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1. Introduction

A number of novel approaches for gate level sequential circuit test generation have been proposed [1-3]. 

These approaches accept a completely flattened gate level structure without looking at any o f the inherent func­

tional or behavioral information in the sea of logic gates. The efficiency o f the gate level ATPG approaches 

will soon degrade as the size of the VLSI circuits increases. Most of the microprocessor-like VLSI circuits are 

designed hierarchically. The circuit hierarchy information has been exploited to speedup the test generation 

process in [4-7]. However, the ATPG algorithms used in these approaches are extended from D-algorithm[8] or 

PO DEM [9], so that the module partition cannot go much further than gate level. A higher level module can be 

accepted in [5]. However, it needs to be flattened to gate level if any interior single stuck-at fault is considered. 

The speedup achieved by these approaches is therefore limited due to the inherent property of the ATPG algo­

rithms. Sarfert, et. al. updated SOCRATES[10] by including higher level modules which implement non-trivial 

functions, like multiplexer, decoder, adder, etc [11]. Kunda, e t  al. take advantage o f both higher level primi­

tives and bit-vector representation of signals to speedup the test generation process [12]. However, these two 

approaches can only be applied to combinational circuits, and the stuck-at faults should be injected one at a 

time. Murray and Hayes[13] assume that the test set for the module under test has been precomputed, and an 

identity propagation criterion is used to propagate the whole test set without modifying its responses. How­

ever, this approach cannot accept circuits with an embedded control unit, and the identity propagation criterion 

is not always satisfied. Lee and Patel[14] proposed a data type manipulation technique to model all possible 

high level fault effects to replace the identity propagation criterion. A modified PODEM is interfaced with the 

high level branch-and-bound algorithm to handle the control unit. This technique has adopted various impor­

tant factors to speedup the ATPG process. However, the high level branch-and-bound algorithm cannot 

efficiently solve the data  flow path  conflicts and data  flow value conflicts which happen during searching.

One common feature in the above approaches is that only structure information is used in the ATPG pro­

cess. The circuit hierarchy information and functional information is limited to local modules only. The global 

behavioral information of the machine under test is not adopted to speedup the ATPG process or to avoid
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conflicts. Brahme and Abraham[15] propose an instruction execution process at a behavioral level. However, a 

functional fault model is used and the fault coverage for a low level fault model, like single stuck-at fault 

model, cannot be reported. Roy and Abraham [16] used data flow descriptions to perform hierarchical test gen­

eration. A data flow graph is recursively selected for propagating or justifying signals. However, their 

approach has the similar drawbacks as Murray’s approach, namely, conflicts due to reconvergence are not han­

dled for fault effect propagation. The algorithm of justifying multiple testing objectives is also not addressed in 

the paper. Wu, e t  al. used high level synthesized RTL description to compute tests at a high level [17,18]. A 

behavioral testability measure analyzing value ranges of registers is utilized in path justification and propaga­

tion in test generation. However, the test generator can only justify one testing objective at a time, and in gen­

eral, it cannot handle the value conflict and path conflict problem when several testing objectives need to be 

justified simultaneously. Lee and Patel [19] have proposed a relaxation-based test generation algorithm at an 

architectural level. This algorithm has shown the efficiency for avoiding value conflicts for circuits with very 

complex data path configurations. However, the algorithm of avoiding global path conflicts using behavioral 

information has not been addressed yet in that paper.

From the previous work, some guidelines emerge for the high level ATPG. Due to a better correspon­

dence to physical failures of chips, a lower level fault model like single stuck-at fault model should be targeted 

and a hierarchical structure information should be used. The circuit hierarchy and module functional informa­

tion has to be adopted to speedup the test generation process. In addition to speedup, the test generator needs to 

be capable of avoiding both path conflicts and value conflicts at the high level. In this paper, we separate the 

ATPG process into two phases to test microprocessor-like circuits. In the first phase, a new instruction 

sequence assembling algorithm at an architectural level is proposed to solve global path conflicts using 

behavioral information. The behavioral knowledge of instructions is derived from techniques in the preprocess­

ing phase. User of the tool does not need to supply this information explicitly. The equation-solving 

approach[19] is then applied to compute a global value solution at the module structure level in the second 

phase, and the value conflicts are avoided efficiently. Since the goal of assembling the instruction sequence at a
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higher level is to avoid path conflict, we propose a Flow-Influence model for each primitive to capture its 

behavior for activating data paths only. A detailed data value analysis can be avoided at this stage. The impor­

tant techniques used in this paper are highlighted as follows:

1. For each instruction, a S tructu ra l Data-flow G raph  (SDG) is automatically derived from the correspond­

ing system of equations which fully characterizes both module structure information and the register 

transfer level behavioral information. Each node in the graph is assigned with attributes of strong or weak 

influence, which are used to determine justification and propagation paths.

2. Given a set o f SDGs for the instruction set, a justification cost will be calculated for each Next State Line 

(NSL) o f the module diagram, which implies the minimum number of instructions needed for controlling 

that particular NSL. With the same fashion, a propagation cost can also be calculated for each Present 

State Line (PSL) showing the minimum number of instructions needed for observing a fault effect at this 

particular PSL. It should be noted that the number of instructions needed is estimated by checking the 

existing paths on the SDGs. The exact values or value ranges are not calculated so that the CPU run time 

can be significantly reduced. The advantage originates from the fact that, in the second phase, the 

equation-solving approach is applied to derive the exact values which satisfy the testing objectives at a 

lower level.

3. For a practical testing problem, multiple objectives usually need to be justified simultaneously. Even 

though we have reduced the complexity of the work o f assembling instruction sequences using a Flow- 

Influence model, it can be shown that, given an SDG, checking the simultaneous justifiability of all objec­

tives on the SDG is still an NP-complete problem. Therefore, instead of checking the simultaneous 

justifiability o f all objectives, a branch-and-bound algorithm based on a concept of the network flow prob­

lem will be presented to search for the justification paths.

4. A special state line termed H ard-To-C ontrol (HTC) state line can only be reset by instructions. The 

value at this line can never be loaded from input buses without depending on itself. A testability measure
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usually computes higher costs for this HTC lines [20]. When the values of the HTC lines determine data 

flow paths, the instruction sequence assembling task turns out to be extremely difficult. Some special 

techniques are needed if some HTC state lines exist in the circuit under test.

The remaining part of the paper is outlined as follows. The global ATPG methodology is introduced in 

Section 2. An overview of the instruction sequence assembling process is offered in Section 3. Section 4 

shows the definition of structural data-flow graph and the cost value calculation algorithm for controlling or 

observing a particular NSL or PSL. Section 5 shows the proof of the NP-completeness for the problem of 

checking simultaneous justifiability of multiple objectives on a given SDG. A branch-and-bound algorithm will 

be presented as an alternate approach to search for paths given a reasonable amount o f time. For circuits with 

HTC state lines, some special techniques need to be developed and they are shown in Section 6. Sections 7 

contains the experimental results and followed by the conclusions.

2. Global ATPG Methodology

The hierarchically designed circuits have two major characteristics that cause the high level ATPG task to 

be extremely difficult. The first characteristic is a complex data path configuration, in particular when some bus 

values determine control flows. A value conflict is very likely to happen when a solution is searched. The 

second type is a complex instruction set controlled by an embedded control machine. The control word 

sequence of each instruction determines a data flow graph in the data path. To satisfy multiple testing objec­

tives in the data path, several instructions are usually needed for the purpose. A path conflict is therefore likely 

to happen in the instruction sequence derived. Due to these two major characteristics in high level circuits, we 

propose that the test generation process has to be separated into two phases in which each type should be han­

dled by different techniques. The previous equation-solving approach in[19] has proved its efficiency in avoid­

ing value conflicts on circuits with complex data path configurations. In this paper, a new instruction sequence 

assembling algorithm is proposed to handle the global path conflicts using behavioral information. The com­

plete high level ATPG methodology is shown in Figure 1. Since the value conflicts will be handled in the
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Figure 1. The high level ATPG methodology used in ARTEST. 

second phase, only path analysis is required in the instruction sequence assembling phase. In this paper, only 

the techniques used in Phase 1 are addressed. The techniques in Phase 2 should be referred in [19].

It is assumed that the circuits under test are microprocessor-like circuits with an instruction set. The con­

trol machine is assumed embedded, and no scan is assumed anywhere in the circuit. The instructions under 

consideration are assembly level instructions, and the control word sequence of each instruction is assumed to 

be known. It should be noted that this assumption is not equivalent to scanning all inputs and outputs of the 

control machine. The micro-instruction sequence of each instruction is fixed. Neither the control words nor the 

status feedback lines are directly controllable. The circuits are described as a high level module diagram in 

which each module is defined by the primitives kept in our library. In this work, only data path faults are
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considered, so the instructions used are always valid instructions.

3. Instruction Sequence Assembling Process: An Overview

Since the ATPG process has been partitioned into two phases, the exact data values at the interior bus 

lines need not to be estimated or calculated in this phase. The behavioral information of instructions is utilized 

to search for a valid instruction sequence which contributes a sequence of data flow graphs covering the testing 

objectives. In phase 2, an equation-solving technique is applied to derive the exact bus values in the given 

sequence o f data flow graphs. Hence, in Phase 1, the functional information of modules is used only for deter­

mining active paths instead of computing the exact values so that the searching process can be accelerated 

significantly.

After the symbolic simulation in the preprocessing phase, a system of equation is derived for each instruc­

tion. This system of equations contains all the module operations involved in this particular instruction, and 

also the register transfer level behavioral information is implicitly embedded. A Structural Data-flow Graph 

(SDG) for this instruction can be created based on the system of equations, and the inherent register transfer 

level behavioral information is exploited to determine justification paths and propagation paths. Since the exact 

data values at buses need not to be calculated in the path searching procedure, we propose a Flow-Influence 

model to characterize the behavior of different primitives for selecting paths only. The detailed definition of 

this model will be explained in Section 4.

Based on the FLow-Influence model, a justification cost (Jcost) for each state linef of the data path can be 

calculated iteratively using all SDGs. These cost indicates the minimum number of instructions needed to set 

up a sequence o f data flow graphs for justifying that particular state line only. A propagation cost (Pcost) can 

be also calculated in the same fashion. This cost values will be utilized to select the best instructions in the 

sequence assembling procedure.

t Present State Line (PSL) and Next State lin e  (NSL) are structurally identical except with one cycle difference in their timing. State line is used 
here as a general term to represent both.
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The testing problem in Phase 1 needs to be clarified. The algorithm for fault effect propagation is similar 

to that of testing objective justification, so only justification task is addressed in the following discussions. 

When a test vector is to be justified at the input of the module under test, an instruction which covers all testing 

objectives will be selected first. With the SDG of that particular instruction, the corresponding PSLs, which are 

needed to justify all objectives in the selected instruction, can be determined. Afterwards, the instruction 

sequence assembling algorithm iteratively selects instructions to simultaneously justify all state lines. When an 

instruction is tried in the meantime, its SDG is used to check whether this instruction is able to simultaneously 

justify all objectives left by the previous instructions, and the cost o f using this instruction is calculated based 

on the set of PSLs needed by this instructioa All instructions need to be tried, and the one having the least cost 

will be selected first. It is noted that if  an instruction implements HOLD function for some particular state line, 

this line is treated as justified by this instruction, and this line is also left and needs to be justified by the next 

instructioa The concept of this process can be illustrated by Figure 2. It should be noticed that this algorithm 

needs to justify all state lines simultaneously. The Jcost is only used to calculated the total cost based on the 

state lines needed at the first cycle o f each instruction.

SDGm SDGk SDGj SDGi
PI PI

Test vector to be 
justified.

instr. k  Instr. j  Instr. i

------ Instruction assembly process.
(reverse time processing).

instr. m 

Time scale------ *

Figure 2. An picture illustrating the instruction sequence assembling process.
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Given an SDG of an instruction, the task of checking the simultaneous justifiability of all state lines under 

the Flow-Influence model is conceptually similar to a network flow problem. Unfortunately we found that it is 

an MP-complete problem. Since the behavior of the instruction is explained by the Flow-Influence model, it is 

not practical to pay high run time to prove the simultaneous justifiability for all instructions. Despite the failure 

of the simultaneous justifiability o f all state lines under the Flow-Influence model, there still exists a chance that 

they are justifiable at the lower level, even though the chance is very low. A branch-and-bound algorithm is 

developed to determine the justification paths for all state lines given a reasonable amount o f CPU time, and 

derive the set o f PSLs needed to be justified by the next instruction. The detailed algorithm will be illustrated 

in Section 5.

4. Structural Data-Flow Graph (SDG)

4.1. Definition of SDG

The structural data-flow graph of each instruction is derived from the system of equations produced by the 

symbolic simulation in the preprocessing phase. Each equation represents a operation at a module in the data 

path, and it contributes to one node in the SDG. Each arc in the SDG, corresponding to one symbol in the sys­

tem of equation, indicates a signal flow from one module to another module. If there is a signal flow starting 

from any primary inputs or PSL, or arriving at any primary outputs or NSL, an extra node is created in the SDG 

to model these I/O lines. All the primary input and PSL nodes are leaf nodes o f the SDG, whereas the primary 

output and NSL nodes are root nodes.

The SDG carries similar behavioral information as does the data flow graph determined by the same 

instruction. All modules in the data path having operations under the instruction will be modeled by the SDG. 

Since the SDG is only used for path selection, we design a Flow-Influence model to fulfill this purpose instead 

of examining the detailed functionality of the corresponding primitive.
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4.2. Flow-Influence Model

For each type of primitive in our library, a Flow-Influence model is assigned for justification and propaga­

tion path selections. Each input of a primitive is classified as strongly or weakly influencing. Their definition 

is as follows:

Definition 1:

1. A strongly influencing input is one which must be justified to justify an output of the module, q

2. A weakly influencing input is one which need not be justified to justify the output, and exact one of all 

weakly influencing inputs is able to affect the output. ^

Several examples are shown in Figure 3. The first one is an Adder with all its inputs with strong 

influence. It implies that if the output o f the Adder needs to be justified, all its inputs also need to be justified. 

The second example is a 2-to-l multiplexer. The input bus A and B have weak influences, whereas the select

W W
1 A BA B S

c Adder s MUX

(1) (2)

___5
S

1

s---- » s DeMUX
èL B

\
w w

(3)

Primary input
Q

•<
--

--
--

--
--

--

__
__

__
_ L)

w
r r

(4)

Figure 3. Examples illustrating the Row-Influence model.
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input has a strong influence. When the output o f the multiplexer needs to be justified, the select input and either 

bus A or bus B need to be justified.

With a similar concept, each output of a primitive is classified as strongly or weakly influenced. Only 

one of all weakly influenced outputs of a primitive can be used to justify objectives since only one of them can 

be independently controlled by the inputs o f this primitive. Once we decide to control a weakly influenced out­

put, the other outputs automatically take on values dependent on the controlled output. The third example in 

Figure 3 is a l-to-2 De-multiplexer with all its output buses weakly influenced. These two weakly influenced 

output buses imply that (normally) only one of them can be used to justify another objectives. Exceptions do 

exist in which both outputs can be simultaneously used to justify other objectives at the high level. However, 

this is a rare occurrence and is not accepted in our model.

Based on the characteristic o f the functionality of each primitive, the influences at its inputs and outputs 

can be determined. This influence information is sufficient for determining active paths in finding justification 

and propagation sequences. For the leaf nodes o f an SDG which represent primary inputs or PSL, a weak 

influence is assigned to their output arcs. This assignment is based on an assertion that, because most of the 

testing objectives have different values, the chance for one primary input or NSL signal to satisfy multiple 

objectives is very low at a high level. Violation of this assertion would produce much higher chance of value 

conflicts in Phase 2. This concept is illustrated by the fourth example in Figure 3. However, if the leaf node 

has only one output arc, the arc will be assigned with a strong influence. Because only one signal can arrive at a 

particular primary output or NSL at any cycle, each root node o f an SDG has only one input arc. This arc is 

assigned with a strong influence.

4.3. Justification and Propagation Cost Calculation

The justification cost (Jcost) of a state line indicates the cost that should be paid if this node needs to be 

controlled individually through several instructions. The propagation cost (Pcost), on the other hand, indicates 

the minimum cost for observing a particular state line. These values will be used heuristically to compute the
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total cost for each instruction which passes the simultaneous justifiability check in the instruction sequence 

assembling process.

A minimum dependence cone on each SDG is derived by a depth-first search algorithm for each state line. 

A minimum dependence cone o f a state line n contains minimum number of PSLs which need to be justified 

before justifying the line n. A controllability measure similar to SCOAP[21] is calculated on each SDG using 

the influences assigned at the arcs, and a depth-first search algorithm can easily find out the nearest paths from 

line n to primary inputs and PSLs. An example in Figure 4 shows a minimum dependence cone of line n which 

contains one primary input line and two PSLs. For the justification purpose, only these two PSLs are recorded. 

If a minimum dependence cone on an SDG is empty, it means the line n can be justified by primary inputs only 

in this SDG. If an instruction initializes a line n by forcing its value to be a fixed value, the corresponding
¿r

minimum dependence cone is not defined. Now we are ready to define a H ard-To-C ontrol (HTC) state line. 

Definition 2:

A state line n is an HTC state line if it satisfies following criterions:

SD G i

Prim ary Input

Figure 4. An minimum dependence cone of the state line n.
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1. There exists at least one instruction which initializes line n to a constant value.

2. Line n has no empty minimum dependence cone for all instructions.

3. All the defined minimum dependence cones of n for all instructions include n itself. j- j

The definition of an HTC state line can be generalized to a group o f state lines among which a loop depen­

dence relationship exists given the instruction set. One example o f an HTC state line is the state line in a 

counter sitting in a large circuit which cannot be loaded. Some instructions can be used to reset the counter, 

and count the value up and down. With the minimum dependence cone information for all state lines on all 

SDGs, the Jcosts for all state lines can be calculated iteratively. The Jcosts for all state lines are initialized with 

infinity. For a state line n, if  there exists at least one minimum dependence cone to be empty, that is, this 

instruction allows line n to be loaded from primary inputs only, its Jcost is set to zero. The algorithm of calcu­

lating J costs is as follows:

Calc_Jcost() { 
modify_flag = TRUE; 
while (modify_flag) { 

modify_flag = FALSE;
for  (all state lines, n) { /* update Jcost for line n */ 

if (n is an HTC state line) 
continue;

for (all instructions, i) { 
sum_cost = 0;
for  (all state lines, k, k € min_cone[n][z]) { 

if  {k is an HTC state line) 
continue; 

else
sum_cost += Jcost [k];

} /* for */

z/(sum_cost + 1 < Jcost [n]) {
Jcost [n] = sum_cost + 1; 
modify_flag = TRUE;

}
} /* for */

} /* for */
} /* while */

} /* Calc.JcostQ */
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The Pcosts for all state lines can be calculated with a similar algorithm. The value of Jcost indicates the 

minimum number of instructions needed for justifying the particular state line. An HTC state lines have a very 

large Jcost indicating it is very difficult to control.

5. Simultaneous Justification of Multiple Objectives

A global view of the instruction sequence assembling process has been presented in Section 3. In this 

Section, we will concentrate on one iteration of the process and discuss the justifiability of a given set of objec­

tives on an SDG. The example in Figure 2 is used again, and without losing the generality, the instruction j  is 

focused. The set S is defined to be the set containing multiple state lines to be justified. Each state line, n e  S, 

would correspond to a root node in the SDGj, or it implements a HOLD function under the instruction j. Those 

state lines implementing a HOLD function will not cause a justifiability problem since they are not in the SDGj. 

These lines are not considered in the discussion. The simultaneous justifiability problem can be conceptually 

treated as a network flow problem. Each root node n e S can be imagined as a faucet delivering one unit 

volume of water which will flow through SDGj. All nodes and arcs in SDGj have no maximum capacity limita­

tion. However, at the inputs and outputs o f each node, only one arc with a weak influence can be used to tran­

sport water. At each node, the total volume of water is evenly distributed to all input arcs which are eligible for 

transportation. For example, if a node has one strong input arc and two weak input arcs, the water received at 

this node should be divided into two barrels and sent to the strong arc and one of the weak arcs. As the capaci­

ties of nodes and arcs are not limited, the only locality causing the unconservation of the network flow is at the 

nodes with weakly-influenced output arcs. Only one of the weakly-influenced arcs can transport water through 

the node. Based on the above model, following corollary and theorem are deduced.

Lemma 1:

If the network flow is conservative everywhere in SDGj, then S is simultaneously justifiable.

Proof:

Since the network flow is conservative everywhere in SDGj, there exists some pipes (paths) connecting all
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roots in S to some leaf nodes o f SDGj. This directly leads to the definition o f simultaneous justifiability of S 

under the Flow-Influence model, q  

Theorem  1:

S is simultaneously justifiable if  all nodes in SDGj have strongly-influenced arcs at their outputs.

Proof:

Since there is no node having weakly-influenced output arcs in SDGj, the network flow is always conserva­

tive. Since the network flow is conservative everywhere in SDGj, from Lemma 1, the simultaneous 

justifiability can be concluded, q

Most general SDGs contain some nodes with weakly-influenced output arcs. In order to ensure the simul­

taneous justifiability of S, all we need to check is whether any node, having a group of weakly-influenced arcs at 

its outputs, is required to transport water from more than one of its weakly-influenced arcs. Unfortunately the 

complexity of this checking process on a given SDG is found to be very high. The following theorem and proof 

offer a theoretical argument.

Theorem  2:

Given an SDG with some nodes having k weakly-influenced output arcs, to check the simultaneous 

justifiability of a given set (S) of root nodes is JVP-complete.

Proof:

Please refer to Appendix I.

An alternate approach based on a branch-and-bound algorithm is developed to search for valid simultane­

ous justification paths given a time limitation. Either the time limit is expired or a backtracking happens when 

the decision stack is empty, this process returns a failure. If neither of the above situations happens, this algo­

rithm would search for valid justification paths for all root nodes in S. SDGj is levelized from the root nodes to 

leaf nodes, and all root nodes in S and their input arcs are initially marked. The algorithm proceeds level by 

level to search for justification paths. When a node has any of its output arcs marked, this node has to be 

marked. Whenever a node is marked, all its strongly-influencing input arcs should also be marked. If a node
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having weakly-influencing inputs arcs is confronted, only one of them will be chosen and marked, and this node 

will be put into the decision stack. When an arc is marked, the node feeding this arc has to be checked if the arc 

is one o f its weakly-influenced output arcs. If more than one weakly-influenced output arcs need to be marked 

under current status, a conflict happens and the backtracking mechanism is invoked. The backtracking mechan­

ism is similar to the one in PODEM [9]. When the backtracking mechanism is invoked, the top node in the 

decision stack is checked and the next weakly-influencing input arc will be tried. If all its weakly-influencing 

arcs have been tried, this node is popped out and the next node will be backtracked. After backtracking, the 

process restarts at the node being backtracked, and proceeds level by level. The branch-and-bound algorithm 

named Network_Flow() is shown as follows:

Network FlowO {
turn on the policy flag for using Flow-Influence model;
for (each node n in SDG-arranged by levels) { /* starting from roots to leaves */ 

i/(any of output arcs of n is marked) { 
mark node n\
for  (each strong input arc i of node n) { 

mark arc i;
r/(arc i is a weakly-influenced output arc o f its feeding node k) { 

i/(node k has been marked by other node) { 
unmark node k, node /i, and all input arcs o f node n\ 
success = backtrackO ; 
if (success)

restart from the backtrack node; 
else { /* no solution exists under Flow-Influence model */ 

turn off the flag for using Flow-Influence model and restart; 
a large cost will be added at the end for this instruction;

}
}
else

mark node k\
} /* i f* /

} /* for */

i/(node n has weak input arcs) { 
select a most controllable weak input arc; 
i/(no t successful) { 

unmark node n and all ints input arcs; 
success = backtrackO;
¿/(success)

restart from the backtrack node;
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else { /* no solution exists under Flow-Influence model */ 
turn off the flag for using Flow-Influence model and restart; 
a large cost will be added at the end for this instruction;

}
}
else

put node n into the decision tree;
} / * i f * /

} /* i f* /
} /* for */

} I* network_flowO */
Since the Flow-Influence model is only used for modelling instruction behavior, it does not veto the entire 

justification possibility even though it is low. A remedy policy for SDGj failing in the checking is to augment a 

very large cost to the instruction indicating a very high probability of a value conflict at a low level. When the 

process terminates, the marked leaf nodes corresponding to some PSLs form a set which needs to be justified by 

next instruction, if the instruction j  is used at the current slot. The cost value of instruction j  is calculated by 

accumulating the J costs o f these leaf nodes, plus the large failure cost if it is necessary. The justification pro­

cess will be applied to all instructions and the one with the least cost will be selected first.

An example illustrating the branch-and-bound checking algorithm is shown in Figure 5. Nodes D, E, F, 

and H have weakly-influencing input arcs so they are decision points. Nodes G, H, I, and K have weakly- 

influenced output arcs, which are the possible conflict locations. The example shows that the algorithm 

explores the justification paths for node A, B, and C with one backtracking.

6. Circuits with HTC State Lines

When an HTC state line or a node affected by an HTC state line needs to be justified, it is very difficult to 

assemble the instruction sequence, since the instruction sequence depends on the value required at the HTC 

line. A special instruction sequence is usually needed to first reset the HTC line and push its value to the 

required one. For instance, the state line in the stack pointer of the Am2910[22] is an HTC line. When the 

multiplexer in the stack is under test as shown in Figure 6, it turns out to be extremely difficult for a high level 

test generator to assemble a valid instruction sequence. For the particular test vector injected at the input of the
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Process starts from node A: D ecision Stack

1. A = 1, B = 1, C = 1,

2. D = 1, E = 1, F = 1,

3. Conflict happens at node G, 
backtracks at node F.
Process restarts from node F.

4. F = 1, G = 1, H = 1,

5. 1= 1,J= 1,K= 1,L= 1. ffS
m

6. Process terminates.
Leaf nodes K and L are marked.

O  : nodes w ith  strong input and output arcs.

®  : nodes w ith w eak input arcs and strong output arcs.

©  : nodes w ith strong input arcs and w eak output arcs.

®  : nodes w ith w eak input and output arcs.

Figure 5. An example illustrating the simultaneous justification checking algorithm.

multiplexer in Figure 6, a possible instruction sequence for justifying it is to reset the stack pointer first. Then 

five PUSH instructions are applied to store values into all registers, followed by three POP instructions to 

achieve the value 2 at the select pin. Apparently it is very difficult to automate the tool to search for this 

sequence without any value analysis on the HTC lines.

All HTC state lines can be identified by the cone analysis in the preprocessing phase. If the circuit under 

test contains some HTC state lines, an extra value analysis needs to be performed. First the exact value change
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produced by each instruction at each HTC line is derived and recorded. If an instruction has no operation on 

one HTC line, or the exact value change cannot be derived, the corresponding value record is Unknown. As 

the value of an HTC line may determine the data flow graphs for some instructions, it is necessary to investigate 

the required values o f this HTC line for other affected state lines which need to be justified. This information is 

also stored in the data structure.

When the set of testing objectives includes an HTC state line, its value will be passed through each 

instructioa Some arcs in the SDG which cannot be activated due to this known value will be marked invalid. 

During the network flow path searching process, these invalid arcs will never be used. When the cost is calcu­

lated after the searching process, each Jcost will be weighted by the required values o f the HTC state lines so 

that the instructions which are able to justify the state lines with higher costs would be selected first. For the 

example shown in Figure 6, those instructions implementing a POP function have a higher priority because 

Reg5 has a higher weighted cost After justifying Reg5, the PUSH instructions have a higher priority since the 

costs of Reg3 and R egl attract the value o f the stack pointer to be counted down. Finally the reset instruction is 

applied to reset the stack pointer to be zero.

Figure 6. The multiplexer(5-word Stack_CL2) in Stack in the Am2910.
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7. Experimental Results

The instruction sequence assembling techniques have been implemented in our hierarchical test generator, 

ARTEST. The current version o f ARTEST contains about 20,000 lines of C codes, and it is able to handle 

microprocessor-like circuits and circuits with very complex data path configurations. The current implementa­

tion of ARTEST contains a high level test generator and a gate level test generator which handles the module 

test generation. A highly efficient gate level fault simulator, PROOFS[23] is interfaced with ARTEST for col­

lapsing the module level faults. Three circuits are tested in this experiment to show the efficiency of the new 

techniques. The first one is a 16-bit general purpose microprocessor (MP2) with 9 instructions. The second one 

is a microprogram sequence controller with the same functional implementation as that of Am2910. As men­

tioned in the previous section, the stack pointer in the data path significantly enhances the difficulties for high 

level test generation. However, the new algorithm shows the efficiency in testing this circuit. The third one is 

division circuit containing 8 instructions. The original design of the devision circuit is not an instruction-based 

circuit, and it has been redesigned for this experiment Table 1 shows the circuit information. It should be

circuits #  instr. prim itive #  modules #  gates # faults

MP2 9

16-bit ALU 1 400 930
16-bit Incrementer 1 127 311
4-to-16 Decoder 1 42 130

2-to-l Multiplexer 31 3038 4092
16-to-l Multiplexer 2 1104 3168

Am2910 25

12-bit Incrementer 1 108 184
4-to-l Multiplexer 1 171 294

RegCnt_CL2f 1 158 367
Stack Pointer_CLl 1 57 126
Stack Pointer_CL2 1 56 124

5-word S tack_C L lff 1 275 620
2-to-l Multiplexer 5 370 500

Idivckt 8 16-bit ALU 1 400 930

t  RegC nt_C L2 is the com binational part o f  the register counter, 
f t  S tack_C L l is actually a 5 -to -l m ultiplexer.

Table 1. The circuit inform ation.
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noted that all modules in Table 1 are combinational. The sequential modules have been broken into combina­

tional blocks interconnected with sequential elements. This approach has been proved to be very efficient to 

avoid global functional constraints [24]. The single stuck-at fault model is used in this experiment. Each of the 

three circuits contains one HTC state line. For instance, the program counter contains an HTC state line in 

MP2, and the stack pointer in Am2910 creates another one.

The results derived by ARTEST is shown in Table 2. For the modules having more than one outputs like 

the 4-to-16 decoder in MP2, all outputs are tried to propagate fault effects to ensure the validity of each test 

vector being injected at the high level. ARTEST derives very high test generation efficiency for most of the 

modules. For the 5-word Stack_CLl (multiplexer) in Figure 6, a 100% ATPG efficiency is achieved. This 

result demonstrates the effectiveness of the instruction sequence assembling algorithm. However, the ATPG 

efficiencies for the Stack Pointer_CLl and some 2-to-l multiplexer in Am2910 are relatively low. By tracing

circuit prim itive #  faults # d e t # d r o p # u n t eff.(%) CPU

MP2

16-bit ALU 930 914 0 16 100.0 492 sec
16-bit Incrementer 311 311 0 0 100.0 638 sec
4-to-16 Decoder 130 113 17 0 86.9 101.4 min

2-to-l Multiplexer 4092 3774 318 0 92.9 435.8 min
16-to-l Multiplexer 3168 3168 0 0 100.0 164.2 min

Am2910

12-bit Incrementer 184 184 0 0 100.0 4 sec
4-to-l Multiplexer 294 294 0 0 100.0 40 sec

RegCnt_CL2 367 322 2 43 99.5 41 sec
Stack Pointer_CLl 126 52 43 31 65.9 19.4 min
Stack Pointer_CL2 124 89 1 34 99.2 39 sec
5-word Stack_CLl 620 525 0 95 100.0 225 sec
2-to-l Multiplexer 500 368 132 0 73.6 905 sec

Idiv 16-bit ALU 930 788 6 136 99.4 17 sec

#  faults = total num ber o f stuck-at faults.
#  det =  total num ber o f  faults detected.
#  drop =  total num ber o f  faults dropped.
#  unt = total num ber o f  faults proved to  be untestable. 
eff.(% ) = test generator efficiency = (#faults - #drop)/#faults.

Table 2. The results generated  by A RTEST.
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through the circuit structure, we found that for a high percentage of the injected test vectors, the fault effects 

cannot be ensured to be propagated at the high level. Since a pessimistic data type manipulation policy is used, 

a high level fault effect will be lost if not all possible unknown faulty values can be guaranteed to be pro­

pagated. That is, this pessimistic policy guarantees the detection of all faults which produce the fault effects 

that are propagated at the high level. Many faults can be treated as potentially detected by the test sets that 

ARTEST generates, so the real fault coverage could be much higher than the reported one. The fault coverage 

for the decoder in MP2 is not high due to the same reason.

8. Conclusions

In this paper, it is proposed to separate the hierarchical test generation into two phases. Each of the two 

phases applies different techniques to solve major ATPG problems. An instruction sequence assembling algo­

rithm has been introduced at an architectural level. The high level circuit behavior is modelled by a Flow- 

Influence model on a structural data-flow graph of each assembly instruction. Based on the derived instruction 

sequence, the previous published relaxation-based algorithm is applied to compute the exact value solutions for 

all interior buses. Three circuits have been tried and the results show that this new approach is able to handle 

the circuits with HTC state lines which create extreme difficulties. The future work would be to try some cir­

cuits with larger instruction sets.
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Appendix I

P ro o f  o f  T h e o re m  2:
It is obvious that the problem of checking the simultaneous justifiability is in NP. Then, we show that the 

One-in-Three 3SAT problem can be reduced to a special case of the problem of checking the simultaneous 
justifiability. Since the One-in-Three 3SAT problem has been proved to be iVP-complete[25] , the simultaneous 
justification problem is therefore concluded to be NP-complete. The special case is formalized as follows. It is 
assumed that each node in SDGj can have at most 2 weakly-influencing input arcs, and k weakly-influenced
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output arcs, where k>  3. It is also assumed that each node having a weak input(output) arc does not have any 
strong input(output) arc. For each node with a name, say F , one of its weak input arcs is named F , and the 
other one is named F. If this node has no weak inputs, all its output arcs are named F . These names are also 
treated as variables and can be assigned with logic 0 or 1. The logic 1 means the arc is used to transport water, 
and a 0 means the arc is blocked. If this node is not involved in the water transportation, the logic value is 
assigned with "don’t care". We only need to concentrate on the nodes located in the dependence cone of S so 
this condition is not considered.

Now we need to show that, given a boolean expression in the conjunctive normal form in the One-in- 
Three 3SAT problem, there exists a corresponded SDG. An assignment satisfying the expression exactly 
corresponds to a set o f simultaneous justification paths on the SDG, and vice versa. Each clause in the expres­
sion is mapped to a node, say m , in the SDG with each of its weakly-influenced output arc corresponding to one 
literal in the clause. Each type of literals, say F and F, are from another node, say n , with two weakly- 
influencing input arcs. Each o f these two input arcs of n comes from a fanout node if the corresponding literal 
appears in more than one clause. Therefore, the network can be structured by connecting the inputs of the 
fanout nodes (feeding into nodes like n) to the outputs of the nodes like m based on the boolean expression. An 
assignment satisfying the boolean expression determines logic values for all literals which also determines the 
validity of each path. Since only one literal can have a logic 1 in each clause, a conflict will not happen at the 
nodes like m. In another words, the path being determined is a valid path. The reverse argument can be 
directly deduced with a similar manner. Because the One-in-Three 3SAT problem is reduced to the special case 
of the simultaneous justification problem, the WP-completeness of the simultaneous justification problem is 
concluded, q
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