
January 2007 UILU-ENG-07-2202
CRHC-07-01

DYNAMIC TRACKING OF
INFORMATION FLOW SIGNATURES
FOR SECURITY CHECKING

William Healey, Karthik Pattabiraman, Shane Ryoo,
Ravi Iyer and Wen-Mei Hwu

Coordinated Science Laboratory
1308 West Main Street, Urbana, IL 61801
University of Illinois at Urbana-Champaign

REPORT DOCUMENTATION PAGE Form Approved
OMB NO. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources,
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comment regarding this burden estimate or any other aspect of this
collection of information, including suggestions for reducing this burden, to Washington Headquarters Services. Directorate for information Operations and Reports, 1215 Jefferson
Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE
January 2007

3. REPORT TYPE AND DATES COVERED

4. TITLE AND SUBTITLE
Dynamic Tracking of Information Flow Signatures for Security Checking
6. AUTHOR(S)
William Healey, Karthik Pattabiraman, Shane Ryoo, Ravi Iyer and Wen-Mei Hwu

5. FUNDING NUMBERS
NSF ACI CNS-040634
NSF CNS 05-24695

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
University of Illinois
Coordinated Science Laboratory
1308 W. Main St.
Urbana, IL 61801

8. PERFORMING ORGANIZATION
REPORT NUMBER

UILU-ENG 07-2202
(CRHC 07-01)

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)
NSF, 4201 Wilson Blvd, Arlington, VA 22230
Gigascale Systems Research Center, 2108 Allston Way, Berkeley, CA 94704-1302
Motorola Corp., 1303 E. Algonquin Rd., Schaumburg, IL 60196-1078

10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES

12a. DISTRIBUTION/AVAILABILITY STATEMENT

Approved for public release; distribution unlimited.

12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 words)

Memory-based attacks represent one of the largest attack classes in the field. Many techniques have been proposed to protect
applications from certain classes of memory exploits, however, few of these techniques can protect the application from all memory
attacks, and few permit the protection of only select variables. We present a technique to provide protection of select variables from a
wide range of memory attacks. The protection is provided by computing the dependence tree of each critical variable, ensuring that
no variable or instruction within the dependence tree is corrupted by utilizing hardware supported runtime checks. We evaluate the
technique using software based emulation.

14. SUBJECT TERMS
Information flow, security, memory errors, compilers

15. NUMBER OF PAGES
23

16. PRICE CODE

17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION 20. LIMITATION OF ABSTRACT
OF REPORT OF THIS PAGE OF ABSTRACT

UNCLASSIFIED UNCLASSIFIED UNCLASSIFIED UL

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
Prescribed by ANSI Std. 239-18
298-102

Dynamic Tracking of Information Flow Signatures for
Security Checking

William Healey, Karthik Pattabiraman, Shane Ryoo,
Ravi Iyer and Wen-Mei Hwu

Center for Reliable and High Performance Computing

Coordinated Science Laboratory

Abstract

Memory-based attacks represent one o f the largest attack classes in the field.
Many techniques have been proposed to protect applications from certain
classes o f memory> exploits, however, few o f these techniques can protect the
application from all memory> attacks, and few permit the protection o f only
select variables. We present a technique to provide protection o f select
variables from a wide range o f memory> attacks. The protection is provided by
computing the dependence tree o f each critical variable, ensuring that no
variable or instruction within the dependence tree is coirupted by utilizing
hardware supported runtime checks. We evaluate the technique using software
based emulation.

1. Introduction
This paper presents a technique (information flow signature checking) to protect data that is
critical to the application from a memory corruption attack. We define a memory corruption
attack as a malicious corruption of any control/non-control data (in the heap, stack, or registers)
through a memory error in the program. These memory errors can occur in programs written in
languages such as C and C++ which are not type-safe, and hence the runtime environment allows
any pointer to write to any location in memory, regardless of type. While attackers have
exploited memory errors to overwrite control data such as return addresses and function pointers
[1], they can also overwrite security-critical non-control data (such as passwords) by exploiting
memory errors. Chen et al. [2] showed that such attacks are practical for a broad class of
applications, including large server programs. Our goal is to protect application data that is
critical from the security point of view, be it control data or non-control data, from memory-
corruption attacks.

The strength of our technique is that it considers a very broad threat model. It is assumed that
the attacker can execute arbitrary code as well as overwrite any program variable stored in
memory or registers, provided the modification is observable at execution time. The threat model
also covers physical attacks in which code is injected via some malicious hardware device, such

1

as a corrupt smart-card, as long as the memory is manipulated through the checked processor’s
pipeline.

Many existing techniques [3] break down when they are applied to select variables, as not
protecting even one variable in the dependence tree of a critical variable allows an attacker to
influence that critical variable. Our technique on the other hand, explicitly protects the entire
dependence tree of the critical variable. This allows the overhead of checking to be configurable
based on application requirements. Furthermore, information flow signature checking ensures
that any security violation affecting the critical data can be detected before the data is used by the
original program in a security-critical context. This allows attacks to be detected before they can
compromise the system or propagate to other parts of the system.

The proposed technique is primarily based on the observation that the main reason for a data
error is the ‘disconnect ’ between the source-level semantics o f a program and its system
semantics. Information flow checks enforce the source-level semantics of memory accesses at
runtime for the security-critical data. The properties inferred by a compiler-based static analysis
of which instructions are allowed to write to a security-critical object according to the source
code are checked and enforced at runtime. A pointer to an object can be manipulated by an
attacker at runtime to reach another object by taking advantage of data layout arrangements in
the object files, however, the compiler can infer from the source code that the pointer is not
allowed to access the second object. In order to achieve high detection coverage, the proposed
technique protects the entire dependence chain of instructions/data which contribute to the
computation of the critical variable.

Our technique can also detect insider attacks in which parts of the program itself behave
maliciously, or more specifically, against the source-code semantics of the original program. For
example, assume that the browser contains a table of the user’s public keys, which is marked
critical. Now suppose the user loads a malicious plug-in which is allowed to execute code in the
same memory space as the browser. Our technique will detect any attempt by the plug-in to
write to the critical table independent of whether the plug-in code itself is checked since the
security checks are in the browser.

We implemented and tested our technique on the OpenSSH server program. The results show
that the overhead incurred by the runtime checking is highly dependent on the selected critical
variable, ranging rrom 2.5% to 187%.

2. Related Work
Much of the earlier work related to memory corruption attacks has been targeted for specific
attacks. For example, techniques such as StackGuard [4] and Libsafe [5] protect specifically

2

against buffer overflow vulnerabilities. Similarly, control flow checking techniques such as the
No Execute Bit [6], Program Shepherding [1], and Control-flow Integrity [7] protect against
attacks in which the attacker corrupts control data in the program. Recently, Chen et al. [2] have
shown that it is possible for an attacker to overwrite non-control data (i.e., a password) in the
system and exert the same level of influence over the application as if they had overwritten
control data.

Another class of techniques, broadly called information flow-based security, enforces an
externally imposed policy rather than one inherent to the program. Information flow-based
security techniques [8] classify program data as high-security and low-security and ensure that
low-security data cannot influence high-security data in the program. Sabel and Myers also
explore information flow-based security, but focus on confidentiality rather than
integrity/security [23], A common variant of information security is taintedness (first proposed
in the PERL programming language), which marks all externally supplied data (through user-
input) as low-security data and ensures that these cannot influence high-security data in the
program (such as pointers [9] and return addresses [10]). The main problem with these
techniques is that they can result in false positives (rejection of valid code) and missed attacks
due to incompatibilities or differences between the imposed policy and the policies inherent to
the programming language.

Techniques such as address space randomization [11][12][13] are also based on the observation
that an attacker exploits the disconnect between the source-level semantics and the application
binary. However, they attempt to obfuscate the details of the underlying memory layout from the
attacker rather than detecting and preventing attacks. Thus, protection is probabilistic and can be
circumvented by repeated undetected attacks on the system, or through program information
leaks such as pointer addresses exposed to the user or specially crafted format string attacks.

A broad class of techniques for ensuring memory safety of C and C++ programs has been
proposed in the literature (e g. [14][15]). These techniques use static analysis to prove pointers
are safe at compile time and insert runtime checks for pointers that cannot be proven to be safe.
These techniques are effective at guaranteeing protection from failures due to program errors.
However, they cannot guarantee the program is secure from all malicious attackers since an
attack may alter the data flow assumed by static analysis.

Another broad class of techniques generally referred to as intrusion detection systems has also
been proposed [22], The goal of these techniques is to detect security attacks by monitoring
streams of network traffic. These techniques are useful for detecting well-known attacks for
which attack invariants have been extracted and are advantageous because they incur little
overhead since the network stream can be monitored by an independent computer. However,

3

there are two main disadvantages of these techniques. First, they can only detect attacks which
are performed over the network and thus cannot detect physical/local attacks (such as smart-card
attacks) or attacks in which a user modifies a local object, such as an environmental variable or
program data file. Secondly, these techniques require certain known invariant byte strings (or at
least some group of disjoint invariant bytes). Thus, intrusion detection systems can only defend
against well-known attacks, or attacks which are very similar to previous attacks. Therefore,
these techniques are not generally useful for against attacks which exploit a previously
undisclosed vulnerability.

Recently a technique to guarantee memory safety in the presence of malicious attacks was
proposed in [3]. The main idea is to compute the data flow graph of the program and enforce this
data flow at runtime. This is performed by computing the reaching definitions of each variable in
the program using intraprocedural, flow-sensitive analysis and ensuring that only the instructions
that write to the memory location according to the reaching definitions analysis can do so at
runtime. The attack model considered by this paper is similar to our paper in that the attacker is
allowed to write to any memory location. It is assumed, however, that: (i) The attacker cannot
overwrite variables stored in registers and hence checking memory loads and stores is sufficient
to provide protection, (ii) The control flow of the program is preserved and can be enforced by
instrumenting every read and write of program control data. Selectively protecting only the
critical variables, as it is done in our approach, may violate and hence break the guarantees
provided by the scheme. Further, our attack model assumes that the attacker can write to both
memory and registers, and therefore, the checking is not restricted to memory loads and stores.
Finally, our model does not require the original program’s control flow to be preserved during an
attack. The approach proposed in [3] does not consider context-sensitivity in computing the
reaching definitions analysis which can introduce serious security holes in the data-flow graph
computed statically.

3. Attack Model
We assume that the attacker can write to any location, be it memory or register at any point in the
execution of the program. The attacker can also execute arbitrary code and change the control
flow of the original program.

Recall that our goal is to protect certain data marked critical and prevent the attacker from
corrupting this data against the semantics of the source program.

The attack model also covers physical attacks on the hardware e g. smartcards, where the
attacker can change the control flow of the program or change the operands fetched by an
executing instruction at runtime. However, the attack model does not consider attacks in which

4

the executable image of the program is altered by the attacker, or attacks that tamper with the
program executable before it is loaded. It is also assumed that the program load process is not in
the control of the attacker and that a secure linker/loader is deployed.

In general, the technique proposed in this paper assures the integrity of critical data and not its
confidentiality. Hence it does not address side-channel attacks [17]. However, unlike
randomization based protection, the technique does not require the program to be free of
information leaks (which would allow the attacker to guess the randomization details).

4. Concept of Information Flow Signature Checking
Our technique computes, for each critical data location in the program, the set of instructions that
are allowed to write to the critical data location in the program (according to source code
semantics). In this section, example attacks are used to illustrate how the signature checking
technique detects attacks.

4.1. How Information Flow Signatures Detect Attacks
The program fragment given below prompts the user for a password and then compares the
supplied password to the correct password stored in the p a s s w o r d variable. If a user enters the
correct seven-character password “asecret”, the program outputs “Success”. If the passwords do
not match, the program outputs “Failed”. Observe that the unchecked bounds on the getso
function allow the user to enter more than seven-characters, causing variables on the stack to be
overwritten. Suppose that an attacker enters the string “attack! attack!”. This would enable the
attacker to overwrite the stack variable p a s s w o r d .

1 int main()
2 {
3 char password[8] = "asecret";
4 char userpass[8];
5 printf("Enter Password:\n");
6 gets(userpass);
8 if (strncmp (userpass,password,7)==0)
9 printf("Success\n");
10 else
11 printf ("Failed\n");
12 }

The main reason for this vulnerability is that the programmer never implied that the password
buffer should be written to by the gets() function. From the source code, it is clear that the gets()
function should only write to the userpass buffer; however, this is not enforced by the runtime
system, which allows any instruction to write to any memory location. The attacker exploits this
disconnect between the source-level semantics and the runtime layout of objects on the stack to

5

compromise the system. If the semantics of the source code were enforced, the gets() function
would not be allowed to write to the password variable, and the attack would be prevented. Our
method provides this enforcement for critical variables, such as the user password, which if
corrupted can compromise the security of the application.

Detection. In the example, suppose that both the p a s s w o r d and u s e r p a s s buffers are critical.
During static compilation, the compiler encodes the set of all instructions that are allowed to
write to each of the critical variables. For the sake of clarity, signatures used in the examples are
considered at the granularity of program statements rather than machine-level instructions. In
this example, the only statement that is allowed to write to the p a s s w o r d variable is p a s s w o r d [8] =

" a s e c r e t " on line 3, and the only statement that is allowed to write to the u s e r p a s s variable is
g e t s (u s e r p a s s) on line 6. Suppose that the chosen signature is the set of all statements allowed to
write to that variable. Thus, the signature for p a s s w o r d is {3} and the signature for u s e r p a s s is {6}.
Now any attempt to write to p a s s w o r d from within gets() on line 6 will be detected, since 6 is not
in the signature for the p a s s w o r d variable.

4.2. Why the signature must encode the entire dependence tree
In the example above, the signature included only those statements that directly manipulate the
critical variable. In many programs, however, due to instruction/data dependencies, program
variables can be altered indirectly following the instruction dependence chain. In order to
provide protection against attacks which exploit an instruction/data dependence to tamper with
the critical variables, it is necessary to encode the entire dependence tree. The example
discussed in this section illustrates such a scenario.

1 int authenticate(char* username, char* password)
2 {
3 int authenticated=0;
4 int result;
5 char tmpbuf[512];
6 result = strncmp("asecret",password,7);
7 snprintf(tmpbuf,sizeof(tmpbuf),"user: %s",user);
8 tmpbuf[sizeof(tmpbuf)-1] = '\0' ;
9 syslog(LOG_NOTICE,tmpbuf);
10 authenticated=!result;

In the program above, assume that the variable a u t h e n t i c a t e d is determined to be a critical
variable. The signature of this statement is {10}, since the only instruction that writes to this
statement is a u t h e n t i c a t e d = !r e s u l t . Suppose that the attacker attempts to overwrite the variable
a u t h e n t i c a t e d via manipulating statement 9 (for example, by exploiting a format string
vulnerability). The signature technique, as described in Example 1 would detect tampering with
a u t h e n t i c a t e d . Now, assume that the attacker knows that a u t h e n t i c a t e d is protected, and that only
statement 10 can modify the variable without raising an alarm. Instead of directly overwriting

6

the authenticated variable, the attacker can overwrite the result variable, thus indirectly
modifying authenticated and gaining access to the system. Notice that during the attack, the
authenticated variable is only written by the statement on line 10, and thus the signatures match.
Therefore, instead of simply encoding the direct dependencies of a critical variable in its
signature, it is necessary to encode the entire dependence tree of the critical variable, thereby
protecting critical variables from both direct and indirect modification.

5. Approach
This section describes the approach to derive information flow signatures for security-critical
variables in applications. Compiler-based static program analysis is used to derive the signatures
and hardware support is employed to enable runtime signature checking.

5.1. Static Analysis

Figure 1: Steps in Compiler-based Static Analysis presented as part of a compiler-based
security and reliability framework

5.1.1. Steps in Compiler Analysis

Figure 1 presents a unified compiler analysis framework to derive both error and attack detectors.
This paper focuses on the derivation of attack detectors, which is shown on the right-hand side in
Figure 1. These steps are as follows:

• The first step in compiler analysis is to determine the security-critical variables for the
program. This can be done either by (i) the programmer, based on understanding of the
program semantics (for example, variables used in authenticating a user in an SSH

7

server) or (ii) an automated tool, based on common targets for security attackers (for
example, function pointers, return addresses, virtual function tables).

• The compiler then constructs the backward program slice for each of the critical variables
starting from the program points where they are used in a security-critical context. This
includes the uses of the critical variable in making control decisions and security-critical
decisions (such as in a strcmp() function where a password is compared to the supplied
system password). Ideally, this slice would be inter-procedural and take into account
both register and memory dependences in the program.

• From the backward slice of a critical variable, instruction sequences can be extracted for
each control-flow path in the slice. These instruction sequences are the dependence
chains for the critical instruction and correspond to those instructions that can influence
the value of a critical variable in a program execution.

• After computing the signatures, the compiler adds information to the program binary
which is used to inform the runtime system of the critical variables and their pre
computed signatures. The compiler must also identify the places where the critical
variables need to be checked (when they are used in a security critical fashion) and
communicate this to the runtime system, using function calls or special instructions.

5.1.2. Data-Flow Analysis

In order to derive the signatures, the compiler needs to perform pointer and data-flow analysis on
the program to determine the dependences for security critical variables. While data-flow
analysis typically involves data dependences through registers (virtual or real), pointer analysis
involves data-dependences through memory. Data-flow analysis attempts to answer the question
of which instructions can directly or indirectly affect certain registers, while pointer analysis
attempts to answer the question of which instructions can potentially write to specific memory
variables (technically this is done by derivingpoints-to sets of pointer variables used by the write
instructions). While data-flow analysis is a standard technique employed by most compilers (and
is highly accurate), pointer analysis is a much harder problem and compilers typically perform
various degrees of approximation depending on the space/time tradeoffs. The degree of
approximation made by the compiler can affect the coverage of the derived signatures and allow
attacks that could have been avoided in a more accurate analysis.

5.1.3. Pointer Analysis

This section provides a brief overview of the main factors that determine the precision of pointer
analysis. A more detailed analysis is presented by [16].

8

• A context-sensitive analysis is one which isolates the calling contexts of called functions
from each other. In a context-insensitive analysis on the other hand, values can flow from
one call through the function and return to another caller. In other words, a context
insensitive analysis does not distinguish one invocation of a function from another
invocation.

• Flow-sensitive analysis considers the order of statements in a procedure when performing
pointer analysis, and hence computes a solution for each program point. Flow-insensitive
analysis, on the other hand, computes a solution assuming, conservatively, that any order
of statements is possible in the procedure.

• The analysis feature known as field-sensitivity refers to how individual fields of a
structure are modeled. Field-sensitive analysis considers each field of a struct or array
separately, while field-insensitive analysis considers them to be a single object or
location.

• The last type of pointer analysis considered is heap sensitivity. Heap insensitive analysis
treats the entire heap as one single object. Heap sensitive analysis can minimally track
heap objects by their allocation site, program location of calls to malloc(), in the program.
While this suffices for many programs in which distinct objects are allocated at different
sites, some programs may have customized allocation routines that allocate memory for
multiple types of objects. In the latter case, an analysis that tracks heap objects by
allocation site would in effect treat all objects allocated by the custom allocation routine
as one object. Tracking the call sequences leading into the allocation site can further
distinguish these objects and increase the level of heap sensitivity.

Each of these analyses increases the resolution and therefore sensitivity of our security checking
scheme by decreasing the number of objects that alias each other. Utilizing a compiler that
performs detailed pointer analysis significantly increases the amount of work an attacker needs
to perform to gain access to the system.

5.2. Runtime tracking of signatures
The proposed signature checking technique enforces the properties of the compiler generated
data dependence chain on critical variables at runtime. For efficiency and ease of
implementation, the runtime enforcement of the signature checking scheme is divided into three
levels. Together, these three levels provide the same guarantees provided by the signature
scheme presented in the examples in section 2. Implementing the signature checking via this
three-level scheme reduces the overhead and limits the propagation of compromised data.
Before presenting the checking scheme, we introduce useful terminology:

9

Direct Critical Variable: A variable which has been determined either heuristically or by a
human to be critical to the security of the application.

Trusted Instruction: An instruction which is statically determined to potentially read, write, or
have influence on a critical variable directly or indirectly as defined by source code semantics.
All the instructions in the dependence tree of the direct critical variable are marked trusted by
the compiler.

Indirectly Critical Variable: A variable or object which influences the value of a direct critical
variable (through a trusted instruction). All variables and objects in the data dependence tree of
a direct critical variable are marked indirectly critical by the compiler.

Critical Bit: For each register and memory location, this bit is set if and only if the register or
memory currently contains a direct critical or indirectly critical variable.

5.2.1. Three Level Checking Scheme

This section presents the three-level checking scheme and show the invariants and protection
guaranteed by each level:

Level 1, the critical bit: The objective of the level 1 check is to separate the instructions and
variables upon which any critical variable is dependent from the instructions and data which do
not have influence on critical variables, according to compiler analysis. In the context of the
dependence signature, level 1 ensures that instructions outside the signature of a critical variable
do not influence instructions inside the signature. In order to accomplish this, a critical bit is
maintained (by the hardware) for each register and memory location in the program. Initially,
the critical bit for all variables that are used as operands to trusted instructions is set to 1. The
propagation of the critical bit is performed by hardware in the background according to the rules
presented in Table 1 and described below. An alarm is raised if a trusted instruction attempts to
use a non-critical variable as an operand. This is because the compiler guarantees that all
variables in the dependence tree of a direct critical variable are marked indirectly critical by
initializing their critical bit to 1. Thus, under correct execution all operands of trusted
instructions should be marked critical. If the critical bit of a trusted instruction’s operand is not
set, it means that the operand has been influenced, either directly or indirectly, by an instruction
that the compiler determined should be unable to influence the operand. The fact that the
operand has been influenced by an instruction outside of its dependence tree represents a
violation of source code semantics, and therefore triggers an alarm. The runtime tracking of the
critical bit is very similar to the Taintedness Tracking used in [18],

Propagation of the Critical Bit. The critical bit is propagated according to the simple rule shown
below:

10

Crit(destination) Crit(operand 1) && Crit(operand 2) && Trusted(op)

The critical bit of the destination (register or memory) is set if and only if the critical bit of all
operands is set and the instruction is trusted. If any one of these conditions does not hold, the
critical bit of the destination is cleared.

It is important to point out that the actual checking of level 1 can be deferred and performed as
part of the level 2 check. This is because an alarm is raised only in the event that a trusted
instruction attempts to read from non-critical data. Since all trusted instructions are checked by
level 2, it makes sense to do both checks at the same time, as shown in Figure 2. Thus, all that is
required to enforce level one is the propagation of the critical bit according to straightforward
rule presented above.

Table 1: Enumeration of all possible conditions and actions for the level 1 check
In stru c tio n
T y p e

O p D ata A ctio n R e a so n in g

T ru sted R ead C ritical D o e s n o t tr ig g e r a larm T ru sted in s tru c tio n is u sing valid da ta in s id e its d ep en d en ce
tree .

T ru sted R ead N o n -
C ritica l

T rig g e r A la rm A ll d e p e n d e n t d a ta o f a n y tru s ted in s tru c tio n is m arked critical
b y th e c o m p ile r , th e c leared c ritica l b it m ean s an a ttack er has
co rru p te d th e d a ta .

T ru sted W rite C ritical A llo w e d and p assed to
leve l 2

T ru sted in s tru c tio n is o p e ra tin g on valid da ta . A ch eck needs
to b e p e rfo rm e d to verify th a t th e in s tru c tio n w rites to the
d e p e n d e n c e tree o f th e co rrec t c ritica l v a riab le (level 2 check)

T rusted W rite N o n -
C ritical

A llo w e d and p a sse d to
leve l 2 , se t c ritica l b it
o f target

P ro p a g a te th e c ritica lity to th e d e s tin a tio n i f a n d o n ly i f all
so u rce o p e ran d s fo r th e tru s ted in s tru c tio n a re critical and the
level 2 c h e c k passed .

U n -T ru sted R ead C ritical A llo w ed U n -tru s te d in s tru c tio n s m ay be d e p en d e n t o n critical data ,
h o w e v e r c ritica l d a ta c an n o t be d e p en d e n t o n un -trusted
in s tru c tio n s

U n -T ru sted R ead N on-
C litica i

A llo w e d N o t a se c u rity th rea t

U n -T ru sted W rite C ritical R e se t c ritica l b it T he c ritica l b it o f th e d es tin a tio n m ust b e c leared since th is
m ay be a m alic io u s in struction .

U n -T ru sted W rite N o n -
C ritica l

A llo w e d N o t a se c u rity th rea t

Level 2, the sufficient condition. The level 2 check enforces two invariants of the dependence
signature. First, it guarantees that instructions inside one signature chain cannot influence
instructions or variables within another signature chain. Secondly, it guarantees that instructions
inside a signature chain can only write to variables directly dependent upon them inside the
signature chain.

Immediately performing the level 2 check instead of checking an accumulated dependence
signature when the critical variable is reached allows us to detect attacks much earlier and

11

therefore prevent the propagation of corrupt data. Furthermore, performing an immediate check
is more efficient than fetching an accumulated signature from memory, performing an update
operation and then storing it back to memory.

Figure 2: Theoretical Hardware Checking Implementation

As shown in Figure 2, the level 2 check is triggered by a trusted instruction. The hardware
checker maintains two tables to facilitate the level 2 check:

• Object Address Range Table maps virtual addresses to the corresponding compiler
generated object.

• Instruction to Allowed Object Table maps each trusted instruction to the objects that the
compiler has determined the instruction is allowed to write to.

When the compiler encounters an instruction with a set trusted bit, the level 2 checking
mechanism retrieves both the address of the instruction (stored in the program counter) and the
destination address or register to which the instruction is attempting to write. The destination
address is used to index the Object Address Range Table to determine which object the runtime
instruction is actually attempting to modify. The program counter is used to index the
Instruction to Allowed Object Table to determine which objects the current instruction is allowed
to modify. The objects are then compared to ensure the instruction is writing to one of the
objects in its allowed-write set. An additional check to determine whether the critical bit is set

12

for all operands (which was deferred from level 1) is performed in parallel. If either one of these
checks fail, an alarm is raised before the instruction is allowed to enter the write-back stage in
the processor.

Runtime Mapping o f Objects. In order to perform the level 2 check, the hardware must have the
ability to map a raw address to the corresponding symbolic object used by the compiler
(accomplished using the object to address range table shown in Figure 2). The means by which
this mapping is created depends on the type of object:

• Global Variables, Static Variables or Constants-. These objects are statically allocated by
the compiler at compile time and thus their mapping is known and can be provided to the
hardware at initialization.

• Local or Stack Variables: The exact address of these variables is not known statically at
compile time, but can be represented statically as an offset to the stack, or base pointer.

• Dynamic or Heap Variables: The address mappings of these variables must be
determined and stored dynamically by intercepting calls to the heap allocator. This
requires limited instrumentation of the memory related sys calls.

Level 3, the necessary condition. The goal of the level 3 check is to enforce that all instructions
in a dependence chain of a critical variable are executed by the time that critical variable is used
by a trusted instruction. This is necessary since in theory, an attacker could subvert the control
flow of an application, somehow preventing the execution of a trusted instruction and thereby
influencing the value of the critical variable. Another way of thinking about the level 3 check is
that it ensures that every instruction in the signature chain of the critical variable is eventually
checked.

The level three check can be implemented by statically extracting the set of all trusted
instructions which have influence on the direct critical variable along each unique control flow
path. These sets are then stored by the hardware. During runtime, the hardware keeps track of
the set of all trusted instructions that have influenced each direct critical variable. Upon reaching
a use of the direct critical variable, the runtime set for that direct critical variable is compared to
the statically extracted sets. During correct execution, the runtime control flow path should
correspond to one of the statically extracted control flow paths, resulting in a match. If an
attacker manipulates the control flow to prevent the execution of certain trusted instructions, the
sets will not match, and the attack will be detected. An example is provided in Figure 3:

13

Figure 3: Example of the Level 3 Check

Suppose that in this program there are two control flow paths. Path 1 includes instructions A, D
and F, whereas path 2 includes instruction B, C, E and F. During static analysis, the compiler
will extract these two sets, {A, D, F} and {B, C, E, F}. Now, during runtime, suppose path 1 is
executed. The runtime accumulator for the direct critical variable will add each instruction to the
direct critical variable’s set as it is executed. Thus, by the time instruction F is executed, the
accumulator will contain {A, D, F} which will match the set extracted during static analysis. If
the attacker prevents the execution of instruction D, the set will contain only {A, F} and thus will
not match.

In order to implement this check, it is necessary to add an accumulator for each direct critical
variable, as well as a means to track which trusted instructions have influence on which direct
critical variables. The most straightforward way to implement the trusted instruction to direct
critical variable mapping is to augment the Instruction to Allowed Object Table. Since each
trusted instruction already has an entry in this table, all that is required is to add a field which
contains the IDs of the direct critical variables that the instruction has influence on.

During the level 2 check, the hardware simply appends the current trusted instruction’s id to the
accumulators of each direct critical variable listed in the extra field of the Instruction to Allowed
Object Table.

It is important to point out that the level 3 check implementation described above is most likely
overkill. This is because it assumes the attacker can subvert the control flow of the application
from any instruction, including in the middle of basic blocks. Without the ability to modify the
instructions themselves, it is unclear how the attacker would subvert the control-flow in the
middle of a basic block as this would require the creation of a control-flow instruction where non

14

exists. Thus, it should be sufficient to check for valid control flow at the basic block boundaries
instead of within them. Quite a few schemes which do just that have been proposed, e.g. [7][19].

The three levels of checking are summarized by the diagram in Figure 4, which shows the
actions performed by each check as well as the invariant provided by each level. Together the
three levels of checking provide the same guarantees as the data-flow signature introduced in
section 3 with the advantages of preventing the propagation of corrupted data and improved
checking efficiency (in terms of performance).

Level 1: Critical Bit
♦ Set for any instruction in the dependence tree of a critical variable
♦ Critical bit of the result is cleared if the critical bit of any operand is not set

or if the instruction generating the result is not trusted.
♦ Ensures that a corrupt data value is never used by a trusted instruction

Level 2: Direct Dependence Check
• Checks that each instruction with the trusted bit set writes only to the set of

objects allowed by the compiler analysis.
• For each trusted instruction executed', the destination address is mapped to a |

compiler memory object
• Ensures that trusted instructions modify only objects which the source

code semantics explicitly allow them to modify.

Level 3: Control Flow Check
• Prevents the attacker from influencing the value of the critical variable by

omitting or preventing the execution of instructions on which the critical
variable is dependent.

• Ensures the execution of all critical instructions and checks for a given
critical variable along a particular control flow path

Figure 4: Steps in Compiler Analysis for Detector Derivation

Hardware Implementation. It is important to point out that in the case of a hardware
implementation of the security checking scheme, no instrumentation of the program binary is
required. Instead, at application load time, a relatively small configuration file can be associated
with each executable protected by the technique. This configuration file would contain all the
static variable mappings as well as the critical variables, indirectly critical variables, trusted
instructions, and trusted instruction to allowed object mappings. This configuration file is then
used to initialize the hardware checking engine. The use of a configuration file instead of direct
executable instrumentation provides the unique ability to run the program at various security
levels by utilizing multiple configuration files. For example, if an intrusion detection system
detects an attack in progress, server daemons can be reloaded using configuration files which
contain more critical variables, or perhaps critical variables specific to the attack at hand, thereby

15

providing greatly increased security. Thus, the technique allows the provided security to be
configured based on application requirements.

6. Information Flow Signature Checking in Action
The authentication function for the OpenSSH server program is used to demonstrate the three-
level checking scheme. This program is widely used to provide secure remote access to servers.
Figure 5 shows a code snippet from the SSH server program that is used to authenticate a user
based on the user supplied login and password. In this case, the encrypted_passw>ord variable is
the password entered by the user and the pwjpasswd variable is the encrypted password that the
system reads from the password file. Suppose an attacker can exploit a memory error in the
sys ciuth^password function to overwrite the pw_passwd variable with the encrypted version of
their own password, allowing them to become authenticated by the system. The goal is to
protect the encrypted password from the attacker by preventing the corruption of the pw_passwd
variable. Therefore, the security critical variable is pw_passwd and the strcmp function which
compares the encrypted password and the supplied password performs a security-critical use of
the variable. The security checking technique guarantees that any corruption of the pw_pcisswd
variable will be detected before it is used by the strcmp function.

int svs_auth_passwd(Authctxt *authctxt. const char *password) {
1: struct passwd *pw = authctxt->pw;

char *encrypted_password;
/* Just use the supplied fake password if amhctxt is invalid */

2: char *pw_password = authctxt->valid ? shadow_pw(pw):
pw->pw_passwd; /’•'Critical Variable Definition*/

f* Check for users with no password. *!
3: if (strcmp(pwjpassword."") == 0 && strcmp(password."") == 0)

return (1);
/* Encrypt the candidate password using the proper salt. */

4: encrypt ed_password = xcrypt(password,
(pw_password[0] && pw_password[l]) ? pw__password : "xx");

/* Authentication is accepted if the encrypted passwords match */
5: return (strcmp(encrvpted_password. pw_password) == 0);
}

Figure 5: Example code fragment showing derivation of attack detectors

Before discussing the technique, it is useful to consider the means by which an attacker can
overwrite the encrypted password. One method would be for the attacker to corrupt pw_passwd
directly through a memory error in shadow_pw, strcmp, or xciypt. The other alternative is for
the attacker to corrupt one of the values that pw_passwd depends on, and hope to influence the
result of the final strcmp function. Our technique protects against both kinds of attacks

For simplicity, statements within the function body are annotated with integer labels that are
used to derive the signature for the critical pw_passwd variable. These labels are also used in the

16

dependence graph presented in Figure 6. In reality, the signature is stored based on the addresses
of the instructions corresponding to the statements. Each object or variable label maps onto
multiple addresses and a runtime table precisely tracks which instruction address is allowed to
modify which variables at runtime. The compiler performs inter-procedural slicing to find the
origins of the variables being passed as function parameters and use this in the real signature (an
example of the actual static dependence graph for the code in Figure 5 is presented in Figure 6).

autbctxt->pw

1. pw assignment

pw

T
shadow j>w()

2.2 pw password

Prevented by
Level 2 Check

shadow _pw retval
....... I--------

Prevented by
Level 1 Check

Attack 1:

Prevented by
Level 2 Check

password

L

Trusted Key
Instruction for a
different critical Indirect Critical Data

V A i- î s h lp

Trusted Instruction

Un-Trusted Instruction
or Non-Critical Data

Malicious
Instruction

4, xcryptQ 3. strcmpO

encrypted _pass word return (1);

_____ ±_____
5. strcmpO

Figure 6: High-level static dependence graph corresponding to example code

Table 2: Mapping of Trusted Instructions to the data objects they are allowed modify

Trusted Instruction Directly Modifiable Data Objects
1. *pw assignment pw
2.1 shadow pwQ shadow pw retval
2.2 *pw password assignment pw password
4. xcryptQ encrypted password
5. strcmpQ return value of sys auth passwdQ function

7. Example Attack Scenarios
In this section, examples of real attack scenarios are used to illustrate the detection capabilities of
Information Flow Signatures.

Attack 1: The attacker overwrites the pw_passwd variable

Assume that the strcmp statement at Statement 5 has a memory error and allows the attacker to
overwrite the pw_passwd variable and influence the results of the comparison (presumably

17

authenticating the attacker with an incorrect password). Since instruction 5 is marked trusted, it
will be checked by the level 2 checking scheme. The checker will lookup instruction 5 in the
trusted instruction table (presented in Table 2) revealing that the only object/variable that can be
modified by instruction 5 is the return value of the sysauth_passM>d() function. Since the
instruction has instead attempted to write topwj?assu>d, the attack will be detected.

Attack 2: The attacker changes the pw pointer in shadow_pw in an attempt to influence the
pw_passwd variable in Statement 3

Here, the attacker tries to overwrite the pw pointer instead of pw_passwd directly, possibly to
cause shadow_pw to return a hash for which the password is known. In order to do this, the
attacker must modify pw from a non-trusted instruction, since all trusted instruction are checked.
However, since pw must be written to by a non-trusted instruction, its critical bit will be cleared.
Now, when the trusted strcmp instruction is executed, it will attempt to use the pw_password
variable, but since the critical bit is no longer set, an alarm will be raised and the attack will be
detected.

Attack 3: The attacker corrupts the return value of xcrypt.

Context sensitivity allows us to detect attacks which cannot be detected by a context insensitive
analysis such as that used by [3], For example, an attack which could not be detected without
context sensitivity is one in which the value returned by the xcrypt function is incorrect due to a
memory error exploited by the attacker in the function. This is because a context insensitive
analysis is less precise when tracking signatures inter-procedurally. With context sensitivity, the
level 2 checks can be made more precise. For example, the checking engine can verify that the
memory location pointed to by the return value of xcrypt is the one that should be written by that
particular call of xcrypt and not a memory location that should be written during an unrelated
invocation of xcrypt.

Attack 4: The attacker changes the value of authctxt->valid

Since the authctxt->valid variable is used to decide whether to obtain the shadow password, an
attacker could change the value of authctxt->valid from 0 to 1 and force the system to obtain the
shadow password even if an invalid username is supplied. The attacker’s goal in this attack is
unclear, since he/she must still ensure that the authctxt->pw field holds the correct password in
order to be authenticated by the system. Perhaps one could imagine a scenario in which
authctxt->valid may be manipulated to the advantage of the attacker. If this attack were
performed, it would be undetected by our scheme since modifying the authctxt->valid field
makes the program execute a valid (but incorrect) control-path. This type of path dependence
cannot be tracked by current compilers. It implies that each variable along the path is indirectly

18

dependent on any variable that was used in a branch decision leading to that path. If this were to
be tracked, each variable would have a huge number of these dependencies since each possible
branch decision would become a data dependency for each variable along that path.

8. Performance Evaluation
In order to evaluate performance of the proposed technique, the information flow signature
checking scheme is applied to protect security critical variables in the authentication functions
from the OpenSSH (secure shell) server program (introduced in Section 6). Four variables are
identified (manually based on application semantics) as critical: (i) authctxt, a pointer to the user
entered password (ii) sys auth_passwd, the return value of the sys_auth_passwd() authentication
function, the value of which determines whether the user is authenticated or not, (iii) fakepw, a
pointer to a dummy SSH Authentication context used when the user has entered an invalid
username, and (iv) permit empty_passwd, a variable which determines if users are allowed to
login through SSH if their password is empty. These variables are critical to the security of SSH
because their corruption can result in the inaccurate authentication of an attacker. Information
flow signature checking can detect tampering with the values of the selected variables and foil
the potential attack.

Recall that the information flow signature encodes the entire dependence tree for a given critical
variable. As a result, the performance overhead of the deployed technique depends on the length
(in terms of instructions) of the dependence chain. The measurements reported in this section
quantify this overhead in the context of the SSH application and the selected critical variables.

Application instrumentation. The IMPACT compiler [21] (developed at the University of
Illinois) is employed for static analysis and IMPACT'S Lemulate tool is used to simulate the
hardware checks. Lemulate allows IMPACT to transform compiled output to a C-code
representation rather than a program binary. This transformation allows each machine-level
instruction to be represented using C syntax, with each line of the resulting C-code file
corresponding to a single machine-level instruction. This C-code file can then be instrumented,
re-compiled into a binary, and run. The hardware checks are simulated by creating a small C++
library to implement the two maps used by the level 2 check (Object to Address Range Table and
Instruction to Allowed Object Table). The security checks are inserted by adding callbacks to the
library before each trusted instruction in the C-code generated by Lemulate. The check()
callback includes: (i) the ID of the instruction (corresponding to the PC which would be used in a
hardware implementation), (ii) the virtual address of the object the instruction is writing to, and
(iii) the size of the object the instruction writes to.

19

Attacks are emulated by modifying the address to which an instruction writes along with the
corresponding address in the check() callback. This represents the actual address (to which an
instruction writes) being sent to the hardware checker at runtime.

Results.

Table 3 and Figure 7 report performance measurement results while targeting protection of
selected critical variables. Baseline represents the time required (in microseconds) to run the
compiled SSH authentication stub generated by Lemulate without any instrumentation.
Initialization time represents the time required to add static variable mappings (for global
variables and variables on the stack), in addition to time required to initialize the checker with
the trusted instructions and their associated objects. Checking + Dynamic mapping time reports
the time required to perform the runtime checks and the dynamic variable mappings (for objects
allocated on the heap memory). The reported overhead is just an indirect measure of the
overhead which would be incurred with a hardware implementation. With hardware support, the
checks will be done in parallel with the main processor so few or no extra cycles will be incurred.
Thus, although the results are useful to show the complexity of checking for various critical
variables, they should not be interpreted as the overhead required for the checking scheme itself.

Critical Variable

□ Checking + Dynamic
Mapping

■ Initialization Time

□ Baseline

Figure 7: Checking Overhead Required to Protect Various Critical Variables

20

Table 3: Performance of Information Flow Signatures Deployed in OpenSSH
C ritica l V a r ia b le B ase lin e In itia liza tio n

T im e
C h ec k in g +

D y n a m ic M a p p in g
T im e

T o ta l (F u ll
In str u m e n ta tio n)

a u th c tx t (p o in te r) 184 61 0 345 1139

sy s a u th _ p a s s w d (re tu rn va lue) 184 61 6 348 1148

fa k e p w (p o in te r) 184 2 0 5 2 0 9

p e rm it e m p ty _ p a s sw d (flag) 184 2 6 6 33 2 9 9

(Execution Times in usée)

Table 4: Proportion Instructions in Dependence Chains of Critical Variables of SSH Application
C ritica l V a r ia b le T otal O p s C h eck ed O ps L ocal V a r ia b le

M ap p in g s
G lob a l V a r ia b le

M ap p in gs
A u th c tx t 500 125 84 3
sy s a u th p a ssw d 500 126 84 3
F a ke p w 500 4 3 0
p e rm it em pty’ p a s s w d 500 16 11 0

Protection of the authctxt ptr and the sysauth passed critical variables incurs highest overhead
of 2.9x ((184+348)/184 see Table 3). Note that the time required initialize the application is
excluded since the overhead due to initialization is encountered only once when the application
is first started. The significant overhead for these two variables is due to the fact that authctxt is
the main authentication data structure and thus it is passed to each authentication function.
Similarly, the sys authj?asswd return value represents the final authentication decision, and
ultimately determines whether the user is authenticated. As a result the dependence chains for
these two variables are relatively long (see Table 4) and hence, the checking leads to higher
overhead. Table 4 shows the numbers of instructions which need to be protected by information
flow signatures for the four critical variables of the SSH application. One can see that for the
authctxt ptr and the sys authjrasswd critical variables, 25% and 25.2% of the total number of
instructions in corresponding functions belong to the dependence chain of each variable,
respectively. However, it is interesting to point out that these variables share the same 125
instructions and 84 indirect variables dependencies. This overlap between the dependence
chains of these two critical variables is a significant advantage. For example, if the authctxt
pointer variable is already being checked, the sys auth_passM>d variable can also be checked
simply by adding a single trusted instruction.

Another interesting result is the significantly low overhead associated with checking the fakepw
variable. This variable points to a dummy authentication context which SSH uses to authenticate
against in the event that an invalid username is provided. However, if an attacker is able to
overwrite the hash associated with this dummy user with a hash for which he/she knows the
password, the attacker would be authenticated by certain authentication functions in the system
(he/she would then have to overwrite the username to make it valid). Since very few legitimate
instructions use this dummy authentication context, it is extremely efficient to check, and

21

arguably prevents an important security attack. In fact, this class of yet undiscovered but
possible security vulnerabilities represents the strength of the information flow checking
technique. Instead of attempting to find and patch the vulnerabilities, our technique actively
protects critical data from a wide class of memory attacks, including undiscovered or unreleased
exploits.

9. Conclusion
We have shown that the Dynamic Tracking of Information Flow Signatures is a powerful
technique, providing security and attack detection for a very broad class of attacks. The
technique is highly configurable, allowing the user to determine the desired level of protection,
as well as which variables to protect. The technique uses detection of program data-flow
violations as an indicator of malicious tampering with the system/application and prevents an
attacker from exploiting the disconnect between source-level semantics and execution semantics
of the program. Although the checking overhead incurred for certain critical variables is high, a
true hardware implementation should reduce this overhead dramatically. A compile-time static
program analysis is employed to extract a backward slice which collates all dependent
instructions along each control-path used in computing the security critical program variables.
Instructions (in terms of their PCs) identified in along the dependence chain are encoded to form
a signature, which is checked at runtime. Any violation of the pre-computed signature raises an
alarm. The approach is employed and demonstrated in the context of the SSH application. As
part of future work, we plan to evaluate the technique using several other server-based
applications such as WU-FTPD, httpd and sendmail. We also plan to create a hardware
prototype in order to evaluate the overhead of a true hardware-based implementation.

10. References
[1] Kiriansky, V., Bruening. D.. and Amarasinghe. S. Secure execution via program shepherding. In

Proceedings of the 11th USENIX Security Symposium (Aug. 2002).
[2] S. Chen, J. Xu. E. Sezer. P. Gauriar. and R. Iyer. Non-control-hijacking attacks are realistic threats. In

USENIX Security, 2005.
[31 Miguel Castro. Manuel Costa. Securing Software bv Enforcing Data-flow Integrity. Microsoft Research

Cambridge. In OSDI. 2006.
[4] Cowan. C.. Pu. C.. Maier. D.. Hinton. H.. Bakke. P., Beattie, S., Grier, A., Wagle, P., and Zhang. Q.

StackGuard: Automatic adaptive detection and prevention of buffer-overflow attacks. In Proceedings of
the Seventh USENIX Security Conference (San Antonio. TX, Jan. 1998).

[5] Baratloo. A., Singh, N.. and Tsai, T. Transparent fun-time defense against stack smashing attacks. In
Proceedings of the 2000 USENIX Technical Conference (San Diego, CA, June 2000).

[6] Intel. Intel Itanium 2 Processor Reference Manual For Software Development and Optimization. Intel
Corporation, 2004.

[7] Abadi, M.. Budiu, M., Erlingsson, U., and Ligatti, J. Control-flow Integrity: Principles, implementations,
and applications. In ACM CCS (Nov. 2005).

[8] S. Z. Guver. E. Berger, and C. Lin. Detecting errors with configurable whole-program dataflow analysis:
Dept. Comput. Sci.. Univ. Texas at Austin, Tech. Rep. TR 02-04, Feb. 2002.

22

[9] Chen, S.: Xu, J.; Nakka, N.: Kalbarczyk, Z.; Iyer. R.K. Defeating memory corruption attacks via pointer
taintedness detection. In Dependable Systems and Networks. 2005. DSN 2005. Proceedings.
International Conference on 28 June-1 July 2005 Page(s): 378- 387

[10] J. Xu. Z. Kalbarczyk. S. Patel, and R. K. Iyer. Architecture support for defending against buffer overflow
attacks. EASY-2 Workshop. October 2002.

[11] J. Xu. Z. Kalbarczyk, and R. Iyer. Transparent runtime randomization for security. In A. Fantechi. editor.
Proc. 22nd Symp. on Reliable Distributed Systems -SRDS 2003 pages 260-9. IEEE Computer Society,
Oct. 2003.

[12] S. Bhatkar. D. Du Varney, and R. Sekar. Address obfuscation: An efficient approach to combat a broad
range of memory error exploits. In V. Paxson. editor. Proc. 12th USENIX Sec. Symp., pages 105-20.
USENIX. Aug. 2003.

[13] Berger. E. D. and Zorn. B. G. 2006. DieHard: probabilistic memory safety for unsafe languages. In
Proceedings of the 2006 ACM SIGPLAN Conference on Programming Language Design and
Implementation (Ottawa. Ontario. Canada. June 11 - 14. 2006). PLDI '06. ACM Press, New York, NY,
158-168.

[14] Necula, G. C., McPeak. S., and Weimer, W. 2002. CCured: type-safe retrofitting of legacy code. In
Proceedings of the 29th ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages (Portland. Oregon, January 16 - 18, 2002). POPL '02. ACM Press. New York. NY, 128-139.

[15] Dhurjati. D., Kow^shik. S., and Adve, V. 2006. SAFECode: enforcing alias analysis for weakly typed
languages. In Proceedings of the 2006 ACM SIGPLAN Conference on Programming Language Design
and Implementation (Ottawa, Ontario, Canada, June 11 - 14. 2006). PLDI '06. ACM Press, New- York,
NY. 144-157.

[16] Hind. M. and Pioli. A. 2000. Which pointer analysis should I use?. In Proceedings of the 2000 ACM
SIGSOFT international Symposium on Software Testing and Analysis (Portland. Oregon. United States,
August 21 -24. 2000). M*. J. Harold. Ed. ISSTA '00. ACM Press, New York, NY, 113-123.

[17] Boneh. D., DeMillo, R. A., & Lipton, R. J. (2001). On the Importance of Eliminating Errors in
Cryptographic Computations Journal of Cryptology: The Journal of the International Association for
Cryptologic Research, vol. 14, pp. 101-119.

[18] G. Suh. J. Lee. and S. Devadas. “Secure Program Execution via Dynamic Information Flow’ Tracking.”
11th International Conference on Architectural Support for Programming Languages and Operating
Systems. Boston, Massachusetts. October 2004.

[19] S. Bagchi et al. Hierarchical error detection in a software implemented fault tolerance (sift) environment.
IEEE Transactions on Knowledge and Data Engineering, 12:203-224, March/April 2000.

[20] Dynamic Tracking of Information Flow- Signatures for Security Checking. Tech Report,
http : //www. crhc. uiuc. edu/DEPEND/

[21] UIUC OpenIMP ACT Effort. The OpenIMP ACT IA-64 Compiler, http : //gel ato. uiuc. edu
[22] Newsome. J.. Karp, B.. and Song, D. 2005. Polygraph: Automatically Generating Signatures for

Polymorphic Worms. In Proceedings of the 2005 IEEE Symposium on Security and Privacy (May 08 -
11, 2005). SP. IEEE Computer Society. Washington, DC, 226-241.

[23] A. Sabelfeld, A. Myers. Language-based information-flow security. IEEE J-SAC. 2003

23

