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Dynamic Tracking of Information Flow Signatures for
Security Checking

William Healey, Karthik Pattabiraman, Shane Ryoo,
Ravi Iyer and Wen-Mei Hwu

Center for Reliable and High Performance Computing

Coordinated Science Laboratory

Abstract

Memory-based attacks represent one o f the largest attack classes in the field. 
Many techniques have been proposed to protect applications from certain 
classes o f memory> exploits, however, few o f these techniques can protect the 
application from all memory> attacks, and few permit the protection o f only 
select variables. We present a technique to provide protection o f select 
variables from a wide range o f memory> attacks. The protection is provided by 
computing the dependence tree o f  each critical variable, ensuring that no 
variable or instruction within the dependence tree is coirupted by utilizing 
hardware supported runtime checks. We evaluate the technique using software 
based emulation.

1. Introduction
This paper presents a technique (information flow signature checking) to protect data that is 
critical to the application from a memory corruption attack. We define a memory corruption 
attack as a malicious corruption of any control/non-control data (in the heap, stack, or registers) 
through a memory error in the program. These memory errors can occur in programs written in 
languages such as C and C++ which are not type-safe, and hence the runtime environment allows 
any pointer to write to any location in memory, regardless of type. While attackers have 
exploited memory errors to overwrite control data such as return addresses and function pointers 
[1], they can also overwrite security-critical non-control data (such as passwords) by exploiting 
memory errors. Chen et al. [2] showed that such attacks are practical for a broad class of 
applications, including large server programs. Our goal is to protect application data that is 
critical from the security point of view, be it control data or non-control data, from memory- 
corruption attacks.

The strength of our technique is that it considers a very broad threat model. It is assumed that 
the attacker can execute arbitrary code as well as overwrite any program variable stored in 
memory or registers, provided the modification is observable at execution time. The threat model 
also covers physical attacks in which code is injected via some malicious hardware device, such
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as a corrupt smart-card, as long as the memory is manipulated through the checked processor’s 
pipeline.

Many existing techniques [3] break down when they are applied to select variables, as not 
protecting even one variable in the dependence tree of a critical variable allows an attacker to 
influence that critical variable. Our technique on the other hand, explicitly protects the entire 
dependence tree of the critical variable. This allows the overhead of checking to be configurable 
based on application requirements. Furthermore, information flow signature checking ensures 
that any security violation affecting the critical data can be detected before the data is used by the 
original program in a security-critical context. This allows attacks to be detected before they can 
compromise the system or propagate to other parts of the system.

The proposed technique is primarily based on the observation that the main reason for a data 
error is the ‘disconnect ’ between the source-level semantics o f a program and its system 
semantics. Information flow checks enforce the source-level semantics of memory accesses at 
runtime for the security-critical data. The properties inferred by a compiler-based static analysis 
of which instructions are allowed to write to a security-critical object according to the source 
code are checked and enforced at runtime. A pointer to an object can be manipulated by an 
attacker at runtime to reach another object by taking advantage of data layout arrangements in 
the object files, however, the compiler can infer from the source code that the pointer is not 
allowed to access the second object. In order to achieve high detection coverage, the proposed 
technique protects the entire dependence chain of instructions/data which contribute to the 
computation of the critical variable.

Our technique can also detect insider attacks in which parts of the program itself behave 
maliciously, or more specifically, against the source-code semantics of the original program. For 
example, assume that the browser contains a table of the user’s public keys, which is marked 
critical. Now suppose the user loads a malicious plug-in which is allowed to execute code in the 
same memory space as the browser. Our technique will detect any attempt by the plug-in to 
write to the critical table independent of whether the plug-in code itself is checked since the 
security checks are in the browser.

We implemented and tested our technique on the OpenSSH server program. The results show 
that the overhead incurred by the runtime checking is highly dependent on the selected critical 
variable, ranging rrom 2.5% to 187%.

2. Related Work
Much of the earlier work related to memory corruption attacks has been targeted for specific 
attacks. For example, techniques such as StackGuard [4] and Libsafe [5] protect specifically
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against buffer overflow vulnerabilities. Similarly, control flow checking techniques such as the 
No Execute Bit [6], Program Shepherding [1], and Control-flow Integrity [7] protect against 
attacks in which the attacker corrupts control data in the program. Recently, Chen et al. [2] have 
shown that it is possible for an attacker to overwrite non-control data (i.e., a password) in the 
system and exert the same level of influence over the application as if they had overwritten 
control data.

Another class of techniques, broadly called information flow-based security, enforces an 
externally imposed policy rather than one inherent to the program. Information flow-based 
security techniques [8] classify program data as high-security and low-security and ensure that 
low-security data cannot influence high-security data in the program. Sabel and Myers also 
explore information flow-based security, but focus on confidentiality rather than 
integrity/security [23], A common variant of information security is taintedness (first proposed 
in the PERL programming language), which marks all externally supplied data (through user- 
input) as low-security data and ensures that these cannot influence high-security data in the 
program (such as pointers [9] and return addresses [10]). The main problem with these 
techniques is that they can result in false positives (rejection of valid code) and missed attacks 
due to incompatibilities or differences between the imposed policy and the policies inherent to 
the programming language.

Techniques such as address space randomization [11][12][13] are also based on the observation 
that an attacker exploits the disconnect between the source-level semantics and the application 
binary. However, they attempt to obfuscate the details of the underlying memory layout from the 
attacker rather than detecting and preventing attacks. Thus, protection is probabilistic and can be 
circumvented by repeated undetected attacks on the system, or through program information 
leaks such as pointer addresses exposed to the user or specially crafted format string attacks.

A broad class of techniques for ensuring memory safety of C and C++ programs has been 
proposed in the literature (e g. [14][15]). These techniques use static analysis to prove pointers 
are safe at compile time and insert runtime checks for pointers that cannot be proven to be safe. 
These techniques are effective at guaranteeing protection from failures due to program errors. 
However, they cannot guarantee the program is secure from all malicious attackers since an 
attack may alter the data flow assumed by static analysis.

Another broad class of techniques generally referred to as intrusion detection systems has also 
been proposed [22], The goal of these techniques is to detect security attacks by monitoring 
streams of network traffic. These techniques are useful for detecting well-known attacks for 
which attack invariants have been extracted and are advantageous because they incur little 
overhead since the network stream can be monitored by an independent computer. However,
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there are two main disadvantages of these techniques. First, they can only detect attacks which 
are performed over the network and thus cannot detect physical/local attacks (such as smart-card 
attacks) or attacks in which a user modifies a local object, such as an environmental variable or 
program data file. Secondly, these techniques require certain known invariant byte strings (or at 
least some group of disjoint invariant bytes). Thus, intrusion detection systems can only defend 
against well-known attacks, or attacks which are very similar to previous attacks. Therefore, 
these techniques are not generally useful for against attacks which exploit a previously 
undisclosed vulnerability.

Recently a technique to guarantee memory safety in the presence of malicious attacks was 
proposed in [3]. The main idea is to compute the data flow graph of the program and enforce this 
data flow at runtime. This is performed by computing the reaching definitions of each variable in 
the program using intraprocedural, flow-sensitive analysis and ensuring that only the instructions 
that write to the memory location according to the reaching definitions analysis can do so at 
runtime. The attack model considered by this paper is similar to our paper in that the attacker is 
allowed to write to any memory location. It is assumed, however, that: (i) The attacker cannot 
overwrite variables stored in registers and hence checking memory loads and stores is sufficient 
to provide protection, (ii) The control flow of the program is preserved and can be enforced by 
instrumenting every read and write of program control data. Selectively protecting only the 
critical variables, as it is done in our approach, may violate and hence break the guarantees 
provided by the scheme. Further, our attack model assumes that the attacker can write to both 
memory and registers, and therefore, the checking is not restricted to memory loads and stores. 
Finally, our model does not require the original program’s control flow to be preserved during an 
attack. The approach proposed in [3] does not consider context-sensitivity in computing the 
reaching definitions analysis which can introduce serious security holes in the data-flow graph 
computed statically.

3. Attack Model
We assume that the attacker can write to any location, be it memory or register at any point in the 
execution of the program. The attacker can also execute arbitrary code and change the control 
flow of the original program.

Recall that our goal is to protect certain data marked critical and prevent the attacker from 
corrupting this data against the semantics of the source program.

The attack model also covers physical attacks on the hardware e g. smartcards, where the 
attacker can change the control flow of the program or change the operands fetched by an 
executing instruction at runtime. However, the attack model does not consider attacks in which
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the executable image of the program is altered by the attacker, or attacks that tamper with the 
program executable before it is loaded. It is also assumed that the program load process is not in 
the control of the attacker and that a secure linker/loader is deployed.

In general, the technique proposed in this paper assures the integrity of critical data and not its 
confidentiality. Hence it does not address side-channel attacks [17]. However, unlike 
randomization based protection, the technique does not require the program to be free of 
information leaks (which would allow the attacker to guess the randomization details).

4. Concept of Information Flow Signature Checking
Our technique computes, for each critical data location in the program, the set of instructions that 
are allowed to write to the critical data location in the program (according to source code 
semantics). In this section, example attacks are used to illustrate how the signature checking 
technique detects attacks.

4.1. How Information Flow Signatures Detect Attacks
The program fragment given below prompts the user for a password and then compares the 
supplied password to the correct password stored in the p a s s w o r d  variable. If a user enters the 
correct seven-character password “asecret”, the program outputs “Success”. If the passwords do 
not match, the program outputs “Failed”. Observe that the unchecked bounds on the getso 
function allow the user to enter more than seven-characters, causing variables on the stack to be 
overwritten. Suppose that an attacker enters the string “attack! attack!”. This would enable the 
attacker to overwrite the stack variable p a s s w o r d .

1 int main()
2 {
3 char password[8] = "asecret";
4 char userpass[8];
5 printf("Enter Password:\n");
6 gets(userpass);
8 if (strncmp (userpass,password,7)==0)
9 printf("Success\n");
10 else
11 printf ( "Failed\n");
12 }

The main reason for this vulnerability is that the programmer never implied that the password 
buffer should be written to by the gets() function. From the source code, it is clear that the gets() 
function should only write to the userpass buffer; however, this is not enforced by the runtime 
system, which allows any instruction to write to any memory location. The attacker exploits this 
disconnect between the source-level semantics and the runtime layout of objects on the stack to

5



compromise the system. If the semantics of the source code were enforced, the gets() function 
would not be allowed to write to the password variable, and the attack would be prevented. Our 
method provides this enforcement for critical variables, such as the user password, which if 
corrupted can compromise the security of the application.

Detection. In the example, suppose that both the p a s s w o r d  and u s e r p a s s  buffers are critical. 
During static compilation, the compiler encodes the set of all instructions that are allowed to 
write to each of the critical variables. For the sake of clarity, signatures used in the examples are 
considered at the granularity of program statements rather than machine-level instructions. In 
this example, the only statement that is allowed to write to the p a s s w o r d  variable is p a s s w o r d [ 8 ] = 

" a s e c r e t "  on line 3, and the only statement that is allowed to write to the u s e r p a s s  variable is 
g e t s  ( u s e r p a s s )  on line 6. Suppose that the chosen signature is the set of all statements allowed to 
write to that variable. Thus, the signature for p a s s w o r d  is {3} and the signature for u s e r p a s s  is {6}. 
Now any attempt to write to p a s s w o r d  from within gets() on line 6 will be detected, since 6 is not 
in the signature for the p a s s w o r d  variable.

4.2. Why the signature must encode the entire dependence tree
In the example above, the signature included only those statements that directly manipulate the 
critical variable. In many programs, however, due to instruction/data dependencies, program 
variables can be altered indirectly following the instruction dependence chain. In order to 
provide protection against attacks which exploit an instruction/data dependence to tamper with 
the critical variables, it is necessary to encode the entire dependence tree. The example 
discussed in this section illustrates such a scenario.

1 int authenticate(char* username, char* password)
2 {
3 int authenticated=0;
4 int result;
5 char tmpbuf[512];
6 result = strncmp("asecret",password,7);
7 snprintf(tmpbuf,sizeof(tmpbuf),"user: %s",user);
8 tmpbuf[sizeof(tmpbuf)-1] = '\0' ;
9 syslog(LOG_NOTICE,tmpbuf);
10 authenticated=!result;

In the program above, assume that the variable a u t h e n t i c a t e d  is determined to be a critical 
variable. The signature of this statement is {10}, since the only instruction that writes to this 
statement is a u t h e n t i c a t e d = !r e s u l t .  Suppose that the attacker attempts to overwrite the variable 
a u t h e n t i c a t e d  via manipulating statement 9 (for example, by exploiting a format string 
vulnerability). The signature technique, as described in Example 1 would detect tampering with 
a u t h e n t i c a t e d .  Now, assume that the attacker knows that a u t h e n t i c a t e d  is protected, and that only 
statement 10 can modify the variable without raising an alarm. Instead of directly overwriting
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the authenticated variable, the attacker can overwrite the result variable, thus indirectly 
modifying authenticated and gaining access to the system. Notice that during the attack, the 
authenticated variable is only written by the statement on line 10, and thus the signatures match. 
Therefore, instead of simply encoding the direct dependencies of a critical variable in its 
signature, it is necessary to encode the entire dependence tree of the critical variable, thereby 
protecting critical variables from both direct and indirect modification.

5. Approach
This section describes the approach to derive information flow signatures for security-critical 
variables in applications. Compiler-based static program analysis is used to derive the signatures 
and hardware support is employed to enable runtime signature checking.

5.1. Static Analysis

Figure 1: Steps in Compiler-based Static Analysis presented as part of a compiler-based
security and reliability framework

5.1.1. Steps in Compiler Analysis

Figure 1 presents a unified compiler analysis framework to derive both error and attack detectors. 
This paper focuses on the derivation of attack detectors, which is shown on the right-hand side in 
Figure 1. These steps are as follows:

• The first step in compiler analysis is to determine the security-critical variables for the 
program. This can be done either by (i) the programmer, based on understanding of the 
program semantics (for example, variables used in authenticating a user in an SSH
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server) or (ii) an automated tool, based on common targets for security attackers (for 
example, function pointers, return addresses, virtual function tables).

• The compiler then constructs the backward program slice for each of the critical variables 
starting from the program points where they are used in a security-critical context. This 
includes the uses of the critical variable in making control decisions and security-critical 
decisions (such as in a strcmp() function where a password is compared to the supplied 
system password). Ideally, this slice would be inter-procedural and take into account 
both register and memory dependences in the program.

• From the backward slice of a critical variable, instruction sequences can be extracted for 
each control-flow path in the slice. These instruction sequences are the dependence 
chains for the critical instruction and correspond to those instructions that can influence 
the value of a critical variable in a program execution.

• After computing the signatures, the compiler adds information to the program binary 
which is used to inform the runtime system of the critical variables and their pre
computed signatures. The compiler must also identify the places where the critical 
variables need to be checked (when they are used in a security critical fashion) and 
communicate this to the runtime system, using function calls or special instructions.

5.1.2. Data-Flow Analysis

In order to derive the signatures, the compiler needs to perform pointer and data-flow analysis on 
the program to determine the dependences for security critical variables. While data-flow 
analysis typically involves data dependences through registers (virtual or real), pointer analysis 
involves data-dependences through memory. Data-flow analysis attempts to answer the question 
of which instructions can directly or indirectly affect certain registers, while pointer analysis 
attempts to answer the question of which instructions can potentially write to specific memory 
variables (technically this is done by derivingpoints-to sets of pointer variables used by the write 
instructions). While data-flow analysis is a standard technique employed by most compilers (and 
is highly accurate), pointer analysis is a much harder problem and compilers typically perform 
various degrees of approximation depending on the space/time tradeoffs. The degree of 
approximation made by the compiler can affect the coverage of the derived signatures and allow 
attacks that could have been avoided in a more accurate analysis.

5.1.3. Pointer Analysis

This section provides a brief overview of the main factors that determine the precision of pointer 
analysis. A more detailed analysis is presented by [16].
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• A context-sensitive analysis is one which isolates the calling contexts of called functions 
from each other. In a context-insensitive analysis on the other hand, values can flow from 
one call through the function and return to another caller. In other words, a context 
insensitive analysis does not distinguish one invocation of a function from another 
invocation.

• Flow-sensitive analysis considers the order of statements in a procedure when performing 
pointer analysis, and hence computes a solution for each program point. Flow-insensitive 
analysis, on the other hand, computes a solution assuming, conservatively, that any order 
of statements is possible in the procedure.

• The analysis feature known as field-sensitivity refers to how individual fields of a 
structure are modeled. Field-sensitive analysis considers each field of a struct or array 
separately, while field-insensitive analysis considers them to be a single object or 
location.

• The last type of pointer analysis considered is heap sensitivity. Heap insensitive analysis 
treats the entire heap as one single object. Heap sensitive analysis can minimally track 
heap objects by their allocation site, program location of calls to malloc(), in the program. 
While this suffices for many programs in which distinct objects are allocated at different 
sites, some programs may have customized allocation routines that allocate memory for 
multiple types of objects. In the latter case, an analysis that tracks heap objects by 
allocation site would in effect treat all objects allocated by the custom allocation routine 
as one object. Tracking the call sequences leading into the allocation site can further 
distinguish these objects and increase the level of heap sensitivity.

Each of these analyses increases the resolution and therefore sensitivity of our security checking 
scheme by decreasing the number of objects that alias each other. Utilizing a compiler that 
performs detailed pointer analysis significantly increases the amount of work an attacker needs 
to perform to gain access to the system.

5.2. Runtime tracking of signatures
The proposed signature checking technique enforces the properties of the compiler generated 
data dependence chain on critical variables at runtime. For efficiency and ease of 
implementation, the runtime enforcement of the signature checking scheme is divided into three 
levels. Together, these three levels provide the same guarantees provided by the signature 
scheme presented in the examples in section 2. Implementing the signature checking via this 
three-level scheme reduces the overhead and limits the propagation of compromised data. 
Before presenting the checking scheme, we introduce useful terminology:
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Direct Critical Variable: A variable which has been determined either heuristically or by a 
human to be critical to the security of the application.

Trusted Instruction: An instruction which is statically determined to potentially read, write, or 
have influence on a critical variable directly or indirectly as defined by source code semantics. 
All the instructions in the dependence tree of the direct critical variable are marked trusted by 
the compiler.

Indirectly Critical Variable: A variable or object which influences the value of a direct critical 
variable (through a trusted instruction). All variables and objects in the data dependence tree of 
a direct critical variable are marked indirectly critical by the compiler.

Critical Bit: For each register and memory location, this bit is set if and only if the register or 
memory currently contains a direct critical or indirectly critical variable.

5.2.1. Three Level Checking Scheme

This section presents the three-level checking scheme and show the invariants and protection 
guaranteed by each level:

Level 1, the critical bit: The objective of the level 1 check is to separate the instructions and 
variables upon which any critical variable is dependent from the instructions and data which do 
not have influence on critical variables, according to compiler analysis. In the context of the 
dependence signature, level 1 ensures that instructions outside the signature of a critical variable 
do not influence instructions inside the signature. In order to accomplish this, a critical bit is 
maintained (by the hardware) for each register and memory location in the program. Initially, 
the critical bit for all variables that are used as operands to trusted instructions is set to 1. The 
propagation of the critical bit is performed by hardware in the background according to the rules 
presented in Table 1 and described below. An alarm is raised if a trusted instruction attempts to 
use a non-critical variable as an operand. This is because the compiler guarantees that all 
variables in the dependence tree of a direct critical variable are marked indirectly critical by 
initializing their critical bit to 1. Thus, under correct execution all operands of trusted 
instructions should be marked critical. If the critical bit of a trusted instruction’s operand is not 
set, it means that the operand has been influenced, either directly or indirectly, by an instruction 
that the compiler determined should be unable to influence the operand. The fact that the 
operand has been influenced by an instruction outside of its dependence tree represents a 
violation of source code semantics, and therefore triggers an alarm. The runtime tracking of the 
critical bit is very similar to the Taintedness Tracking used in [18],

Propagation of the Critical Bit. The critical bit is propagated according to the simple rule shown 
below:
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Crit(destination) Crit(operand 1) && Crit(operand 2) && Trusted(op)

The critical bit of the destination (register or memory) is set if and only if the critical bit of all 
operands is set and the instruction is trusted. If any one of these conditions does not hold, the 
critical bit of the destination is cleared.

It is important to point out that the actual checking of level 1 can be deferred and performed as 
part of the level 2 check. This is because an alarm is raised only in the event that a trusted 
instruction attempts to read from non-critical data. Since all trusted instructions are checked by 
level 2, it makes sense to do both checks at the same time, as shown in Figure 2. Thus, all that is 
required to enforce level one is the propagation of the critical bit according to straightforward 
rule presented above.

Table 1: Enumeration of all possible conditions and actions for the level 1 check
In stru c tio n
T y p e

O p D ata A ctio n R e a so n in g

T ru sted R ead C ritical D o e s  n o t tr ig g e r  a larm T ru sted  in s tru c tio n  is u sing  valid  da ta  in s id e  its  d ep en d en ce  
tree .

T ru sted R ead N o n -
C ritica l

T rig g e r A la rm A ll d e p e n d e n t d a ta  o f  a n y  tru s ted  in s tru c tio n  is m arked  critical 
b y  th e  c o m p ile r , th e  c leared  c ritica l b it m ean s  an  a ttack er has 
co rru p te d  th e  d a ta  .

T ru sted W rite C ritical A llo w e d  and  p assed  to 
leve l 2

T ru sted  in s tru c tio n  is o p e ra tin g  on  valid  da ta . A  ch eck  needs 
to  b e  p e rfo rm e d  to  verify  th a t th e  in s tru c tio n  w rites  to the 
d e p e n d e n c e  tree  o f  th e  co rrec t c ritica l v a riab le  (level 2 check)

T rusted W rite N o n -
C ritical

A llo w e d  and  p a sse d  to 
leve l 2 , se t c ritica l b it 
o f  target

P ro p a g a te  th e  c ritica lity  to  th e  d e s tin a tio n  i f  a n d  o n ly  i f  all 
so u rce  o p e ran d s  fo r th e  tru s ted  in s tru c tio n  a re  critical and  the 
level 2 c h e c k  passed .

U n -T ru sted R ead C ritical A llo w ed U n -tru s te d  in s tru c tio n s  m ay  be d e p en d e n t o n  critical data , 
h o w e v e r  c ritica l d a ta  c an n o t be  d e p en d e n t o n  un -trusted  
in s tru c tio n s

U n -T ru sted R ead N on- 
C  litica i

A llo w e d N o t a  se c u rity  th rea t

U n -T ru sted W rite C ritical R e se t c ritica l b it T he c ritica l b it o f  th e  d es tin a tio n  m ust b e  c leared  since  th is 
m ay  be  a  m alic io u s  in struction .

U n -T ru sted W rite N o n -
C ritica l

A llo w e d N o t a  se c u rity  th rea t

Level 2, the sufficient condition. The level 2 check enforces two invariants of the dependence 
signature. First, it guarantees that instructions inside one signature chain cannot influence 
instructions or variables within another signature chain. Secondly, it guarantees that instructions 
inside a signature chain can only write to variables directly dependent upon them inside the 
signature chain.

Immediately performing the level 2 check instead of checking an accumulated dependence 
signature when the critical variable is reached allows us to detect attacks much earlier and
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therefore prevent the propagation of corrupt data. Furthermore, performing an immediate check 
is more efficient than fetching an accumulated signature from memory, performing an update 
operation and then storing it back to memory.

Figure 2: Theoretical Hardware Checking Implementation

As shown in Figure 2, the level 2 check is triggered by a trusted instruction. The hardware 
checker maintains two tables to facilitate the level 2 check:

• Object Address Range Table maps virtual addresses to the corresponding compiler 
generated object.

• Instruction to Allowed Object Table maps each trusted instruction to the objects that the 
compiler has determined the instruction is allowed to write to.

When the compiler encounters an instruction with a set trusted bit, the level 2 checking 
mechanism retrieves both the address of the instruction (stored in the program counter) and the 
destination address or register to which the instruction is attempting to write. The destination 
address is used to index the Object Address Range Table to determine which object the runtime 
instruction is actually attempting to modify. The program counter is used to index the 
Instruction to Allowed Object Table to determine which objects the current instruction is allowed 
to modify. The objects are then compared to ensure the instruction is writing to one of the 
objects in its allowed-write set. An additional check to determine whether the critical bit is set
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for all operands (which was deferred from level 1) is performed in parallel. If either one of these 
checks fail, an alarm is raised before the instruction is allowed to enter the write-back stage in 
the processor.

Runtime Mapping o f Objects. In order to perform the level 2 check, the hardware must have the 
ability to map a raw address to the corresponding symbolic object used by the compiler 
(accomplished using the object to address range table shown in Figure 2). The means by which 
this mapping is created depends on the type of object:

• Global Variables, Static Variables or Constants-. These objects are statically allocated by 
the compiler at compile time and thus their mapping is known and can be provided to the 
hardware at initialization.

• Local or Stack Variables: The exact address of these variables is not known statically at 
compile time, but can be represented statically as an offset to the stack, or base pointer.

• Dynamic or Heap Variables: The address mappings of these variables must be
determined and stored dynamically by intercepting calls to the heap allocator. This 
requires limited instrumentation of the memory related sys calls.

Level 3, the necessary condition. The goal of the level 3 check is to enforce that all instructions 
in a dependence chain of a critical variable are executed by the time that critical variable is used 
by a trusted instruction. This is necessary since in theory, an attacker could subvert the control 
flow of an application, somehow preventing the execution of a trusted instruction and thereby 
influencing the value of the critical variable. Another way of thinking about the level 3 check is 
that it ensures that every instruction in the signature chain of the critical variable is eventually 
checked.

The level three check can be implemented by statically extracting the set of all trusted 
instructions which have influence on the direct critical variable along each unique control flow 
path. These sets are then stored by the hardware. During runtime, the hardware keeps track of 
the set of all trusted instructions that have influenced each direct critical variable. Upon reaching 
a use of the direct critical variable, the runtime set for that direct critical variable is compared to 
the statically extracted sets. During correct execution, the runtime control flow path should 
correspond to one of the statically extracted control flow paths, resulting in a match. If an 
attacker manipulates the control flow to prevent the execution of certain trusted instructions, the 
sets will not match, and the attack will be detected. An example is provided in Figure 3:
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Figure 3: Example of the Level 3 Check

Suppose that in this program there are two control flow paths. Path 1 includes instructions A, D 
and F, whereas path 2 includes instruction B, C, E and F. During static analysis, the compiler 
will extract these two sets, {A, D, F} and {B, C, E, F}. Now, during runtime, suppose path 1 is 
executed. The runtime accumulator for the direct critical variable will add each instruction to the 
direct critical variable’s set as it is executed. Thus, by the time instruction F is executed, the 
accumulator will contain {A, D, F} which will match the set extracted during static analysis. If 
the attacker prevents the execution of instruction D, the set will contain only {A, F} and thus will 
not match.

In order to implement this check, it is necessary to add an accumulator for each direct critical 
variable, as well as a means to track which trusted instructions have influence on which direct 
critical variables. The most straightforward way to implement the trusted instruction to direct 
critical variable mapping is to augment the Instruction to Allowed Object Table. Since each 
trusted instruction already has an entry in this table, all that is required is to add a field which 
contains the IDs of the direct critical variables that the instruction has influence on.

During the level 2 check, the hardware simply appends the current trusted instruction’s id to the 
accumulators of each direct critical variable listed in the extra field of the Instruction to Allowed 
Object Table.

It is important to point out that the level 3 check implementation described above is most likely 
overkill. This is because it assumes the attacker can subvert the control flow of the application 
from any instruction, including in the middle of basic blocks. Without the ability to modify the 
instructions themselves, it is unclear how the attacker would subvert the control-flow in the 
middle of a basic block as this would require the creation of a control-flow instruction where non
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exists. Thus, it should be sufficient to check for valid control flow at the basic block boundaries 
instead of within them. Quite a few schemes which do just that have been proposed, e.g. [7][19].

The three levels of checking are summarized by the diagram in Figure 4, which shows the 
actions performed by each check as well as the invariant provided by each level. Together the 
three levels of checking provide the same guarantees as the data-flow signature introduced in 
section 3 with the advantages of preventing the propagation of corrupted data and improved 
checking efficiency (in terms of performance).

Level 1: Critical Bit
♦ Set for any instruction in the dependence tree of a critical variable
♦ Critical bit of the result is cleared if the critical bit of any operand is not set 

or if the instruction generating the result is not trusted.
♦ Ensures that a corrupt data value is never used by a trusted instruction

Level 2: Direct Dependence Check
• Checks that each instruction with the trusted bit set writes only to the set of 

objects allowed by the compiler analysis.
• For each trusted instruction executed', the destination address is mapped to a | 

compiler memory object
• Ensures that trusted instructions modify only objects which the source 

code semantics explicitly allow them to modify.

Level 3: Control Flow Check
• Prevents the attacker from influencing the value of the critical variable by 

omitting or preventing the execution of instructions on which the critical 
variable is dependent.

• Ensures the execution of all critical instructions and checks for a given 
critical variable along a particular control flow path

Figure 4: Steps in Compiler Analysis for Detector Derivation

Hardware Implementation. It is important to point out that in the case of a hardware 
implementation of the security checking scheme, no instrumentation of the program binary is 
required. Instead, at application load time, a relatively small configuration file can be associated 
with each executable protected by the technique. This configuration file would contain all the 
static variable mappings as well as the critical variables, indirectly critical variables, trusted 
instructions, and trusted instruction to allowed object mappings. This configuration file is then 
used to initialize the hardware checking engine. The use of a configuration file instead of direct 
executable instrumentation provides the unique ability to run the program at various security 
levels by utilizing multiple configuration files. For example, if an intrusion detection system 
detects an attack in progress, server daemons can be reloaded using configuration files which 
contain more critical variables, or perhaps critical variables specific to the attack at hand, thereby
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providing greatly increased security. Thus, the technique allows the provided security to be 
configured based on application requirements.

6. Information Flow Signature Checking in Action
The authentication function for the OpenSSH server program is used to demonstrate the three- 
level checking scheme. This program is widely used to provide secure remote access to servers. 
Figure 5 shows a code snippet from the SSH server program that is used to authenticate a user 
based on the user supplied login and password. In this case, the encrypted_passw>ord variable is 
the password entered by the user and the pwjpasswd variable is the encrypted password that the 
system reads from the password file. Suppose an attacker can exploit a memory error in the 
sys ciuth^password function to overwrite the pw_passwd variable with the encrypted version of 
their own password, allowing them to become authenticated by the system. The goal is to 
protect the encrypted password from the attacker by preventing the corruption of the pw_passwd 
variable. Therefore, the security critical variable is pw_passwd and the strcmp function which 
compares the encrypted password and the supplied password performs a security-critical use of 
the variable. The security checking technique guarantees that any corruption of the pw_pcisswd 
variable will be detected before it is used by the strcmp function.

int svs_auth_passwd(Authctxt *authctxt. const char *password) {
1: struct passwd *pw = authctxt->pw;

char *encrypted_password;
/* Just use the supplied fake password if amhctxt is invalid */

2: char *pw_password = authctxt->valid ? shadow_pw(pw):
pw->pw_passwd; /’•'Critical Variable Definition*/ 

f*  Check for users with no password. *!
3: if (strcmp(pwjpassword."") == 0 && strcmp(password."") == 0)

return (1);
/* Encrypt the candidate password using the proper salt. */

4: encrypt ed_password = xcrypt(password,
(pw_password[0] && pw_password[l]) ? pw__password : "xx"); 

/* Authentication is accepted if the encrypted passwords match */ 
5: return (strcmp(encrvpted_password. pw_password) == 0);
}

Figure 5: Example code fragment showing derivation of attack detectors

Before discussing the technique, it is useful to consider the means by which an attacker can 
overwrite the encrypted password. One method would be for the attacker to corrupt pw_passwd 
directly through a memory error in shadow_pw, strcmp, or xciypt. The other alternative is for 
the attacker to corrupt one of the values that pw_passwd depends on, and hope to influence the 
result of the final strcmp function. Our technique protects against both kinds of attacks

For simplicity, statements within the function body are annotated with integer labels that are 
used to derive the signature for the critical pw_passwd variable. These labels are also used in the
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dependence graph presented in Figure 6. In reality, the signature is stored based on the addresses 
of the instructions corresponding to the statements. Each object or variable label maps onto 
multiple addresses and a runtime table precisely tracks which instruction address is allowed to 
modify which variables at runtime. The compiler performs inter-procedural slicing to find the 
origins of the variables being passed as function parameters and use this in the real signature (an 
example of the actual static dependence graph for the code in Figure 5 is presented in Figure 6).

autbctxt->pw

1. pw assignment

pw

T
shadow j>w()

2.2 pw password

Prevented by 
Level 2 Check

shadow _pw retval 
....... I--------

Prevented by 
Level 1 Check

Attack 1:

Prevented by 
Level 2 Check

password

L

Trusted Key
Instruction for a 
different critical Indirect Critical Data

V A i- î s h lp

Trusted Instruction

Un-Trusted Instruction 
or Non-Critical Data

Malicious
Instruction

4, xcryptQ 3. strcmpO

encrypted _pass word return (1);

_____ ±_____
5. strcmpO

Figure 6: High-level static dependence graph corresponding to example code

Table 2: Mapping of Trusted Instructions to the data objects they are allowed modify

Trusted Instruction Directly Modifiable Data Objects
1. *pw assignment pw
2.1 shadow pwQ shadow pw retval
2.2 *pw password assignment pw password
4. xcryptQ encrypted password
5. strcmpQ return value of sys auth passwdQ function

7. Example Attack Scenarios
In this section, examples of real attack scenarios are used to illustrate the detection capabilities of 
Information Flow Signatures.

Attack 1: The attacker overwrites the pw_passwd variable

Assume that the strcmp statement at Statement 5 has a memory error and allows the attacker to 
overwrite the pw_passwd variable and influence the results of the comparison (presumably
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authenticating the attacker with an incorrect password). Since instruction 5 is marked trusted, it 
will be checked by the level 2 checking scheme. The checker will lookup instruction 5 in the 
trusted instruction table (presented in Table 2) revealing that the only object/variable that can be 
modified by instruction 5 is the return value of the sysauth_passM>d() function. Since the 
instruction has instead attempted to write topwj?assu>d, the attack will be detected.

Attack 2: The attacker changes the pw pointer in shadow_pw in an attempt to influence the 
pw_passwd variable in Statement 3

Here, the attacker tries to overwrite the pw pointer instead of pw_passwd directly, possibly to 
cause shadow_pw to return a hash for which the password is known. In order to do this, the 
attacker must modify pw from a non-trusted instruction, since all trusted instruction are checked. 
However, since pw must be written to by a non-trusted instruction, its critical bit will be cleared. 
Now, when the trusted strcmp instruction is executed, it will attempt to use the pw_password 
variable, but since the critical bit is no longer set, an alarm will be raised and the attack will be 
detected.

Attack 3: The attacker corrupts the return value of xcrypt.

Context sensitivity allows us to detect attacks which cannot be detected by a context insensitive 
analysis such as that used by [3], For example, an attack which could not be detected without 
context sensitivity is one in which the value returned by the xcrypt function is incorrect due to a 
memory error exploited by the attacker in the function. This is because a context insensitive 
analysis is less precise when tracking signatures inter-procedurally. With context sensitivity, the 
level 2 checks can be made more precise. For example, the checking engine can verify that the 
memory location pointed to by the return value of xcrypt is the one that should be written by that 
particular call of xcrypt and not a memory location that should be written during an unrelated 
invocation of xcrypt.

Attack 4: The attacker changes the value of authctxt->valid

Since the authctxt->valid variable is used to decide whether to obtain the shadow password, an 
attacker could change the value of authctxt->valid from 0 to 1 and force the system to obtain the 
shadow password even if an invalid username is supplied. The attacker’s goal in this attack is 
unclear, since he/she must still ensure that the authctxt->pw field holds the correct password in 
order to be authenticated by the system. Perhaps one could imagine a scenario in which 
authctxt->valid may be manipulated to the advantage of the attacker. If this attack were 
performed, it would be undetected by our scheme since modifying the authctxt->valid field 
makes the program execute a valid (but incorrect) control-path. This type of path dependence 
cannot be tracked by current compilers. It implies that each variable along the path is indirectly
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dependent on any variable that was used in a branch decision leading to that path. If this were to 
be tracked, each variable would have a huge number of these dependencies since each possible 
branch decision would become a data dependency for each variable along that path.

8. Performance Evaluation
In order to evaluate performance of the proposed technique, the information flow signature 
checking scheme is applied to protect security critical variables in the authentication functions 
from the OpenSSH (secure shell) server program (introduced in Section 6). Four variables are 
identified (manually based on application semantics) as critical: (i) authctxt, a pointer to the user 
entered password (ii) sys auth_passwd, the return value of the sys_auth_passwd() authentication 
function, the value of which determines whether the user is authenticated or not, (iii) fakepw, a 
pointer to a dummy SSH Authentication context used when the user has entered an invalid 
username, and (iv) permit empty_passwd, a variable which determines if users are allowed to 
login through SSH if their password is empty. These variables are critical to the security of SSH 
because their corruption can result in the inaccurate authentication of an attacker. Information 
flow signature checking can detect tampering with the values of the selected variables and foil 
the potential attack.

Recall that the information flow signature encodes the entire dependence tree for a given critical 
variable. As a result, the performance overhead of the deployed technique depends on the length 
(in terms of instructions) of the dependence chain. The measurements reported in this section 
quantify this overhead in the context of the SSH application and the selected critical variables.

Application instrumentation. The IMPACT compiler [21] (developed at the University of 
Illinois) is employed for static analysis and IMPACT'S Lemulate tool is used to simulate the 
hardware checks. Lemulate allows IMPACT to transform compiled output to a C-code 
representation rather than a program binary. This transformation allows each machine-level 
instruction to be represented using C syntax, with each line of the resulting C-code file 
corresponding to a single machine-level instruction. This C-code file can then be instrumented, 
re-compiled into a binary, and run. The hardware checks are simulated by creating a small C++ 
library to implement the two maps used by the level 2 check (Object to Address Range Table and 
Instruction to Allowed Object Table). The security checks are inserted by adding callbacks to the 
library before each trusted instruction in the C-code generated by Lemulate. The check() 
callback includes: (i) the ID of the instruction (corresponding to the PC which would be used in a 
hardware implementation), (ii) the virtual address of the object the instruction is writing to, and 
(iii) the size of the object the instruction writes to.

19



Attacks are emulated by modifying the address to which an instruction writes along with the 
corresponding address in the check() callback. This represents the actual address (to which an 
instruction writes) being sent to the hardware checker at runtime.

Results.

Table 3 and Figure 7 report performance measurement results while targeting protection of 
selected critical variables. Baseline represents the time required (in microseconds) to run the 
compiled SSH authentication stub generated by Lemulate without any instrumentation. 
Initialization time represents the time required to add static variable mappings (for global 
variables and variables on the stack), in addition to time required to initialize the checker with 
the trusted instructions and their associated objects. Checking + Dynamic mapping time reports 
the time required to perform the runtime checks and the dynamic variable mappings (for objects 
allocated on the heap memory). The reported overhead is just an indirect measure of the 
overhead which would be incurred with a hardware implementation. With hardware support, the 
checks will be done in parallel with the main processor so few or no extra cycles will be incurred. 
Thus, although the results are useful to show the complexity of checking for various critical 
variables, they should not be interpreted as the overhead required for the checking scheme itself.

Critical Variable

□  Checking + Dynamic 
Mapping

■  Initialization Time

□  Baseline

Figure 7: Checking Overhead Required to Protect Various Critical Variables
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Table 3: Performance of Information Flow Signatures Deployed in OpenSSH
C ritica l V a r ia b le B ase lin e In itia liza tio n

T im e
C h ec k in g  + 

D y n a m ic  M a p p in g  
T im e

T o ta l (F u ll 
In str u m e n ta tio n )

a u th c tx t  (p o in te r) 184 61 0 345 1139

sy s  a u th _ p a s s w d (re tu rn  va lue) 184 61 6 348 1148

fa k e p w  (p o in te r) 184 2 0 5 2 0 9

p e rm it  e m p ty _ p a s sw d  (flag) 184 2 6 6 33 2 9 9

(Execution Times in usée)

Table 4: Proportion Instructions in Dependence Chains of Critical Variables of SSH Application
C ritica l V a r ia b le T otal O p s C h eck ed  O ps L ocal V a r ia b le  

M ap p in g s
G lob a l V a r ia b le  

M ap p in gs
A u th c tx t 500 125 84 3
sy s  a u th  p a ssw d 500 126 84 3
F a ke p w 500 4 3 0
p e rm it em pty’ p a s s w d 500 16 11 0

Protection of the authctxt ptr and the sysauth passed  critical variables incurs highest overhead 
of 2.9x ((184+348)/184 see Table 3). Note that the time required initialize the application is 
excluded since the overhead due to initialization is encountered only once when the application 
is first started. The significant overhead for these two variables is due to the fact that authctxt is 
the main authentication data structure and thus it is passed to each authentication function. 
Similarly, the sys authj?asswd return value represents the final authentication decision, and 
ultimately determines whether the user is authenticated. As a result the dependence chains for 
these two variables are relatively long (see Table 4) and hence, the checking leads to higher 
overhead. Table 4 shows the numbers of instructions which need to be protected by information 
flow signatures for the four critical variables of the SSH application. One can see that for the 
authctxt ptr and the sys authjrasswd critical variables, 25% and 25.2% of the total number of 
instructions in corresponding functions belong to the dependence chain of each variable, 
respectively. However, it is interesting to point out that these variables share the same 125 
instructions and 84 indirect variables dependencies. This overlap between the dependence 
chains of these two critical variables is a significant advantage. For example, if the authctxt 
pointer variable is already being checked, the sys auth_passM>d variable can also be checked 
simply by adding a single trusted instruction.

Another interesting result is the significantly low overhead associated with checking the fakepw 
variable. This variable points to a dummy authentication context which SSH uses to authenticate 
against in the event that an invalid username is provided. However, if an attacker is able to 
overwrite the hash associated with this dummy user with a hash for which he/she knows the 
password, the attacker would be authenticated by certain authentication functions in the system 
(he/she would then have to overwrite the username to make it valid). Since very few legitimate 
instructions use this dummy authentication context, it is extremely efficient to check, and
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arguably prevents an important security attack. In fact, this class of yet undiscovered but 
possible security vulnerabilities represents the strength of the information flow checking 
technique. Instead of attempting to find and patch the vulnerabilities, our technique actively 
protects critical data from a wide class of memory attacks, including undiscovered or unreleased 
exploits.

9. Conclusion
We have shown that the Dynamic Tracking of Information Flow Signatures is a powerful 
technique, providing security and attack detection for a very broad class of attacks. The 
technique is highly configurable, allowing the user to determine the desired level of protection, 
as well as which variables to protect. The technique uses detection of program data-flow 
violations as an indicator of malicious tampering with the system/application and prevents an 
attacker from exploiting the disconnect between source-level semantics and execution semantics 
of the program. Although the checking overhead incurred for certain critical variables is high, a 
true hardware implementation should reduce this overhead dramatically. A compile-time static 
program analysis is employed to extract a backward slice which collates all dependent 
instructions along each control-path used in computing the security critical program variables. 
Instructions (in terms of their PCs) identified in along the dependence chain are encoded to form 
a signature, which is checked at runtime. Any violation of the pre-computed signature raises an 
alarm. The approach is employed and demonstrated in the context of the SSH application. As 
part of future work, we plan to evaluate the technique using several other server-based 
applications such as WU-FTPD, httpd and sendmail. We also plan to create a hardware 
prototype in order to evaluate the overhead of a true hardware-based implementation.
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