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The rationale of the semantic approach to the cognition of natural 

scenes is critically discussed and analyzed in the context of some recent 

important experiments in pictorial artificial intelligence. This critique 

leads to the definition of the desirable specifications of a computer-based 

image interpretation experiment, whose salient features are: 1) the cogni­

tive approach applies both to the identification and to the feature extrac­

tion levels; 2) pre-processing is based on textural properties rather than 

on intensity alone; 3) the algorithm produces as a description of a scene a 

tridimensional scheme containing both semantic and geometric inferred attri­

butes. The implementation of such project is to be carried out in the imme­
diate future.
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1. INTRODUCTION

Any approach to the interpretation of images by means of an auto­

matic system must make reference to some semantics, which represents the 

system's knowledge of the classes of images to be interpreted. Thus, seman- 

; tics is in the domain of the "meanings" of the entities which "appear" in 
the image.

The early approaches, however, were confined to the recognition 

of images which referred to the extremely simple semantics of a set of com­

peting hypotheses: for example, the recognition of arabic numerals or of

letters of the alphabet. In this case, image interpretation reduces to a 

standard classification problem, expressed by a zoning of a multidimensional 

space of parameters (features). The selection of the features to be used in 

classification is certainly a very important problem. A significant step 

forward was taken when structure was added to the feature collection, still 

with reference to a simple semantics. This structure in the feature domain 

can be legitimately called syntax, i.e., the relational organization of some 

simple graphical elements (primitives), which can be legitimately called 

lexicon. Typical in this respect is the recognition of the profiles of 

chromosomes as the closed concatenations of simple curves (arches, segments, 
etc.) [1].

It is obvious, however, that the classes of images which lend 

themselves to such simple description at the semantic level are rather few 

and not very interesting. In other words, the semantic model of a set of 

competing hypotheses is totally inadequate for the great majority of images. 

Therefore, an extremely significant advancement was the introduction of
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structure at the semantic level. This is equivalent to recognizing that in 

most cases images are events to be described rather than samples to be clas­

sified. In other words, interesting images represent the "articulation" of 

simpler constituents, whence the name of articular analysis. The semantic 

model therefore must reflect the structure of the events to be interpreted. 

An example of this approach is the semantics of high energy nuclear events 

(Narasimhan [2]), which is reflected in a syntax operating on a lexicon of 

traces (trajectories) in bubble-chamber photographs.

Other examples of this approach (referred to for convenience as 

the "semantics of events" approach) appeared in more recent years. Superfi­

cially quite different from Narasimhan's project, it is now possible to 

associate these other projects from the unifying viewpoint of the semantics 

of events. In most of these projects, a simple semantics of events was 

chosen. This was done presumably with the intent to simplify the problem.

A typical choice is the semantics of plane-bounded objects [3,4,5], some­

times even with the additional constraint of trihedral vertices [5], That 

is, we are dealing with images of heaps of plane-bounded objects, such as 

cubes, pyramids, and prisms. This choice of semantics— or model— has sev­

eral effects and implications which should be carefully scrutinized.

1. It is argued intuitively that the choice of a simple semantics 

reduces the complexity of the recognition task (as we shall see, this is 

only partially true). A simple semantics, as the one issuing from the plane- 

bounded objects' constraint, has the interesting consequence of being 

directly reflected in the image syntax. In other words, the syntactic rela­

tionships among the image primitives— such as vertices, edges, and regions—  

can be used, practically with no additional aid, for the interpretation of 
the picture.
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2. Although a rudimentary semantics induces a direct and formally 

appealing relationship between semantics and syntax— to the satisfaction of 

grammar-oriented researchers— at the same time it renounces a wealth of 

additional constraints, which only a richer semantics can possess and which 

may be very powerful aids for interpretation. These constraints may not 

only resolve syntactic ambiguities, but also avoid costly syntactic analysis 

by making it unnecessary. In other words, in the semantics of plane-bounded 

objects a "cube" is only an abstract geometrical entity with fixed proper­

ties, it is not the shape of an object which is contextually related to its 

environment (for example, a building in a city). In the semantics of plane- 

bounded objects, the contextual dependence appears to be intra-object, as 

opposed to inter-object. And the argument could be made that the inter­

object context is a more powerful device for interpretation than the intra­

object consistency. On the other hand, a semantics of plane-bounded objects, 

in spite of its inability to express a meaningful global context, plays a 

very important role in the analysis of the local inter-object relationships—  

such as occlusion, support, etc.— since all objects can conveniently be con­
sidered as being locally plane.

3. The preceding considerations elicit the view that a simple 

semantics is a double-edged device. But the most serious criticism to such 

a simple semantics rests not on pragmatic grounds (i.e., what we can do with 

the tools at our disposal), but on the philosophical grounds that it is by 

no means clear that the generalization to the "real-world" semantics is only 
a quantitative step.

A step in the direction of richer semantics was taken by consider­

ing the semantics of scenes which are closer to those of the real-world [6,7].
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For convenience we shall refer to it as the "semantics of natural scenes," 

where "natural" denotes our every-day tridimensional environment. This new 

viewpoint is discussed in great detail in our previous paper [6], so that we 

only recall its highlights. Since we intended to demonstrate the capa­

bilities of contextual interpretation (inter-object), we purposely weakened 

the image syntax. This was done by using a very coarse resolution in picture 

acquisition, so that considerable syntactic information would be suppressed. 

The entire interpretation task reduced to the algorithmic association of pic­

ture regions (near-uniform domains) with semantic components, i.e., concepts. 

The structure of the semantic model (the "map") reflected the inter-object 

relationships, and geometric proximity of picture regions was used as a 

heuristic for semantic relatedness. The coarse resolution resulted in the 

decomposition of the image into a rather small number of regions: although

this "clumping" may be objected to, the interpretation of the obtained 

regions on an essentially contextual basis was pleasantly satisfactory. In 

the approach of Barrow and Popplestone [7], an object (for example, a cup) 

is identified as a syntactic construct of simpler geometric constituents. 

These constituents in turn are identified by interpreting image regions on 

the basis of their geometric features. Although they adopt a semantics of 

natural scenes, apparently they make little or no use of inter-object con­
textual dependencies.

At present, we feel that a satisfactory approach to the computer- 

cognition of natural scenes must not be limited to the exploitation of purely 

contextual devices, since this greatly impairs the acquisition of fine image 

details. Local properties of the image, such as shapes of regions, edges,
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etc., must also be used, and the symbolic representation of the interpreted 

image (i.e., the system's output) must contain at least vestiges of the 

inferred geometrical structure of the scene. This more mature viewpoint is 

the informing principle of a project which will be implemented in the immedi­

ate future and is outlined in detail in the next section.

2. OUTLINE OF A PROJECT

In the framework of automatic cognition of natural images we shall 

develop a software system capable of interpreting bidimensional views of 

tridimensional scenes of the real world. Scenes will be presented to the 

system as digitized versions of gray-scale photographs. The objective of 

the system is to produce a stylized representation of the geometric and seman­

tic structure of the scene, which we now describe.

First we shall discuss a sufficiently general format of tridimen­

sional scenes. In each scene two main classes of constituents can be dis­

cerned: background and objects. The background can be thought of as a

"container" for the objects in the scene. The container has a typical syn­

tactic structure; it consists generally of a horizontal FLOOR and of one or 

more vertical WALLS. FLOOR and WALL have generic and specific semantics.

The generic semantics of FLOOR, for example, is that of being the support 

of most of the scene objects (since gravity is such a fundamental feature 

in the real world). The specific semantics concerns types of walls or 

floor. For example, whether WALL is the sky or the wall of a room, whether 

FLOOR is that of a.room or a field, an ocean, etc. Note that, whereas the 

generic semantics calls for general-purpose analysis procedures (such as 

occlusion or support analysis), the specific semantics instead will intro­

duce a global context, suggestive of the objects which are plausible in the
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scene. It is the latter device which we feel plays a crucial, although not 

autonomous, role in scene interpretation; this project is aimed at further 

substantiating this thesis.

Upon completion of the cognitive interpretation, an adequate repre­

sentation of the scene will consist of the identification of the container 

and the production of a partial ordering in the depth dimension (the inferred 

dimension) of the identified objects. This choice of representation is sug­

gested by the psychological intuition that depth plays more a qualitative 

than a quantitative role in scene understanding. However, a coarse assess­

ment of depth will help estimate the "real'' size of objects, thereby pro­

viding an important inferred feature for object interpretation.

In our approach, processing will occur in a sequential top-down 

fashion. As in our earlier experiments [6], top-down refers to an ordering 

from general to specific. It is convenient to view the interpretation proc­

ess as a sequence of levels or stages. The following general criteria govern 

the execution of the various processing levels:

1. At each level, a small set of heuristics is used (strong heu­

ristics) . These heuristics are ranked in order of decreasing strength, to 

be empirically assessed. The heuristics are tried successively on the scene 

constituents. Processing of the level terminates either with convincing 

evidence at some test of the sequence, or with poor evidence by default: at

this point, control is transferred to the immediately lower level. This 

criterion reflects the principle that the processing effort should be commen­

surate to the information acquired through it. In other words, weak heu­

ristics which provide little confidence and yet may require a substantial
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processing effort, should be avoided. In fact, exhaustive testing of all cases 

conceivable at any level is a mental prejudice originating in the analysis of 

problems governed by logic, where it has full legitimacy. However there is 

no reason to assume that this principle should be applied in the analysis of 

cognitive processes. Rather, it is our conviction that strong heuristics at 

a lower level may be more illuminating in the total interpretation task than 

weak heuristics at the current level.

2. The preceding criterion, which is dictated by efficiency, is 

consistent with the fact that in cognitive processes— as distinct from logi­

cal processes— truth-values of statements cover a continuous range. This is 

equivalent to saying that in cognitive processes statements are tentative, 

and that their acceptance or rejection is postponed until processing is com­

pleted. Needless to say, this calls for the necessity of backtrack provi­
sions at all levels.

3. Preprocessing (feature extraction) and interpretation activi­

ties must occur interactively throughout the execution of the cognitive 

algorithm. In this fashion the cognitive approach can be applied also to 

the feature extraction phase. In fact, we view this as an important improve­

ment over our original approach in which preprocessing and interpretation 

were cascaded activities (with no opportunity of feedback). In our current 

approach, each algorithmic level will consist of carefully matched preproc­

essing and interpretation: in this manner, depending upon the accumulated

context the most rewarding preprocessing will be executed. For example, the 

complex operation of measuring shape will be performed only on those objects 

for which, on the basis of their preliminary interpretation, shape is likely 

to be an important discriminant.
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On the basis of these general criteria, we now give a detailed out­

line of the steps of the cognitive algorithm.

1. Background acquisition. The preprocessing phase consists of 

the construction of the regions which are likely candidates for forming the 

background. These regions are clearly those which touch the scene frame.

The growth of regions is based, as usual, on intra-region uniformity and 

inter-region difference. To evaluate uniformity, we feel that the standard 

approach based on gray level is inadequate, since it easily provides errors 

of both kinds (misses and false hits). A measure which takes into account 

the important property of texture appears more adequate. As a compromise 

between effectiveness and efficiency, we propose to adopt a 3-parameter vec­

tor for region formation, obtained as follows. For domains of 8 x 8 picture 

elements (pixels), we obtain the FFT: from this we derive the 3-component

vector [I,F ,F ], where I is the average intensity, and F and F are.x y x y *
respectively, the largest horizontal and vertical frequencies whose inten­

sities exceed a threshold controlled by the average intensity I. Standard 

classification techniques (training set) will be used to obtain a statisti­

cally valid criterion for an evaluation of uniformity based on the given 

texture vector. Regions will be formed by concentric scanning starting from 

the frame. The frame is at first partitioned into uniform segments, which 

are successively extended towards the center until acceptable disuniform!ties 

are encountered. The background candidates are selected among the regions 

previously formed as follows: those regions whose larger dimension is par­

allel to the peripheral edge they touch, or those regions with the largest 

contact segments with peripheral edges. After the background candidates have
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been found, their adjacency diagram is constructed. With sufficient general­

ity, this diagram is a connected subgraph of the following graph:

where, with reference to a hypothetical "box," vertices 1 and 5 are "ceiling" 

and "floor," respectively, and vertices 2, 3, and 4 are lateral "walls." 

Typically, however, a landscape scene consists of the subgraph 3-5. The 

interpretation of the background is very important because of its great power 

as a context setter. The broad initial categorization occurs between LAND­

SCAPE and ROOM (also referred to as outdoors and indoors). We tentatively 

choose the following strong heuristic: "Choose ROOM with high confidence in

the following cases: if the adjacencies 2-3 or 3-4 are near-vertical straight

edges, or if the adjacencies 5-i or 1-i (i=2 or 3 or 4) are straight edges 

consistent with the hypothesis of not being at infinity (we assume that the 

elevation angle of the observer is known a priori); Choose LANDSCAPE with 

high confidence in the following cases: The background graph is of type 3—5

and either the adjacency 3-5 occurs at the horizon line or is a nonstraight 

edge." The weak heuristic is the choice of LANDSCAPE whenever the strong 

heuristics tests do not yield a satisfactory answer. The tentative decision 

ROOM requires some verification of the syntactic consistency of the boundary 

planes, within the framework of the perspective transformation, and the 

establishment of a coarse frame of reference in the tridimensional model.
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The tentative decision LANDSCAPE requires the classification of the types of 

floor and wall on the basis of measurable attributes.

2. "First Level" Object Acquisition. The next step consists in 

the interpretation of major (or "first-level") objects in the scene. The 

first-level objects are selected on the basis of apparent size and adjacency 

to the picture frame, excluding those regions already interpreted as back­

ground. For interpretation, features are derived from the scene with the aid 
of the depth partial ordering, including:

a) Actual Size (unary)

b) "Supported by" relationship (binary)

c) Aspect Ratio (unary)

as well as the depth ordering itself. (binary)

After correlation of these (strong) features with the semantic map, 

the need for more specific features will, in general, be selectively indicated 

by the map itself. When this need is indicated, we derive further attributes 
(in specific cases) including:

a) Measures of shape

(primarily straightness of edges)

b) Textural Features

(e.g., component frequencies and component frequency ratios) 
and select most plausible interpretations on that evidence.

It is to emphasized that the decision to derive attributes and the 

attributes which are derived is wholly dependent upon each particular situa­

tion encountered. This decision is based upon failure of the plausibility 

measure to indicate sufficient certainty of a particular interpretation and,
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if the uncertainty is large, the use of semantic map information to indicate 

which attributes would be most decisive.

3. "Second Level" Object Acquisition. Acquisition and interpreta­

tion of second-level objects proceeds in a manner similar to the treatment of 

first level objects, except that all picture regions not accepted either as 

background or first level regions are treated as second level.

All fundamental attributes used in the first level interpretation 

apply in second level interpretation. In addition, the binary attribute, 

"enclosed in," will be used as evidence of whole-partness.

There is one important new feature in our current approach that is 

worth pointing out. We still maintain the hierarchical organization (back­

ground first level second level) which allows a top-down interpretation from 

general to specific. Moreover, we process the various levels in a formally 

identical way, in the sense that the hypotheses formulated at the preceding 

level establish the context for the current level, and in turn the processing 

of the current level simultaneously tests the previous hypotheses and estab­

lishes new ones. However, in our previous approach we adopted a generality 

which does not seem to be required by the problem, in that we allowed for an 

arbitrary number of cascaded levels. It appears— on psychological intuition— ■ 

that the dynamic range of the levels of details which need to be spanned in 

analyzing an image rarely exceeds three levels (the three levels discribed 

above). Some especially detailed object-classes (such as a house in a land­

scape), however, may require special subprograms for analyzing additional 

levels. this approach may be viewed as a displacing of the dynamic range of
attention.



12

REFERENCES

[1] R. S. Ledley, "High Speed Automatic Analysis of Biomedical Pictures," 
Science, Vol. 146, pp. 216-223, October, 1964.

[2] R. Narasimhan, "Labeling Schemata and Syntactic Description of Pictures," 
Information and Control, Vol. 7, pp. 151-179, June, 1964.

[3] A. Guzmân, "Decomposition of a Visual Scene into Three-Dimensional 
Bodies," Proc. FJCC, Vol. 33, pp. 291-304, 1968.

[4] P. H. Winston, "Learning Structural Descriptions from Examples," Ph.D. 
Thesis, M.I.T., September, 1970.

[5] D. A. Huffman, "Impossible Objects as Nonsense Sentences," Machine 
Intelligence 6 , (J . Doran, ed.), University of Edinburgh Press, 1971.

[6] F. P. Preparata and S. R. Ray, "An Approach to Artificial Nonsymbolic 
Cognition," Information Sciences. Vol. 4, pp. 65-86, Spring, 1972 (also 
available as Report R-478, Coordinated Science Laboratory, University 
of Illinois, Urbana, July, 1970).

[7 ] H. G. Barrow and R. J. Popplestone, "Relational Descriptions in Picture 
Processing," Machine Intelligence 6 , (J. Doran, ed.), University of 
Edinburgh Press, 1971.


