paragraph, suppose that i2 < i < i3. The processor for ¿1 looks up
¿1 and ¿2 and does nothing since i > i2\ similarly, the processor for ¿3 does nothing because
1 < ¿3. The processor for i2 looks up i2 and ¿3, notes that i is in this range, and returns
/ K z2).

19

Now, we show that the compact representation can be set up in O(logn) time, using m
processors, on a CREW PRAM. Each node u has 6e (u) processors available. First, we sort
the edges incident on u lexicographically by level and then weight. Next, for each level, we
determine the minimum weight nontree edge that is incident on u; each processor asks itself,
“Is my corresponding edge weight the minimum of the level that I’m in?” For the processors
that respond affirmatively, we use list ranking to order these processors by level and call this
list the compact list for u. At this point, the entry for each processor in the compact list
consists of its level number and the minimum weight of edges at that specific level; f(u, i) is
the minimum over edges at levels less than or equal to i. So, finally, for the levels ¿1, ¿2, . . .
represented in the compact list for node u, we use a parallel prefix algorithm to compute
/ (u , i i) , / (u , i 2) ,

To determine the total number of processors required for looking up f(u , i) values in the
FERP tree contraction step, we consider when f{u ,i) values are needed. At most one rake
and one compress occur simultaneously. In a rake operation, from Equation (2), FERP looks
up /(ti, i) and f(v , i) for each v in D(u). In a compress operation, FERP looks up /(u , i) for
each node v removed. In each stage, the rake and compress operate on different parts of the
tree; therefore, for each node u, FERP looks up /(it, i) at most once. In total, the number
of processors required is at most Yjusv $e(u) — 2m.

Finally, we reduce the number of processors from 2m to m by having each processor
simulate the two processors assigned to the endpoints of a nontree edge.

For the 6(it, i) values, the compact representation also requires only m processors for
constant time lookup. Initially, b(u,ix) = f(u ,ix), where u has an incident edge with level
ix. Hence, node u has 5e{u) processors for these b(u,ix) values, one per level ix.

After a rake operation, suppose one of the nodes v in D(u) has an incident edge with
level ¿y, but u does not. Initially, b(u,iy) has not been set and u has no processor assigned
to b(u,iy). However, after the rake, v's processors are available; therefore, u’s processor for
level iy becomes u’s processor for level iy. A similar reassignment can be done for a compress
operation. Therefore, in total, at most m processors are needed to look up the b(u, i) values.

5 FNRP-Find Node Replacements in Parallel

5.1 Overview of FNRP
Like FNR, FNRP simulates a greedy MST algorithm on each component graph simultane­
ously. Intuitively, FNRP simulates Sollin’s algorithm [BGH 65], so that in each stage, FNRP
determines the minimum weight outgoing edge from each connected component in CG(v).
In this manner, the number of distinct components in each CG(v) is reduced by at least half
after each iteration. Therefore, FNRP takes 0(log A) iterations, where A is the maximum
degree of a node in G.

In each iteration, FNRP runs a modified FERP to determine the minimum weight outgo­
ing edge from each component. The modified FERP and the merging of components require
at most O(logn) time per iteration. Therefore, FNRP takes 0(lognlog A) = 0(log2n) time
using m processors on a CREW PRAM.

20

5.2 Simulating Sollin’s Algorithm
Initially, FNRP transforms G into GN via the FNR transformation of Section 3.2.2. Then,
in iteration k, FNRP finds an edge r(v{fc*) for each supernode and merges v,-A) with
supernode s(v-^), where r(uj^) and s(ujfc)) are defined in the following paragraphs.

For each iteration k, let be the graph at the beginning of the iteration and T ^ be
its MST. Ĝ k+1̂ is derived from Ĝ k\ and T (fc+1) is derived from T ^ , as described in this
section. (The progression is similar to G% and Tj? of FNR, but those graphs and trees have
different structures.) For k = 1, since G(1̂ = GN, we sometimes drop the (1̂ superscript, if
the context is clear.

We use to denote a supernode in Each contains only nodes from v’s star. To
indicate which Vj are in vjk̂ , we use the lowest numbered star node as vjk̂ ’s representative.
For example, suppose v comprises V2 and v$\ we write rep^(u2) = rep^(vs) = V2.

Corresponding to Ĝ k\ we define C G ^(v) to be the component graph for v at the
beginning of the kth iteration: each supernode in CG ^(v) corresponds to one connected
component of CG(v). As an invariant, in each iteration of FNRP, the star nodes of v
that comprise one supemode of G ^ comprise one supemode of CG ^(v). As a result,
we sometimes refer to vjk̂ both as a supernode in C G ^(v) and as a supernode in G(kK
Similarly, we sometimes refer to edge e in G(k) as its corresponding edge in C G ^ (v). We
prove in Section 5.4 that r(vj^) corresponds to the minimum weight outgoing edge from vj
in CG<V(v).

Edge r(vj^) is defined as

r(vjk)) = argmin{u/(e)|e € E N - T N - E {k](v), (vj*\p(i;jfc))) € C (fc)(e)},

where p{v\k)) is the parent in T (fc) of To be precise, the second constraint should be
“the edge in TN corresponding to (vjk\p(vjk))) is contained in C (k)(e),” but we use the
abbreviated form for ease of presentation.

The edge in C G ^(v) corresponding to r(v-k)) connects with another supernode.
We define s(v\k to be that supernode. Figure 15 shows examples of s(v|^). Section 5.3
explains how FNRP determines After determining s (v ^)} FNRP merges and
s(v-k̂). As shown in Figure 16, the merges may occur along a chain of supernodes, so that
a supernode in G(fc+1) may contain more than two supernodes in G(fch Without loss of
generality, the supernodes in each star of G^+1) are numbered in increasing order of the
supernodes’ representatives. Hence, v[k+1) contains v[k\

To preserve the tree structure of T (fc+1), FNRP removes all but one star edge incident
on each new supernode v-k+1\ when i > 1. Suppose v\k) and v are merged into v(k+1),
and that i < j. FNRP removes the star edge corresponding to (vjk\p (v^)). Consequently,
T (fc+1) has neither redundant tree edges nor self-loops.

FNRP also updates the rep(fc+1)(ui) values as it merges supernodes. Continuing the
example, suppose has v3 as its representative and ujfc) has v5 as its representative. In
this case, rep(fc+1)(ui) = min(u3,u5) = u3 for each in v(k+1).

21

V V V V
2 3 4 5

Figure 16: Merge along a chain of nodes. The dashed arcs indicate that v2 = s(v3), v3 =
s(v4), and v4 = s f e) . __

5.3 Modifications to FERP
FERP uses the /(u , i) and h{u, i) values to determine r(t) for each edge t. Because the
definition of r(v¡k)) is similar to the definition of r(t), FNRP uses a modification of FERP to
compute r(vjfc)). The differences between the definitions of r(t) and r(v\k)) are that r(vjk))
is defined for a graph with supernodes, not nodes, and that r(vjk)) must not be incident on
any of v’s star nodes. We modify the definitions of f(u ,i) and h(u,i) to account for these
differences.

5.3.1 Preprocessing

Before the first iteration, for each edge e, FNRP precomputes lca(e), the lowest common
ancestor in TN of the endpoints of e, and the values childl(e) and child2(e), defined as follows.
As with FERP, the parallel lowest common ancestor algorithm of Schieber and Vishkin
[SV 88] can determine these values in O(logn) time with m processors. Let Vi = lca(e). The
two children of vx that are in CN(e) are denoted childl(e) and child2(e), respectively, as in
Figure 17. These two values are used to determine s(v\k))] in addition, these values are used
during the FERP computation in the kth. iteration for k > 1.

Finally, for each node u in T N, FNRP precomputes a n c t h e ancestor of u that is
2* levels above u in the tree. FNRP uses pointer jumping up the tree to determine these
values. Hence, with n processors, these values can be determined in O(logn) time.

After the anc(u,i) values are precomputed, FNRP can determine z, the ancestor of u at

22

Figure 17: Example of childl(e) and child2(e).

some level j in O(logn) time using one processor. Let l = level(u). First, FNRP computes
the binary representation of l—j , and then FNRP uses the ones in this representation to look
up z. For example, suppose l —j = 5, which is IOI2 in binary. FNRP looks up v = anc(u, 0),
and then looks up z = anc(t>, 2). Figure 18 illustrates this example.

5.3.2 Modifications During First Iteration

For the first iteration, G(1) = GN and each “supernode” is just one node. Hence, we need
only to modify /(u , i) and h(u, i) to ensure that r(^) is not incident on any of v's star nodes.
FNRP adds this constraint to the definitions of f(u ,i) and h(u,i) as follows:

• Instead of FNRP uses

f{u ,iyz) = min{u;(e)|e = (u, v), level(e) < z, e 0 £ N(z)}.

• Instead of h(u,i), FNRP uses

h(u, i, z) = min{u;(e)|e = (x ,y),x G EN(z)}.

• Instead of setting r(t) to be the edge with weight h(v, level(v) - 1), FNRP determines
r(vi) to be the edge with weight

h(vi,\eve\(vi) — l,v) = h(viy level(vi), 17).

23

_______________ Figure 19: Modified definitions for f(u ,i ,z) and h(u,i,z)._________________

Figure 19 illustrates these definitions. Let level(ui) = t For xu f(x i,£ ,u) = 3, not 1,
because edge 1 is incident on u\. The value of h(vi,£,u) depends on the / values in Vi's
subtree: f (v u £,u) = 4 and f {y u £,u) = 2, so h{vi,l,V) = min{2, 3, 4} = 2. Because v2 has
no nontree edges incident on it, f(v 2,i,u) = n il. Finally, r(u3) = h(u3J ,u) = h(vi,£,u) =
2, where the second equality follows because u3 has no incident nontree edges.

As with /(u , i) in Section 4.4 , FNRP precomputes only Se {u) values of /(u , i,z) for each
node u: FNRP determines f(u , ii,z) only if u has an incident nontree edge with level ¿/. This
computation is similar to the precomputation for /(u , ¿/). Let be the set of nontree
edges with level ii that are incident on u. FNRP determines the minimum weight edge in
M (u , ii) — {(u, z)}. Next, FNRP uses a parallel prefix algorithm on these values to compute
/(u , ¿/,2). In total, for all u, this computation takes 0 (log7i) time, using m processors on a
CREW PRAM.

For a general value of i, FNRP looks up /(u , i,z) in 0(1) time using 5e (u) processors
on a CREW PRAM, also as in Section 4.4. Each processor is assigned to one level. For
example, suppose u has nontree edges incident with levels ii and ¿2, i\ < i2, and suppose
that ¿i < i < i 2. The processor assigned to z'i looks up ii and z2, notes that ix < i < i2, and
returns f(u ,i,z).

Once the values of f(u ,i ,z) have been determined, FNRP runs FERP to compute
the values of level(vj) l 5v) in O(logn) time. Then r(vi) is the edge with weight
h(vi,level(vi) — 1, v).

Next, given and r(ut), FNRP determines s(vt). If vi ^ lca(e), then s(ut) = vx.
Otherwise, when Vi = lca(e), without loss of generality, let = childl(e); in this case,
s(vi) = child2(e). Hence, FNRP makes one lea query and at most two child queries for vt-,
for a total of 0(5T(v)) queries for v's star. Using n processors for all nodes, one processor
per node, these queries take 0 (1) time.

To merge nodes, FNRP uses the s(vt) values. Since £ 6T(v) = 2(n - 1), with pointer
jumping, FNRP can merge nodes for all stars simultaneously in O(logn) time with n pro­
cessors. FNRP just assigns a common representative to each node in a chain, as defined by
the s(v{) values.

In total, the first iteration takes O(logn) time.

24

Figure 20: Two possibilities for z\ ^ lca(e): (a) z\ and Z{ not in same supernode; (b) zj. and
Zj in supemode zu•__

5.3.3 Modifications During kth Iteration, k > 1

For the kth iteration, k > 1, FNRP has to modify f(u, i, z) and h(u, i, z) to handle supernodes
in G ^ . FNRP first determines f^ {u\k\ j,z) from values f^ {u ix,j ,z) computed for each
node UiX contained in supernode by doing so, we avoid having to update the adjacency
fists for each graph G(k\ Then FNRP runs FERP on G ^ to compute the (u , j, z)
values.

In this iteration, FNRP wants the minimum outgoing edge for each component in C G ^ (z).
Edge e is outgoing with respect to z if e is not a self-loop in C G ^(z). FNRP has to check
whether each edge considered for (uix,j ,z) is outgoing with respect to z. After checking
every nontree edge incident on u, FNRP computes (uix,j ,z) for each node uix in u\k\
where

f^ (u ix ijiz) = min{ii/(e)|e = (uix, v), level(e) < i ,e £ EN(z),e outgoing w.r.t. z}.

Next, FNRP takes the minimum of these values for f^{u\k\ j,z):

f {k)(u\k),j ,z) = min{ f (k){uix,j,z)\uix € u[k)}.

Other than checking each edge e considered for f^ {u ix,j,z), the computation is similar to
the ones for f{u ,i) and f(u ,i,z).

To determine whether edge e is outgoing in CG(/c)(z), FNRP considers two cases: either
z\ 7 ̂ lca(e) or z\ = lca(e), where Zi is the central node of z ’s star. In the first case,
z\ ^ lca(e), CN(e) contains only two star nodes of z, namely, z\ and z, for some i, as shown
in Figure 20(a). If zi and z* have not been merged before iteration k, as in Figure 20(a), then
e is an outgoing edge in CG^k\z). Otherwise, as indicated in Figure 20(b) by the supernode
zu, e is not an outgoing edge. In terms of the notation for FNRP, e is an outgoing edge
if and only if repw (zi) ^ repW(z*). To check this constraint, FNRP has to determine
which node z,-,i > 1, is an ancestor of uix. Though FNRP does not know zt, FNRP knows
level(zi) = level(zi) + 1. Consequently, FNRP looks up the ancestor of ulx at level(zx) + 1
using the anc information and then checks rep(̂ (zi) and rep^(zj).

25

JTT

u u outgoing u not outgoingix ix ix
(a) (b) (c) (d)

_____________ Figure 21: Original cycle and three possibilities for Zi = lca(e).______________

In the second case, z\ — lca(e), CN(e) contains three star nodes of z, namely, z\, z,-,
and Zj, as shown in Figure 21(a). If z\ and z,-, but not Zj, have not been merged, as in
Figure 21(b), then e is an outgoing edge. Similarly, but not shown, if Z\ and Zj, but not
Zi, have been merged, then e is an outgoing edge. On the other hand, if z* and z;-, but
not z\, have been merged (Figure 21(c)), or if all three have been merged (Figure 21(d)),
then e is not an outgoing edge. In terms of FNRP’s notation, e is an outgoing edge if and
only if rep^(zi) ^ rep(̂ (z;). To check this constraint, FNRP looks up zt- = childl(e) and
Zj = child2(e) and then looks up rep(̂ (zj) and rep^(z7).

For each endpoint of an edge e, FNRP makes one lea query and either O(logn) anc
queries or two child queries. Hence, using m processors, FNRP takes O(logn) time to check
whether edges are outgoing.

Once the f ^ { u f \ j ,z) values are determined, FNRP computes

h{k)(u\k\ j,z) = min{u?(e)|e = (x ,y),x e T f\ e 0 BN(z)j

in O(logn) time. The rest of the kth. iteration is the same as the first iteration, with a
slight modification to determine s(t/j^). Let e = r (v^). If v\ ^ lca(e), then s(v^) =
Otherwise, FNRP looks up the values childl(e) and child2(e). Without loss of generality, let
childl(e) be in consequently, s(u|^) is the supernode that has rep(fĉ (child2(e)) as its
representative. As in the first iteration, determining s(vj^) takes 0(1) time.

In total, the kth. iteration takes O(logn) time using m processors.

5.4 Correctness
We first prove the FNRP invariant, which formalizes the relationship between and each
component graph.

Lem m a 3 (F N R P Invariant) For each k and node v in V, the star nodes vn, . . . , vu
comprise one supemode in G^ if and only if they comprise one supemode in CG ^(v),

Proof: We prove the lemma by induction on k. The base case, k = 1, follows from the
correspondence between CG(v) and 0 (1̂ = GN.

26

For the inductive step, we assume the hypothesis holds for k and show that it holds for k +
1. In G(fc), FNRP merges supernodes that are connected by the s(v¡k)) relationship. Let vjfc+1)
be a supernode formed by the merging of supernodes in G(k\ and suppose that vn, . . . , vu
are the star nodes that it contains. By the inductive hypothesis and the definition of s(vj^),
the supemodes in G G ^ that contain v^i,. , vu comprise one connected component. Hence,
these supernodes are merged into one supernode in CG(k+1K □

With the modifications to the definitions of f(u, i) and h(v, ¿), FNRP ensures that r(vt-)
is not incident on any of v’s star nodes and that r(vj^) is an outgoing edge from vjkK The
correctness of FERP implies that r (v P) is the minimum weight nontree edge that contains
the edge (vjk\p(vj^)) in its cycle. The last part of the correctness proof of FNRP is to show
that r(vj^) corresponds to the minimum weight outgoing edge from v-^ in CG(A:)(v).

Lemma 4 For each iteration k, for each supemode v-k\ r(vj^) corresponds to the minimum
weight outgoing edge from in C G ^ (v).

Proof: Let e be the minimum weight outgoing edge from v in C G ^(v). The crux of the
proof is showing that the edge (vj^,p(vj^)) is in C (̂ (e). For i > 1, the claim is simple to
prove. In this case, because e is an outgoing edge for vj*\ Ĉ k\e) contains star edges from
v-^ to the other endpoint of e in C G ^ (v). Every tree path from to another of v’s star
supernodes passes through (vj^,v{^).

For i = 1, let x = p (v ^) in T̂ kK The unique tree path from x to another of v’s star
supemodes must pass through v{^, hence (v ^ ,x) is in C ^ (e).

Finally, FERP ensures that ^(vj^) is the minimum weight edge such that its cycle contains
(v|^,p(vj^)). That is, r(vj^) and the minimum outgoing weight edge from vjfc) in CG(fc)(v)
are the same edge. □

As a corollary of these two lemmas, FNRP determines the correct node replacement for
each node.

Theorem 2 FNRP determines the correct node replacement for each node in V.

6 Comments
Throughout the paper, we assume that G is biconnected. If G is not biconnected, then
the sequential algorithms terminate when k = m — n + 1. In this case, replacements are
determined for the biconnected components of G. In each stage k, T* is a may be a forest
of trees instead of one single tree, and the final “tree” Tm_n+2 consists of the bridge edges
and distinct components of G. For example, suppose that edge e is a bridge in G; after
termination of, say, FER, the final tree Tm_n+2 consists of one edge that corresponds to e.

Another problem related to AER and ANR is All Edge Additions (AEA): determine the
MST of G + (v, v), for each edge (v, v) not in E , simultaneously. The algorithm for AEA runs
recursively on the tree edges. First sort the tree edges by weight; this step takes 0 (n log n)

27

time since there are n — 1 tree edges. Let t*(x, y) be the heaviest tree edge. Consider the two
components of T produced when t* is deleted; call these components Tx and Ty, respectively.
For each node pair zz, v, with u in Tx and v in Ty, there are two possibilities for the MST of
G +(u, v). If w(u, v) > w(t*), then T is the MST of G+(u, v). Otherwise, if w{u, v) < w(t*),
then the MST of G + (u, v) is T — t* + {u, v). The algorithm then calls itself on the two
components Tx and Ty.

The algorithm for AEA produces the following output: for each node pair u, v such that
edge (u, v) is not in E, the algorithm determines the tree edge t* that would be displaced
from the MST by adding (u, v) with w(u,v) < w(t*). Hence, the total running time is
proportional to the number of node pairs, 0 (n2).

7 Open Questions
• For the input to the parallel algorithms, the edges do not have to be sorted by weight.

The algorithm of Dixon et al. is an 0(m) time algorithm for AER that does not require
edges to be sorted first. Are there 0(m)-time sequential algorithms for ANR that do
not require the edges to be sorted first?

• Are there analogous results for other basic graph problems? For example, what is the
toted time needed to compute the shortest paths between all pairs of nodes, in each
graph G — v, for all v simultaneously? There is a naive sequential algorithm that runs
in time 0(m*n2+ n 3 log n) = n x SP , where SP is the time complexity of the sequential
all-pairs shortest path algorithms of Karger et al. [KKP 93] and McGeoch [Me 95].

Acknowledgements
This research was supported in part by the National Science Foundation under Grant CCR-
9315696. We thank D. Eppstein and R. Tarjan for pointing out the paper of Dixon et al.,
N. Amato for suggesting that we design parallel algorithms for AER and ANR, D. Brown for
providing insightful comments, K. Walny for highlighting refinements to the implementation
of FER, and S. Pemmaraju for suggesting the all edge additions problem.

References
[BGH 65] A. Berge and A. Ghouila-Houri, Programming, Games, and Transportation Net­

works, John Wiley, New York, 1965.

[CH 78] F. Chin and D. Houck, “Algorithms for updating minimal spanning trees,” J. Corn-
put. System Sci., 16, 3 (1978) 333-344.

[Co 88] R. Cole, “Parallel merge sort,” SIAM J. Comput., 17, 4 (Aug 1988) 770-785.

[CLR 92] T. H. Cormen, C. E. Leiserson, and R. L. Rivest, Introduction to Algorithms,
McGraw-Hill, 1992.

28

[DF 94] S. K. Das and P. Ferragina, “An o(n) Work EREW Parallel Algorithm for Updat­
ing MST,” In Proceedings of the Second Annual European Symposium on Algorithms,
Utrecht, The Netherlands, Sept 1994, 331-342.

[DRT 92] B. Dixon, M. Rauch, and R. E. Tarjan, “Verification and sensitivity analysis of
minimum spanning trees in linear time,” SIAM J. Compute 21, 6 (Dec 1992) 1184-1192.

[DT 94] B. Dixon and R. E. Tarjan, “Optimal Parallel Verification of Minimum Spanning
Trees in Logarithmic Time,” In Proceedings of the First Canada-France Conference on
Parallel and Distributed Computing, Montreal, Canada, May 1994, 13-22.

[EGIN 92] D. Eppstein, Z. Galil, G. F. Italiano, and A. Nissenzweig, “Sparsification— a tech­
nique for speeding up dynamic graph algorithms,” in Proceedings of the 33rd Symposium
on Foundations of Computer Science, (1992) 60-69.

[Fr 85] G. N. Frederickson, “Data structures for on-line updating of minimum spanning trees,
with applications,” SIAM J. Compute 14, 4 (Nov 1985) 781-798.

[FT 87] M. L. Fredman and R. E. Tarjan, “Fibonacci heaps and their uses in improved
network optimization algorithms,” J. ACM, 34, 3 (July 1987) 209-221.

[GT 85] H. N. Gabow and R. E. Tarjan, “A linear-time algorithm for a special case of disjoint
set union,” J. Comput. System Sci., 30, 2 (1985) 209-221.

[HT 84] D. Harel and R. E. Tarjan, “Fast algorithms for finding nearest common ancestors,”
SIAM J. Comput., 13, 2 (May 1984) 338-355.

[Ja 92] J. JaJa, An Introduction to Parallel Algorithms, Addison-Wesley, 1992.

[KR 95] S. Kapoor and H. Ramesh, “Algorithms for enumerating all spanning trees of undi­
rected and weighted graphs,” SIAM J. Comput., 24, 2 (Apr 1995) 247-265.

[KKP 93] D. R. Karger, D. Roller, and S. J. Phillips, “Finding the hidden path: time bounds
for all-pairs shortest paths,” SIAM J. Comput, 22, 6 (Dec 1993) 199-1217.

[Kr 56] J. B. Kruskal, “On the shortest spanning subtree of a graph and the traveling sales­
man problem,” In Proceedings of the American Mathematical Society, 7 (1956) 48-50.

[MSV 86] Y. Maon, B. Schieber, and U. Vishkin, “Parallel ear decomposition search (EDS)
and si-numbering in graphs,” Theoret. Comput. Sci., 47, 3 (1986) 277-298.

[Me 95] C. C. McGeoch, “All-pairs shortest paths and the essential subgraph,” Algorithmica,
13, 5 (1995) 426-441.

[PL 94] R. Pasquini and M. C. Loui, “A fault tolerant distributed algorithm for minimum-
weight spanning trees,” Tech. Rep. UILU-ENG-94-2210, Coordinated Sci. Lab., Univ.
of Illinois at Urbana-Champaign, Urbana, 111., 1994.

[PK 93] S. Pawagi and O. Kaser, “Optimum parallel algorithms for multiple updates of
minimum spanning trees,” Algorithmica, 9, 4 (1993) 357-381.

29

[Pr 57] R. C. Prim, “Shortest connection networks and some generalizations,” Bell System
Technical Journal, 36 (1957) 1389-1401.

[RHK 95] M. Rauch Henzinger and V. King, “Randomized dynamic graph algorithms with
polylogarithmic time per operation,” in Proceedings of the 25th Annual ACM Sympo­
sium on Theory of Computing, (1995) 519-527.

[RMM 93] M. Reid-Miller, G. L. Miller, and F. Modugno, “List Ranking and Parallel Tree
Contraction,” Chapter 3 in Synthesis of Parallel Algorithms (ed. J. Reif), Morgan Kauf-
mann, 1993.

[SV 88] B. Schieber and U. Vishkin, “On finding lowest common ancestors: simplification
and parallelization,” SIAM J. Comput, 17, 6 (Dec 1988) 1253-1262.

[SP 75] P. M. Spira and A. Pan, “On finding and updating spanning trees and shortest
paths,” SIAM J. Comput, 4, 3 (Sept 1975) 375-380.

[Ta 79] R. E. Tarjan, “Applications of path compression on balanced trees,” J. ACM, 26 4
(Oct 1979) 690-715.

30

