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1. INTRODUCTION

Pattern classification processes are useful in many practical 

problems such as medical diagnosis, weather forecasting, speech and charac­

ter recognition, etc. It has been under much investigation in recent years 

and a considerable body of literature exists.

The common objective in pattern classification is to classify 

patterns as members of particular categories to which they belong. That means 

any pattern classification scheme must have the ability to establish some sort 

of decision criteria for classifying memberships in different categories, and 

the ability to recognize members in each category. Therefore pattern classi­

fication can be considered as consisting of two parts;

1) Pattern detection - The process of learning from a set of sample 

patterns of known classifications and discriminating characteristics of each 

category; and

2) Actual classification - The process of recognizing patterns of 

unknown classifications as members of particular categories.

This paper is a study in the first part of the process since it is 

most often the more important part of any pattern classification scheme. An 

algorithm for establishing decision criteria of classification is described. 

Evaluation is made on its performance, computation time and data storage 

requirement.
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2. BAYES STRATEGY

Pattern classification using Bayes decision rules involves the 

minimization of the "conditional average loss" (Nilsson) or the "expected risk" 

(Sebestyan) of classification, Consider a case of r categories, C^,.. C , 

and a pattern x. The "expected risk", denoted by R(x,Ci), is the average loss 

incurred when pattern x is classified as belonging to category C„. R(x,C.) is

a function of loss and conditional probability and can be expressed as

J-

R(x,C ) = 2 i(C |C )p(C.|x)
i=l J J

( 1)

X(C^IC .) is the loss incurred when a pattern belonging to category C„ is 

classified as belonging to category C^. (¿(C^C.) = 0 for i = l,...,r).

P(Cj|x) is the conditional probability that given a pattern x, x belongs to

category C^. By Bayes rule,

P(C.|x) =
P(xI C .)P(C „)
___  -1 -1

P(x) ( 2 )

P(x|c.) is the conditional probability of occurrence of pattern x given that 

it belongs to category C^, and P(x|c^) is often referred to as the likelihood 

of pattern x with respect to category C^. p(Cj) is the 1 priori probability 
of occurrence of category C_. and P(x) is the probability of occurrence of 

pattern x. Substituting (2) into (1),

r P(x|c.)P(C.)
R(x,C.) = S J&(C.|C.) ---- J - . J1 j=1 i1 J P(x)



R(x,C.) 1
P(x)

r
S J&(C. |c .)P(x|c .)P(C .) j=1 1 j 1 j y

3

Optimal classification, in the Bayesian sense, means that each 

pattern is classified in such a manner that the "expected risk" of classi­

fication is minimized» In other words, pattern x is classified as belonging 

to category if

R(x,Gi) £ R(x,C ) for j = l,...,r and j f i.

The fact that Bayes strategy depends on the "expected risk" function

presents several problems in real life and thus limits its usefulness. At

best, the loss function, i,(C.|c.), and the a priori probability of occurrence^ J
of category C^,P(Cj), are estimations, and often represent subjective evalu­

ations. (In fact, in many studies, the loss function is assumed to be uniform 

or symmetric for all categories.) The more serious problem is the requirement 

for the likelihood factor in decision making, because it depends on the proba­

bility density function within each category. It is a rare case in practical 

problems when probability density functions are known without preprocessing an 

unrealistically large number of sample patterns in each category. It is also 

difficult to express probability density functions analytically for easy 

applications. Moreover, density function based on past patterns are insensi­

tive to sudden changes in distribution, and thus updating of decision criteria 

would also be difficult. For these reasons, Bayes strategy is seldom applied 

in practical pattern classification problems.
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3 » NONPARAMETRIC TRAINING PROCEDURE AND DECISION SURFACE

In practical classification problems, one is provided only with a 

set of sample patterns of known classifications, from which discriminating 

characteristics and decision criteria are to be determined. Therefore, non- 

parametric training procedures, in which information about the probability 

density functions within each category is not assumed, are more useful in 

real life situations.

Each pattern to be classified can be represented by a m-dimensional 

vector x = (x^,...,x^), where x^!s are m measurements made on the pattern x. 

One basic assumption is that these m measurements provide a complete descrip­

tion of the characteristics of the pattern and that they are sufficient for 

classification pruposes.

Consider the two-category case, C^ and A discriminant function

f(x) can be defined on the representative vector x such that
¡r

x is classified as belonging to if f(x) > T

x is classified as belonging to C^ if f(x) < T > (3)

no decision is made if f(x) = T
y

T is defined as the threshold of classification,

To illustrate this geometrically, patterns are represented by points 

or vectors in a m-dimensional pattern space. Each dimension represents a 

property to be measured on the pattern. One might expect that the set of 

points representing patterns in one category would cluster in the pattern 

space, and that two different categories would be represented by two different 

clusters separated from one another. The discriminant function f(x) in (3)
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defines a decision surface in the pattern space. Patterns are classified as 

belonging to category if the points representing them lie on the positive 

side of the decision surface, while those represented by points lying on the 

negative side are classified as belonging to category .

For a multi-category case, the rules of classification can be 

easily extended. When there are r categories, r different discriminant func­

tions, f^(x) , . . .,f(x) , can be defined. Pattern x is classified as belonging 

to category if

fi(x) > fj(x) for j = and j f i.

For simplicity, only the two-category case is considered throughout this study.
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4. LINEAR DECISION SURFACE

When the discriminant function f(x) in (3) is defined as

m
f(x) = E w. X.

i-i 1 1

where w^ s are constants (weights), f(x) is called a linear discriminant 

function, and the decision surface defined by f(x) in the pattern space is a 

hyperplane.

To simplify mathematically, add 1 as the (nrt-l)st component of the 

representative vector x and call the new (nrfl)-dimensional vector X.

X = (x, , . . o ,x , 1) i m

Define a weight vector W where

W = (wx,...>wm ,-T)

then the linear discriminant function can be more easily represented by

F (x) = W XT

where X denotes the transpose of X. Thus the rules in (3) can be expressed as

x is classified as belonging to C^ if F(x) > 0 

x is classified as belonging to C2 if F(x) < 0 

no decision is made if F(x) = 0

(4)
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Categories and are said to be linearly separable if the weight 

vector W exists. It is well known that if the patterns are finite and linearly 

separable, there exists such a solution. Perception-type procedures, which 

process a fixed set of sample patterns of known classifications in an itera­

tive manner, have been used to investigate such a solution. It is found that 

the weight vector W converges within a finite number of steps.

Although linear discriminant functions can be easily found, they are 

quite restricted in use since it is not always possible to have linearly 

separable categories. In this case, more sophisticated discriminant functions 

are required for practical pattern classification problems, One basic exten­

sion to the linearly decision surface is the piece-wise linear decision sur­

face. Such a surface consists of a collection of linear decision surfaces 

which, when taken together, form a piece-wise linear decision surface. For 

example, assume category has a collection of p linear decision surfaces, 

defined by p linear discriminant functions, F (x),...SFP(x). Then pattern x 

is classified as belonging to category if

F 1(x) > 0 for i = l,...,p.



8

5 o SUPERVISED LEARNING PROCESS

During the detection phase of the pattern classification process, 

a set of sample patterns of known classifications is given during training, 

from which a weight vector, or decision surface, will hopefully emerge. In 

this case, the decision surface is said to be acceptable if it is capable of 

classifying a large fraction of unknown patterns with a small amount of 

errors, but also if the process can be implemented with relative ease. This 

is done usually by iteration on the set of sample patterns.

Iteration starts with an initial weight vector which is modified 

during training according only to input sample patterns. The weight vector is 

tested by attempting to classify sample patterns of known classifications. When 

the decision is correct, the weight vector remains the same. When a decision 

errors occur, the weight vector is modified. The amount of weight adjustment, 

in case of error at step t is dependent only on the weight vector and the 

sample pattern tested at step t, Iteration ends when the weight vector classi­

fies the entire set of sample patterns correctly.

A simple set of iteration rules is used and can be expressed as

W(t+1) = W(t) when there is no error

W(t+1) = W(t) + c(t)X when error occurs

where W(t) is the weight vector at step t and X is the vector representing 

pattern x tested at step t. c(t) is the correction factor at step t. This 

correction factor can either be fixed throughout iteration, or vary with the 

amount of erroneous crossover from the decision surface defined by the weight 

vector W(t) at step t. In both cases, it can be shown that iteration converges
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if the set of sample patterns from the two categories is finite and linearly 

separable» In the latter case, the correction factor c(t) at step t can be 

chosen in such a way that the new weight vector W(t+1) will classify the sample 

pattern x at step t correctly« In other words, the decision surface is moved 

so that the point representing the sample pattern tested at step t would be 

located on the correct side of the new decision surface. It can be easily 

shown (Appendix A) that if this is the case, the correction factor c(t) has 

a lower bound

c(t) a t o l l .  sgn(x)
XX

where sgn(x) is either + or - depending on the correct classification of sam­

ple pattern x. In this study, this value of the lower bound is used as the 

correction factor at step t during iteration, although the fixed correction 

method would also work quite well. Convergence of the iterative process is 

assumed when the correction factor is very small with respect to the weight 

vector (<.001).

To obtain an optimal decision surface, a representative set of sample 

patterns is needed. Iterative processes on this entire set present several 

problems that need to be considered. A large data storage for the sample 

patterns is required, the computation time needed for iteration to converge is 

quite lengthy at times, and updating of decision surface due to changes is 

also difficult.

Because of this convergence assumption, not all sample patterns are classi­
fied correctly by the weight vector obtained at the end of the iteration. 
This effect can be observed in later results.
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6. SEGMENTATION

Due to the problems encountered in finding a solution for the opti­

mal decision surface using iterative process on the entire set of sample 

patterns of known classifications, a new scheme is investigated» This scheme 

utilizes segmentation techniques, in that the set of sample patterns used in 

training is divided into segments» Iteration is performed on one segment at 

a time» The weight vector obtained after processing one segment of sample 

patterns is used as the initial weight vector for iteration on the next seg­

ment» This process is repeated for every segment, until at the end of the 

last segment, a decision surface is obtained.

Obviously, the decision surface thus obtained may not be as accurate 

as previously, but this process has several advantages. Data storage require­

ments are reduced since it needs only to be provided for sample patterns in 

each segment, instead of for the entire set. Also due to the small size of 

each segment, the computation time needed for convergence of the iterative 

process on each segment is much shorter, and thus the time needed for the 

entire training phase is reduced. Updating of decision surface can also be 

accomplished with relative ease by adding a new segment consisting of new 

sample patterns.

An inherent advantage of this scheme using segmentation technique 

is the fact that learning can be made more related to the stage of training.

As we know, a great deal of knowledge about the decision surface is gained in 

the early stages of training. In subsequent stages, most of time is occupied 

by minor adjustments made on the decision surface. Using segmentation tech­

niques, each segment can be thought of as a stage in the training process. If
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learning is concentrated more on the early stages, much time could be saved 

by ignoring minor adjustments on the weight vector in later stages. Compu­

tation time could then be more wisely utilized by performing only major 

modifications of the decision surface, such as in cases of updating.
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7. EXPERIMENT

A series of experiments is conducted on IBM 360/75 to study the 

effects of segmentation on the computation of decision surfaces for pattern 

classification» A two-dimensional pattern space is chosen so that results 

can be more readily illustrated» Since each dimension measures a property of 

the patterns to be classified, a normalized 0-to-1 scale is used to indicate 

the range of probable nonexistence or existence of the property» A set of 60 

sample patterns of known classifications is chosen at random for training 

purposes» They are divided into two categories, positive or negative, depend­

ing on the locations of their representative points in the pattern space with 

respect to an arbitrarily pre-selected linear decision surface»

There are two groups of experiments %

A» In the first group, the set of sample patterns used in training is evenly 

divided in various ways into segments, while the training algorithm remains 

the same in each case» The performance of the decision surface obtained in 

each case is evaluated and compared with that obtained without segmentation.

A comparison is also made on the computation time needed and data storage 

required for each solution,

B. In the second group of experiments, the idea of relating learning more 

closely with training stages is incorporated. The set of sample patterns is 

divided into 5 segments of 12 patterns each. Each segment is thought of as a 

stage in training. Associated with each stage is a threshold level L(n), 

where n is the training stage. When in stage n, modification on the decision 

surface, in case of an error in classification, is made only when the absolute
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value of the product is greater than the associated threshold level

T
L(n)o All other minor errors are ignored« (Geometrically speaking,

measures the distance from the point representing pattern x to the decision 

surface defined by weight vector W 9 and gives an indication on the magnitude 

of error made by the decision surface when attempting to classify sample 

pattern x«) Since the assumption is that the amount of knowledge gained about 

the decision surface decreases with increasing training, the threshold level 

L(n) is an increasing function of training stage n, In this study, L(n) is 

chosen as a linear function of n

L(n) = S(n-l) (5)

where S is a constant« The performances of decision surfaces obtained using 

the same training algorithm but with different values of S, and the time need­

ed for computation in each case are evaluated and compared«
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8. RESULTS AND OBSERVATIONS

Results from the first group of experiments are shown in Figures 1 

through 6, As an illustrative example, Figures 1 through 4 show the training 

process using segmentation techniques, The set of sample patterns used in 

training is divided into 4 segments of 15 patterns each. Each figure shows 

the initial linear decision surface used and the convergent decision surface 

obtained by iteration on each segment. In Figure 4, the linear decision sur­

face obtained by iteration on the entire set of sample patterns without seg­

mentation is also shown to give a comparison with that obtained with segmenta­

tion, Figure 5 shows the different linear decision surfaces obtained when the 

number of sample patterns in each segment is varied. Figure 6 shows a com­

parison on the performances of these different linear decision surfaces obtain­

ed in each case, (The percentage of correct classifications made on the entire 

set of sample patterns by the decision surface is used as the performance 

measure of that decision surface,) A comparison is also made on the ratios of 

the computation time and data storage requirement needed for each decision 

surface with segmentation to that without segmentation.

As expected, the graphs show that the performance of decision 

surface improves with increasing number of sample patterns in each segment, 

but the amount of computation time and data storage needed for solution also 

increases. From iteration on 15 segments of 4 sample patterns each to itera­

tion on the entire set, performance improves by a factor of 1,4, but data 

storage requirement increases by a factor of 12,8 and computation time also 

by a factor of 4,7, Thus, there is a trade-off between performance and
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requirements for computation time and data storage when segmentation technique 

is used in training.

Results from the second group of experiments are shown in Figures 7 

through 12o Figures 7 through 10 show an example of the training process 

when the constant S of the threshold level function in (5) is set at 0.03.

As can be observed, minor classification errors are ignored after an initial 

stage and only major modifications on the decision surface are performed. 

Figure 11 shows the different final linear decision surfaces obtained as the 

constant S varies from 0.0 to 0.05. In Figure 12, a comparison is made on the 

time needed for computation of the decision surface in each case and its 

performance.

As observed in the graphs, training time for the decision surface 

decreases while the number of classification errors increases with increasing 

value of the constant S in (5). Compare with S = 0, the performance of the 

decision surface obtained at S = 0.05 worsens by a factor of 1.25 while 

computation time decreases by a factor of 3.57. Therefore, a trade-off also 

exists.



Fig, 1. Decision surface obtained after first segment.
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□  O Current Sample Patterns
□  O Past Sample Patterns

-------Initia l Decision Surface
-------Final Decision Surface

After Iteration

Fig. 2. Decision surface obtained after second segment.



Fig, 3. Decision surface obtained after third segment,
□  ©Current Sample Patterns --------- Initial Decision Surface

□  O Past Sample Patterns ---------  Final Decision Surface After Iteration

Decision Surface Obtained Without Segmentation
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Fig, 4, Decision surface obtained after fourth segment
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0 0.2 0.4 0.6 0.8 1.0

----- NS = 4 ------ NS=12 --------NS = 30,60
------NS =5,6,10,15 - ------ NS=20-

FR -2148

Fig» 5» Different decision surfaces obtained with different number of 
sample patterns in each segment (ns)»
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Number of Sample Patterns In Each Segment

F R - 2150

Fig, 6. Comparison on performance, computation time and data storage 
requirement.
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Fig» 7» Decision surface obtained after first training stage»

Fig, 8 Decision surface obtained after second training stage 
(L(2) = 0.03)*
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Xi
Figo 9. Decision surface obtained after third training stage (L(3) = 0,06) 

and remains the same for fourth training stage (L(4) = 0.09).
□ O  Current Sample Patterns ------- Initial Decision Surface After Iteration

□  O Past Sample Patterns --------Decision Surface Obtained With S = 0

Fig 10. Decision surface obtained after fifth training stage
(L(5) = 0.12).
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S = 0 .05 ------  S = 0.03------  S = 0.01-------
S z 0.0 4 ------ S = 0.02------  S = 0 ------

Fig. l l o  Different decision surfaces obtained with different values of S 
in L(n) = S(n-l) for five training stages of 12 sample patterns 
each.
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Fig. 12. Comparison on performance and computation time.
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9. SUMMARY

An iterative training algorithm for linear decision surface in 

pattern classification using segmentation techniques has been described. 

Experimental results are observed to show the effects of segmentation on 

performance of the decision surface obtained, together with computation time 

and data storage required for solution. The idea of decreasing learning time 

with increasing training has been discussed, and due to the simplicity of the 

algorithm, updating of decision surface can easily be implemented.
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APPENDIX A

Assume a sample pattern x belongs to category and the point in 

pattern space representing x lies on the positive side of the correct linear 

decision surface, Decision error at step t means

W(t) XT < 0 (la)

Correct classification by W(t+1) means

W(t+1)XT > 0

where

W(t+1) = W(t) + c (t)X

Therefore

[W(t) + c(t)X]xT > 0 

W(t)XT + c(t)XXT > 0

But (la) implies

c(t)XXT > -W(t)XT

Therefore

c (t)
XX

Similarly for a sample pattern x belonging to category €2 » the correction 

factor c(t) at step t in case of error can be expressed as

c(t) < - ^ 4 -
XX
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Combining the two results, the correction factor c(t) when decision error 

occurs at step t has a lower bound

c(t) > sgn(x)

where sgn(x) is either + or - , depending on the correct classification of 

the sample pattern x „
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APPENDIX B

The set of sample patterns of known classifications is shown below

on the sequence used in training«

X1 X2 sg
n(
x)

X 1 X2 sg
n(
x)

X 1 X2 sg
n(
x)

0.35 0.85 - 0.55 0.40 + 0.85 0.30 +
0.35 0.65 - 0.30 0.50 « 0,50 0.20 +
0.35 0.55 _ 0.45 0,60 0.35 0.20 +
0.65 0,40 + 0.25 o o 0.15 o o _

0.40 0.70 _ 0.45 0.80 0.45 0.15 +
0.35 0.45 _ 0.25 0,60 « 0,15 0.50 _

0.40 0.75 - 0.50 0.30 + 0.55 0.85 _

0.35 0.40 _ 0.75 0.60 + 0.45 0.20 +
0.70 0.40 + 0.50 0,25 + 0.80 0.40 +
0.65 0.35 + 0.50 0,50 - 0.65 0.80 »

0.30 0.70 - 0,25 0.35 _ 0.70 0.80 _

0.70 0.50 + 0.30 0.20 + 0.80 0.35 +
0.65 0.25 + 0.55 0,70 0.15 0.20 _

0.70 0.55 + 0.20 0.80 ... 0.80 0.50 +
0.65 0.15 + 0.70 0.20 + 0.65 0.85 +
0.30 0.60 0.45 0.25 + 0.80 0.25 —

0.60 0.20 + 0.20 0.40 _ 0.75 0.70 +
0.75 0.25 + 0.45 0.30 + 0.85 0.60 +
0.60 0.15 + 0.20 0.50 0.85 0.45 +
0.75 0.40 + 0.20 0.65 - 0.85 0.80 _
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Results from the first group of experiments are shown below. The 

computation time obtained is the average execution time for 3 runs on 360/75.

No. of 
Sample 
Patterns 
per
Segment

Average
Execution
Time
(Sec.)

Array
Area
(Bytes)

Final Weight Vector Obtained

w i w2 w3

4 .29 76 .51 -.12 -.30

5 .46 92 .46 -.28 -.15

6 .35 108 .46 ' -.28 -.15

10 .44 172 .46 -.28 -.15

12 .91 204 .43 -.32 -.10

15 .52 252 .47 -.29 -.15

20 1.50 332 .42 -.34 -.08

30 .88 492 .39 -.35 -.05

60 1.34 972 .40 -.36 -.05
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Results from the second group of experiments are shown below.

s
in

L(n)=S(n-1)

Average 
Execution 
Time 
(Sec . )

Final Weight Vector Obtained

w i W2 w3

0 1.07 .43 -.32 -.10

.005 .59 .44 -.31 -.11

.01 .52 .44 -.29 -.12

.015 .46 .45 -.28 -.14

.02 .40 .45 -.27 -.15

.025 .38 .45 -.26 -.16

.03 .45 .46 -.25 -.17

.04 .28 .52 -.17 -.12

.045 .29 .53 -.14 -.13

.05 .30 .54 -.12 -.14
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