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Abstract

This paper addresses the problem of image alignment using models such as 
affine and homography and by directly using pixel intensity values. Coarse-to-fine 
scheme has become a standard for direct intensity-based alignment. It is believed 
that such coarse-to-fine scale sampling (Gaussian blur) can improve region of con­
vergence of the alignment optimization. Although, it has been proposed that such 
isotropic blur may not be optimal for some motion models, no rigorous derivation 
for such kernels has been known to date. In this work, we derive kernels for some 
of the common motion models such as affine and homography, which are able to 
smooth the alignment objective function. This is appealing because the smoothing 
process often removes poor local minima and thus reaches deeper solutions. Our 
derivation shows that these kernels coincide with Gaussian blur of the image only 
for displacement motion.
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1 Introduction
It is one of the most fundamental problems in computer vision to establish a correct 
alignment (or matching, or correspondence) of the same object between two (or mul­
tiple) images. This task is crucial for many important problems such as structure 
from motion, recognizing an object from different viewpoints, and tracking objects 
in videos. Roughly speaking, mainstream image alignment techniques can be cate­
gorized into “intensity-based” and “feature-based” methods. Intensity-based methods 
use dense pixel information (such as brightness pattern or correlation) integrated from 
image regions to estimate the geometric transformation [10]. In contrast, feature-based 
methods first extract a sparse set of local features from individual images, and then es­
tablish correspondence among them to infer the underlying transformation (for larger 
regions) [14].

In many applications intensity-based methods may seem appealing due to their di­
rect access to richer information (i.e. to every single pixel) as well as other interesting 
properties [10]. However, their practical performance can be undermined by the asso­
ciated optimization challenge [23]. Since the intensity pattern over a relatively large 
region can significantly change across images due to many nuisance factors such as 
domain transformation (i.e. due to change of viewpoint) and contrast (due to change 
of lighting), a cost function that directly compares image intensities usually contains 
many local minima. Thus, unless very good initialization is provided, plain direct 
alignment of image intensity may lead to poor results.

Lucas and Kanade made a major improvement to optimization for the direct intensity- 
based method by adopting a coarse-to-fine scheme [15]. For instance, to establish a 
matching between two images f i ( x )  and f 2 (x)  differing by a displacement 0, one 
needs to minimize the function: x  +  0) — f 2 {x))2dx.  According to Lucas
and Kanade, this can be more effectively done by approximating f \ ( x  +  6) up to its 
first order term f i ( x  +  0) «  f i ( x )  +  X?fi(x)50,  and minimizing the resulted convex 
quadratic form. One of the key observations is that in order for such a linear approx­
imation to be accurate enough at each iteration, two things help greatly: 1 . run the 
iterations progressively with coarse-to-fine spatial scales to ensure the displacement 0 
at each iteration is small; 2. smooth the image intensity functions f \  and / 2 progres­
sively with a coarse-to-fine (isotropic Gaussian) blur so that their higher-order terms 
(say Hessians) are small, hence negligible. So, the displacement 0 estimated from the 
linearly approximated objective function at a coarse level gives a rough estimate of the 
actual displacement, and can be used as a good initialization for the next iteration at a 
finer scale.

In fact, it is later shown that such a coarse-to-fine scheme is guaranteed to recover 
the optimal displacement under some mild conditions (see [ 12] for a proof1). Although 
guarantee of correctness is only rigorously established for the translational motion, 
the notion of coarse-to-fine smoothing and linear approximation has been adopted in 
computer vision to matching with almost all parametric transformation models (for 
instance, the work of [ 1, 15,21,25]). In fact, the variants of the underlying concept (of

Although the proof in [12] addresses noise free setting 3 6 *; /1  ( x  +  6) — f 2 (x),  their presented 
analysis can be adapted to the noisy case as well.
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local analysis combined with gradual smoothing) have been widely used in different 
disciplines for a long time, although often under different names such as graduated 
optimization [5], homotopy continuation [22], deterministic annealing [19], diffusion 
equation method [18], etc.

Despite its popularity, there are serious theoretical and practical issues with the 
Lucas-Kanade scheme when arbitrarily applied to non-displacement motions. For ex­
ample, if the transformation is instead a scaling (say by 6 : x  —> Ox), then it is easy 
to show that in general the Hessian of the image function f {0x)  w.r.t. 6 grows propor­
tionally to ||a;||2 (as opposed to being constant in case of displacement). Its magnitude 
varies significantly depending on the location x  and hence it is questionable whether a 
uniform and isotropic Gaussian blur remains a good choice when trying to confine the 
magnitude of Hessian across the image.

One reason that Gaussian convolution has been so popular for creating blurred 
images is the rich results in scale-space theory2 [11, 27]. A very interesting result 
of this theory asserts that Gaussian convolution is the “unique” linear operator that 
satisfies a minimal set of unbiased axioms [13]. In particular, these axioms require 
unbiasedness to location (i.e. shift-invariance), which constrains the linear operator to 
be a “convolution”. Scale-space theorist in [8] state that axiom is “motivated by the 
notion that there is no a priori preferred point within the observable’s field of view”. 
Although looking consistent with intuition, it is not the way our eyes has evolved to 
process. In fact, the density of color receptors in the eye is highest at the center (fovea) 
and gradually decreases with distance from there. That gives the eye the highest acuity 
at the center of the view and makes its sight progressively more blurry toward the 
periphery [17].

The deficiency of isotropic Gaussian convolution for image blurring in the context 
of non-displacement motion has been noted before. Berg and Malik [3] introduced 
the notion of “geometric blur” of an image defined as g{x) — f Q w ( 0 ) f ( r ( x ,  6)) dO, 
where r  : X  x 0  —> X  is some family of transformations parameterized by 6 and w(0) 
is some weight function. Although this definition of geometric blur is very general and 
has some overlap with the goal of blurring for image alignment purpose, it is practically 
useful only when it can be written in the form of a kernel. In [3], a heuristically chosen 
family of kernels is suggested but without clear connection to common transformation 
models used in image alignment such as affine or homography.

In this paper, we provide a thorough analysis on how to smooth objective functions 
that arise in image alignment. In particular, we study the question that if the goal is to 
smooth the objective function against its unknown transformation parameters, what is 
the correct associated blurring we need to perform on the images. We call the kernel 
functions associated with such image blurring as the transformation kernels', and we 
derive closed-form solutions for such kernels associated with all popular transforma­
tion groups in image alignment, including translations, translation+scaling, affine, and 
homography. As we will see, all kernels are spatially varying as long as the transforma­
tion is not purely translational. In addition, the transformation blurring kernels derived 
in this paper do not fall into the class of kernels suggested by [3] or [24], We will

2 The idea of Gaussian smoothing in vision is even older than scale-space theory. For example, Marr and 
Hildreth [16] studied zero-crossings the Laplacian in images convolved with Gaussian kernels at different 
scales.
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use the proposed kernels within a simple deterministic optimization algorithm. As the 
heuristics used in geometric blur [3] and DAISY [24] have been motivated largely for 
fast computation, we believe our results could open up new investigations on new class 
of fast geometric blurring kernels that can efficiently approximate the transformation 
kernels. Furthermore, the deterministic nature of the optimization algorithm provides 
a new opportunity for performance evaluation indices that are repeatable3.

We emphasize that the goal of this work is to improve our understanding of the op­
timization problems associated with intensity-based image alignment, so as to improve 
its practical performance and effectiveness. We do not advocate that direct intensity- 
based alignment is better or worse than feature-based methods. In many practical sit­
uations, the feature-based and intensity-based methods can be easily engineered to 
complement each other.

2 Motivation
Here we present an illustrative example to explain the difference between Gaussian 
smoothing of the objective function versus Gaussian smoothing of the image itself.
Consider a simple shape consisted of three concentric rings (figure 1-a). The goal 
is to align this image with a scaled version of it (figure 1-b). The only parameter 
subject to optimization is the scale factor. Formally, the goal is to seek 9 such that 
f i {9x)  = f 2(x) holds.

We cast this problem as optimization by trying to maximize the correlation Jx  f \  (9x ) f 2(x)dx.  
We explore two ways of applying the smoothing procedure to this optimization. The 
first one, directly convolves the images with a Gaussian kernel whose bandwidth is 
a. It then locally optimizes the objective function while gradually reducing the blur 
and tracing the solution. The other scheme is similar except that it blurs the objective 
function instead, i.e. convolves it with a Gaussian kernel in variable 9 with bandwidth 
a.

The associated optimization landscape is visualized (figure l-c,d). There, the hori­
zontal axis shows the choices of 9 in log scale between -2 (left most) to 2 (rightmost).
The vertical axis shows the amount of blur (parameter a) where the top is the high­
est smoothing and bottom is the no smoothing. The value of the objective function is 
shown by intensity, black being the highest.

The local maxima at the highest and lowest blur are shown by blue spots. The 
global maximum at no blur (i.e. the desired solution 9*) is marked by green. Basin of 
attractions originating from each local maximum at the highest blur are indicated by 
red. It can be observed that (figure 1-c) Gaussian blurring does not remove local max­
ima, even under extensive blurring4 of the image. In this case, depending on the initial 
choice of 9 at the highest blur phase, the process may trap into a basin of attractions 
that leads to a local maximum at the lowest blur side. However, when the objective

3 In contrast, probabilistic schemes for robust fitting such as RANSAC [7] may produce a different answer 
in each run. The problem may persist even if aggregate a large batch of RANSAC solutions and chooses the 
bets among them.

JThe highest level of image blur is created by repeatedly applying a 3 x  3 Gaussian convolution mask 
more than 400,000 times to the images
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Figure 1: Basin of attraction for the alignment of images in (a) and (b). The objec­
tive function when Gaussian blurring the image is shown in (c) and that of Gaussian 
blurring of the objective function in (d). Blue, green and red respectively indicate lo­
cal maxima, global maximum and basin of attraction originating from local maxima 
of highest blur. Horizontal/Vertical axis show 0 and a  in increasing order from left to 
right and bottom to top (top being the highest blur).

function is blurred, there is only one initial maximum whose basin of attraction leads 
to the global maximum of the non-blurred function (figure 1-c). The work [20] also 
presents some empirical results on the role of (isotropic) Gaussian blurring o f images 
(vs not blurring at all) in enlarging the basin of attractions within a motion estimation 
task. In contrast, in this work we focus on blurring the objective function instead of the 
image itself, which will lead to spatially varying and non-Gaussian kernels.

3 Transformation Kernel

3.1 Notation

The symbol =  is used for equality by definition. Also, we use x  for scalars, x  for 
vectors, X  for matrices, and X  for sets. In addition, / ( . )  denotes a scalar valued 
function and / ( . )  a vector valued function. Unless stated otherwise, ||aj|| means ||a?||2 
and V means V*. Finally, ★  and © denote convolution operators in spaces 0  and X  
respectively.

3.2 Definitions

Definition [Domain Transformation] Given a function /  : X  -> R and a vector field 
r  : X  x 0  —>• X , where X  = Rn and 0  =  Rm. We refer to r(a?, 0) as the domain 
transformation parameterized by 0. Note that the parameter vector 6 is constructed by 
concatenation of all the parameters of a transformation. For example, if case of affine 
A x  +  b with x  G R2, 6 is a 6 dimensional vectors containing the elements of A  and 
b.
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Definition [Isotropic Gaussian]

k ( x ; a 2) =

Definition [Anisotropic Gaussian]

K ( x ; E )  =

(y/27T a)dim(x )
11» ir e 2<t2

(V27r)dim(æ) \/d e t(E )

( 1)

(2)

Definition [Fourier Transform]
We use the following convention for Fourier transform. The Fourier transform of 

a real valued function /  : Rn —» M is /(u>) =  f Rn f  {x)e~luTxdx  and the inverse 
Fourier transform is f ( x )  =  (27r)_n f Rn f (uj )etufTxduj.

Definition [Transformation Kernel]
Given a domain transformation r  : X  x © —>• X,  where X  =  Rn and © =  MTO. 

We define a transformation kernel associated with r  as wX)CT such that
it satisfies the following integral equation,

V / :

[ /(T 0K> •)) * Ms (0) =  f  f { y ) 2/)rf? / » (3)
J x

where /  is assumed to be a Schwartz function. Therefore, any transformation 
kernel that satisfies this equation allows the convolution of the transformed signal 
with the Gaussian kernel be equivalently written by the integral transform of the non- 
transformed signal with the kernel uT;Cr(0 , x , y).

3.3 Derivation of Kernels by Fourier Transform

Proposition 1 The following choice o f u,

t T̂,a ifii y )

=  ( ¿ 4  ( _  e . ^ ) d t ) d u  (4)

is a solution to the definition o f kernel provided in (3). Here X  =  Cl — W l, and 
k ( t ; cr2) is some function k {.; a) : X  —> R. with some parameter a, which in our case 
is simply an isotropic Gaussian with bandwidth a.

The proof follows by using the Fourier representation f ( x )  =  (27r)~n f(u>)etujTx du>, 
where fl — Rn (similar to X  =  ]Rn), and then application of Parseval’s theorem. See 
the appendix for details.

Now by plugging in the desired transformation r  into the result of proposition 1, 
we can compute the integrals5 and derive the corresponding kernel function as shown 
in Table 1. Note that the functions p and e, associated with the homography kernel,
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Name e t (x ,0) uT,a ( 0 , x , y )
Translation dnX 1 x  +  d k{r{x ,  0) -  y ; o 2)

Translation+Scale [ tin x 1 5 tln x 1 ] a 1 x  +  d K { t (x , 0 ) -  y ; a 1 diag([l +  xjf]))
Affine [ Vec( A nxn) ì bnx l] A x  +  b k ( r ( x , 0 )  -  y ,o 2( 1 +  ||æ f ) )

Homography [vec(Anxn ) , 6n x i , cn x i ] 1 +cTX(A X  + b) n = 2 : p(0, x , t/, a) e(0, x , y , a)

Table 1: Kernels for some of the common transformations arising in vision.

(a) (b) (c) (d)

Figure 2: Visualization of affine and homography kernels on the plane x  G [—1,1] x 
[—1,1] with a =  0.5. Both kernels are realized by A 0 — [2 0.2 ; —0.3 4},b0 = 
[0.15 — 0.25]. In addition, for the homography we have cq =  [1 — 5]. The
figure shows the contribution of the center and top right corner points, each shown 
separately. More precisely, it depicts (a) waffine 0 5(0 =  0 o , x , y  — (0,0)) (b)

^affine.o.s^ =  ô x̂ iV =  (1» -0) (c) whomography,o.5 ^  =  Oo,x , y  =  (0,0)) (d) 
whomography,o.5^ =  x iV =  (1> 1)) •

are respectively some polynomial (in 0) and exponential functions, whose complete 
expressions are provided in the appendix.

The derivation of the kernels are, although elementary, somewhat messy and long 
(specially for the homography). Rather than going through the complete derivation 
process, we provide a simple way to check the correctness of the kernels by the in­
terested reader. This is achieved via the following two necessary conditions that must 
hold for the kernels.

1. Heat Equation: Consider the convolution [ /(r (x , • )) ® k( • ; cr)](0). Since A; is 
the Gaussian kernel, the convolution result necessarily obeys the heat equation 
[26].

o A e [ f (r (x ,  -))*k(-;<7)](0)
=  (d/d<r)[f(r(xt -))*k(-i(r)](0).  (5)

Since we argue that [ f (r (x ,  ■ )) * fc( • ; <r)](0) =  Jx  f ( y ) u Tt<T(0, x ,  y)  dy,  the 
following must hold.

5 Although the integral in (4) does not necessarily have a “closed-form” for any arbitrary transformation 
r ,  it does so for most of the transformations we care about in practice, as listed in Table 1.
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(6)

(7)

crAguTyCT( 0 , x , y )

— uT,a( 0 , x , y ) , ( 8)

where 4= in (8) means sufficient condition. Now it is much easier to check 
the identity (8) for the provided kernels. For example, in case of affine kernel
k ( r ( x , 0 )  —y; a 2 (l+\\x\\2)), both sides of the identity are equal to ( —

2. Limit Behavior: When the amount of smoothing approaches zero, the integral 
transform must approach the original function that is transformed by r .  For­
mally, we want the following identity to hold.

Sufficient condition for the above identity is that lim(T_).o+ a?, t/) —
S(t (x , 0) — y),  where S is Dirac’s delta function.
This is trivial for the kernels of affine and its subgroups; since the kernel itself is 
a Gaussian, limCT_>0+ is equivalent to kernel’s variance approaching to zero (for 
any bounded choice of ||x||). It is known that when the variance of the normal 
density function tends to zero it approaches Dirac’s delta function.

Two interesting observations can be made about Table 1. The first is that, from a 
purely objective standpoint, the derived kernels exhibit “foveation”, similar to that in 
the eye. It is known that the population of color receptors has the highest density at 
the center of our retina, i.e. the fovea. This number gradually decreases with distance 
from the fovea. Consequently, the eye has the highest acuity in the center and sees pro­
gressively more blurry toward the periphery [17]. Similarly, except translation, all the 
kernels are spatially varying with density decreasing in ||®||. This is very easy to check 
for translation+scale and affine kernels, where they are like a Gaussian distribution 
whose variance depends and increases in ||®||.

The second point is that the derived kernels are not necessarily rotation invariant. 
Therefore, the geometric blur kernel proposed by Berg and Malik [3], which requires 
rotational symmetry in x  and y  is unable to represent the basic transformations arising 
in vision, such as those in Table 1. In fact, to the best of our knowledge, this work is 
the first that derives exact kernels for such transformations.

n
a ) k ( r ( x , 0 )  -  y; cr2( l +  ||a;||2)).

(9)
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Algorithm 1 Alignment by Gaussian Continuation.
1: Input: f \  : X  —y M, f 2 : X  —y M, Oq g 0 , {(7^} for k =  1 , . . . ,  K  s.t. 0 < <7 k+i <

2: for k — 1 —y K  do
3: Ok =  Local maximizer of z ( 0 ; <7fc), initialized at Ok-i
4: end for 
5: Output: Ok

4 Smoothed Alignment Objective
We use the inner product between the transformed signal /1  and the reference signal f 2 
as the alignment objective function. Note that f i  and f 2 are the input to the alignment 
algorithm, and could possibly be different from the original images. For example, 
they could have been mean subtracted or normalized by their i 2 norm. The alignment 
objective function is denoted by h{0) and defined as follows.

h{0) = [  / i( r (a ; ,  0)) f 2{x) dx  . (10)
J x

The optimal alignment 0* is then the choice of 0 which maximizes the alignment 
objective function. Instead of directly solving the optimization on h, we resort to a 
coarse-to-fine smoothing scheme. Thus, we introduce the “smoothed” alignment ob­
jective 2 as the following.

z{0 ,a)  (11)
=  [ h * k ( - , a 2)}(0) (12)

=  [  ( f 2 ( x ) [ f i ( T ( x , .)) * k ( - , <t2)](0) ) dx  (13)
J x

= ( j 2 (x) ^  f ( y ) u T}(T(0: x ,  y)  dy^j ^ dx  , (14)

where integral transform in (14) uses the definition of kernel provided in (3). We can 
now develop a simple iterative algorithm for coarse-to-fine alignment (algorithm 1) re­
lying on (14) for computation of z(0, a). Detailed numerical procedure for computing 
the integral transform in (14) will be provided in section 5.

4.1 Image Blurring vs. Objective Blurring

Plugging the translation kernel from Table 1 into smoothed objective function (14) 
yields the following.

9



z(0,o) (15)

= ( f 2 {x) J ^ f i ( y ) u Tja( 6 , x , y )  dy^J dx (16)

=  J ^ ( ^ 2 {x) J ^ f i ( y ) k ( 6 +  x - y , o 2)dy^J dx (17)

= f  ( Ì 2 {x) [f1( - ) ® k ( - ; o 2) \(0 + x ) ) d x .  
J x

(18)

It can be observed that, for “translation transformation”, Gaussian convolution o f 
the alignment objective with respect to the optimization variables is equivalent to the 
“Gaussian blurring” o f the signal and then shifting it by 0.

However, this argument does not hold for other transformations. For example, the 
smoothed f \  using the affine kernel is the below.

[ / i ( r ( a v ) )  ★ *;(■> a 2)](0) (19)

= /  f i ( y ) u T,<r(Oi x , y ) d y  
J x

(20)

1 f  \ \ A x + b - y \\2

= ----- ......  —/ f i ( y ) e  2̂ ( 1-hi®ip) dy
(Oy/ 27t(1 +  \\x\\2))nJx

(2 1)

Therefore, for “affine transformation”, Gaussian convolution o f the alignment ob­
jective with respect to the optimization variables is equivalent to an “integral trans­
form ” (which is not a convolution) o f the signal.

5 Computation of the Integral Transform
There are two computational advantages when using kernels to compute the smoothed 
objective function (11 ).

1. Observe that the kernel u for affine and its subgroups (table 1) are Gaussian 
forms in variable y. In this case, expressing f i  by some Gaussian Basis Func­
tions6 will lead to a closed form for the integral transform. More details are 
provided in section 5.1.

2. For kernels of affine and its subgroups (Table 1), one may also choose to rep­
resent f i  by piecewise constant or piecewise polynomial forms. Again, since 
the kernels are Gaussian forms in variable y, derivation of a closed form for the 
integral is possible. See section 5.2 for details.

6A GBF is a function of form eco, A q) =  e
(v-<cq)t &.Q 1(at-xn)

where the matrix A  must be

positive definite. It is known that Gaussian RBFs <p(x] x o ,Sq) =  e 2So , which are a special case of 
GBFs, are general function approximators.
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3. If the kernel u is not Gaussian in y  (such as in homography), the derivation of 
a closed form for the integral transform may not be possible. However, numer­
ical integration is done much more efficiently using the kernelized form (14) 
compared to the original form (11). More precisely, when n =  2, integration 
in the original form is over 0 and for homography dim(0) =  8. However, the 
equivalent integral transform is over y,  where dim(f/) =  2.

5.1 Gaussian RBF Representation of f i

Using GBFs to represent / i ,  whenever the transformation kernel wT)<7(0, x , y)  is Gaus­
sian in y,  then the integral transform (14) has closed form. By a kernel being Gaus­
sian in y,  we mean it can be written as uTj(T(G,x ,y )  =  k{r {0 ,x )  — y ,  s2(0,x)) ,  
s : 0  x X  —> R + is an arbitrary maps. Notice that the maps r  and s must be inde­
pendent of y. For brevity, we drop the arguments of the maps r  and s in the following 
derivation.

Here we obtain the closed form of the integral transform when / i  is represented
_ Il=g-=BQ||2

by Gaussian Radial Basis Functions (GRBFs) f { x \  Xq, 5o) =  e ; the more
general case of GBFs can be obtained in a similar fashion.

II05 — aê, II2
Proposition 2 Suppose f \  =  Ylk=i ak<t>(y; Xk,$k), where (¡)(x; Xk , Sk) =  e 25* 
Assume that x , y) is Gaussian in variable y. Then the following identity holds.

/  f i { y ) u T, * ( 0 , x , y ) d y (22)
J X
P X ll*i-T||2

Y a f  ___ )ne 2̂ + * 2>.
h  A 2 + s 2

(23)

See the appendix for a proof.

5.2 Piecewise Constant Representation of / i

Here we provide a result for when the covariance of the Gaussian is diagonal, which 
includes isotropic Gaussians k. However, extension to non-diagonal covariances is 
possible.

Proposition 3 Suppose f i ( x )  =  c on a rectangular piece x  € = n ^=1 [xfc,Xfc|.
Assume that uT^ ( 0 ,  x,  y)  is Gaussian in variable y  with diagonal covariance struc­
ture, i.e. u — K ( t  — y; d iag(sf, • • • , s^)). Then the following identity holds.

J  f i { y ) u T,cj{OiX,y)dy (24)

= n j ( erf( ^ ) - erf( ^ f ) ) -  (25>
The proof is elementary and uses separability of integrals for diagonal K .
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6 Regularization
Excessive smoothing of the objective function brings the risk of numerical instability. 
Regularization can be used to improve numerical stability of the method. Addition­
ally, regularization improves well-posedness of the task. By this we mean if in the 
non-regularized task, there are multiple transformations (e.g. when image content has 
symmetries) that lead to equally good alignments, the regularization prefers the closest 
to some given 0o, making existence of a unique global optimum more presumable. We 
achieve this goal by replacing f \  with the following regularized version of it.

/ i ( r (  •, ) , x , 0 , 0 0,r )  =  k(0 -  0o ;r2) / i ( r ( ic ;0)). (26)

This regularization shrinks the signal / i  at peculiar transformations 7, i.e. those 
with very large ||0 — 0q||, where 0q is, on average, the most common transformation 
(typically the identity transformation r(x;  0) =  x).  In principle, we do not lose much 
by attenuating the objective function for very large ||0 — 0o||, because these transfor­
mations are physically unrealizable anyway.

6.1 Regularized Objective Function

Applying transformation and spatial regularization to the objective function yields the 
following regularized objective function.

h(0; 0O, r) = J  ( f 1(T, x ,O,0o, r ) f2{x)^ dx

= [  k(0 — 0o; r 2)/i(r(a ;;  0) ) f2(x) dx  .
J x

6.2 Smoothed Regularized Objective

We define the smoothed regularized objective as the following.

z{6,  0o,r,<j) =  [h(- , 0 0, r ) * k ( - ; ( r 2)\(0). (27)

This form is still amenable to kernel computation using the following proposition.

Proposition 4 The regularized objective function z ( 0 , 0o, r, o) can be written using 
transformation kernels as follows.

7One may ask if we could shrink the objective function h, instead of shirking the signal f \ ,  for peculiar 
transformations. Although the former may seem more intuitive, it conflicts with the optimization goals. 
More precisely, since we seek for the maximizer of the objective function, shirking h near the infinite ball 
may significantly lower the value of the objective function (relative to the objective value in the rest of the 
domain). At the extreme, this may even move the global maximizer to the infinite ball, no matter how bad 
the alignment is at that place.
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Figure 3: Representative views -the rectified views- from the dataset provided in [6] 
(a) colors (b) grace (c) posters (d) underground.

¿ (0 ,0 o ,r, <7)

=  [M-,0o , r ) ® k ( - ; a 2)](0)

=  J  (k(6 -  G0; r 2 +  cr2) f 2{x)...

■ 2 (*1̂  ( r % ++ J °

See the appendix for the proof.

(28)

(29)

(30)

7 Experiments
In this section, we evaluate how the proposed scheme for smoothing the alignment 
objective function compares against traditional Gaussian blurring and also no blurring 
at all. We use the dataset provided in [6]. The dataset consists of 5 scenes taken in 6 
different views, with progressively more drastic homography effect. We exclude one 
of the scenes which consists of two planes and not suitable for homography fitting. The 
rest of the scenes are very close to a single plane, which are used in our evaluation (see 
figure 3).

For the proposed method, we used the homography kernel due to the nature of 
the test data. The goal by either of the three methods is to maximize the correlation 
between the two images, by transforming one to the other. The local maximization in 
Algorithm 1 as well as in the Gaussian blur and no blur schemes is achieved by gradient 
ascent method. The integral transform in Algorithm 1 is computed by the rectangle rule 
of integral approximation, evaluated on a 25 x 25 grid.

Coordinate of images were normalized to be in range [—1,1]. The intensity of 
the input images f i  and f 2 to these algorithms was subtracted by their joint mean 
(i.e. (/1 +  / a)/2, where f \  is the average intensity value of image / 1). The sequence 
of decreasing a used in our experiments (for both the proposed kernel and Gaussian 
kernel) starts from cr =  2, and is multiplied by 2/3 in each iteration of algorithm until 
it goes below 0.01. The regularization constant r  was set to 1.

The performance of these methods is summarized in figure 4. Each plot corre­
sponds to one of the scenes in the dataset. For each scene, there is one rectified view

13



Figure 4: NCC value after alignment. Horizontal axis is the view index (increasing in 
complexity) of the scene. Four views are used for each scene, each one being as / 2 and 
compared against / i ,  which is a rectified vew, in the dataset [6] : (a) colors (b) grace 
(c) posters (d) underground.

that is used as f \ .  The rest of 5 views, indexed from 1 to 5,.in increasing order of 
complexity8 are used as / 2. The vertical axis in the plots indicates the normalized cor­
relation coefficient (NCC) between / 2 and transformed f \ .  It can clearly be observed 
that, while Gaussian blur sometimes does a little bit better than no blur, the proposed 
smoothing scheme leads to much higher NCC value.

8 Conclusion
In this paper we studied the problem image smoothing for the purpose of alignment by 
direct intensity-based method. We argued that the traditional Gaussian blurring of the 
image, which is mainly inspired due to the work of Lucas and Kanade [15], may not be 
suitable for non-displacement alignment tasks. Instead, we suggested directly smooth­
ing the alignment objective function, which is a common practice in the optimization 
literature [18]. We formally showed that, smoothing the objective function is equivalent 
to Gaussian blurring of the image only when the transformation is a displacement. We 
then rigorously derived exact form of spatially varying kernels required for smoothing 
the objective function of common model-based alignment tasks including affine and 
homography models. Although the idea of using spatially varying kernels has been 
used before [3, 24], the derivation has been based on heuristics and intuition. The ker­
nel derived in [3, 24] are, however, very limited to what was shown to be theoretically 
correct choice. Specifically, the derived kernels are not rotationally symmetric like 
those in [3, 24]. Yet, such kernels [3, 24] have been successfully utilized in various ap­
plications such as face detection [4] and object recognition [2, 9]. This work is the first 
to objectively derive suitable kernels for some of the common transformation models. 
Thus, it may open up new research avenues on how such exact kernels can be used and 
efficiently implemented for vision applications.

8 Here the complexity of the view is referred to how drastic the homography transformation is, in order to 
bring it to the rectified view.
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Appendix

8.1 Notation

The symbol =  is used for equality by definition. Also, we use x  for scalars, x  for 
vectors, X  for matrices, and X  for sets. In addition, / ( . )  denotes a scalar valued 
function and / ( . )  a vector valued function. Unless stated otherwise, ||x|| means ||aj||2 
and V means V x . Finally, * and © denote convolution operators in spaces 0  and X  
respectively.

8.2 Definitions

Definition [Domain Transformation] Given a function /  : X  -» R and a vector field 
r  : X  x © —>• X,  where X  =  Rn and 0  =  Rm. We refer to r ( x ,  0 ) as the domain 
transformation parameterized by 0 . Note that the parameter vector 0 is constructed by 
concatenation of all the parameters of a transformation. For example, if case of affine 
A x  +  b with x  G R2, 0 is a 6 dimensional vectors containing the elements of A  and 
b.

Definition [Isotropic Gaussian]

k(x;cr2) = (31)

Definition [Anisotropic Gaussian]

K{x\  £ )  =
1 »Ts~

(\/27r)dim(æ) y/dëtÇ Ë)6
(32)

Definition [Fourier Transform]
We use the following convention for Fourier transform. The Fourier transform of 

a real valued function /  : Rn -» R is f(uj)  =  f Rn f  {x)e~lu,Txdx  and the inverse 

Fourier transform is f ( x )  — (27r)_n f Rn f(co)eiu}Txdco.

Definition [Transformation Kernel]
Given a domain transformation r  : X  x 0  -» X , where X  — Rn and 0  =  Rm. 

We define a transformation kernel associated with t  as uT)(r : X  x X  —> R such that 
it satisfies the following integral equation,

V / :

[f{T (x,-))-kk{--o2)}{0)=  [  f ( y ) u Tt<T( 0 , x , y ) d y ,  (33)
J x

where /  is assumed to be a Schwartz function. Therefore, any transformation 
kernel that satisfies this equation allows the convolution of the transformed signal 
with the Gaussian kernel be equivalently written by the integral transform of the non- 
transformed signal with the kernel uT;(T(0 , x , y ).
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Definition [Smoothed Regularized Objective]
We define the smoothed regularized objective as the following.

z ( 0 ,0 O, r, a) =  [fc( •, 0O, r) * k( ■; cr2)}(0). (34)

8.3 Exact Expression for Homography Kernel

The exact expressions for functions p(6 , x , y , a) and e(0, x , y , a) are as the following.

e

P

to

t\
¿2
¿3
¿4

¿5

¿6

A

A

_A_

jA

Â

Â

_A_

Â

A

(  _  Hc ll2 _  H a? +  b - y | | 2 __________ 1__________
eXP V 2a 2 2cr2(l +  ||æ||2) 2<r2(l +  ||æ||2(l +  ||î/ | |2))

(4 ( 1 +  ^  +  x ?( l +  II2/H2)) +  c f(l +  x\ +  x |( l  +  ||y||2))

+ 2cTæî/r (A x 4- 6 -  y)  -  2cic2æiar21|2/||2

+rn R p (!/T<j4æ+b_î/))2 ))
te (¿3 +  At\t\x\ +  4f2£3t4Xi(f5Xi +  ¿4^2) -  2 i|(t5x i +  (t4 +  x i)x 2)

+ 4 t2(4t2 T  t 2x^ +  2£2x2(2t5 +  x2))
+ f |( —2£2x i(2f4 +  x i) +  (¿5X1 +  Î4X2)2)

(35)

(36)

(37)

(38)

(39)

(40)
(41)

+2£i ^ ¿ 2^1 (2t4 +  X i) +  4f2(—¿3 +  ¿3^5X1 +  t^t^X\X2 +  £3^4 +  x lX&2)

T î3x2( t3(2t5 +  x2) +  2t5(t5x i +  £4x2)) ) )  (43)

1
2(t2(1 +  ||æ||2)

*o( 1 + x |  + x î ( l  +  II2/II2))
t0(l T  x i T  x 2(l +  llî/ll2))
—2t0x ix 2||i/||2

2t0(c i(l +  ||x ||2) +  x i y T ( A x  + b - y )) 
2t0(c2(l +  ||x ||2) +  x 2y T ( A x  + b - y ) )  

Air
° (4tit2 -  t l ) i a 2

(44)

(45)
(46)
(47)
(48)
(49)

(50)

8.4 Proofs

Proposition 0 The following identity holds for the product o f two Gaussians.

_ II Ml -/¿2l

K ' r - 1*1^1) =
( v ^ W + ^ ) ) m

k (r <rh*i + cr2M2 . <y\(y2 .
ir2 + a 2  ’ (T2 +  a 2 ’
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Proof

k ( r  -  fc(r -  ¿t2; cr|)
1

(<7i\/27r)m

1

(27r<Ji<j2)me

1

(27r<Ti<j2)m ^

T~<*1 II2
2af 1

(<j2V^vr)m
-mi ir 
771

i + a2 j ^ ----- II Ml - M2 II 2 2(ct2 + J2)

IlMI -M2 II 2
e 2(gl+g2) _  < T ^! +  <^M2 . _ ^ 2 _ ^

(V ^ T ^ a f+ o f) )771 o-f +CT2 ’ ^ l + ^ 2 '

Note that (54) is derived by completing the square.

(51)

(52)

(53)

(54)

(55)

□
Proposition 5 The following choice o f u,

UT,a (@i 3'i'y)

=  ( ^ / f i ( / e e'“ T<r<" ‘," !' ,fc (t- 0;,72)di) ‘iw (56)

is a solution to the definition o f kernel provided in (33). Here X  — i) =  Rn, and 
k(t-, o 2) is some function k ( .; a) : X  —> M with some parameter a, which in our case 
is simply an isotropic Gaussian with bandwidth a.

Proof The key to the proof is writing f ( x )  by its Fourier form f ( x )  =  (2n) n f Q f  (ui)etu,Tx dco, 
where Q =  Mn (similar to X  =  Rn).

[ / ( t (x ,.))® A :(.<t2)](0) (57)

=  ® (58)

=  ~  f ^ j j ( U)eTT^ d f ) k { t - e - y ) d t  (59)

= W r L  /(w ) H e  e” Tr<*'‘)i:(t ~  6 ;ff2) d t)  (60)

= (2 l y : J x f ( y ) [ l n j e ^ T(T(x’t)- v)H t - e ; a 2) d t d f j d y  (62)

=  /  f ( y ) u T,<r(OiX,y)dy, (63)
J X
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where (61) uses the Parseval theorem, and (63) uses proposition’s assumption (56).
□

il»— »¿-il2

Proposition 6 Suppose f i  = Y ll= i x k,5k), where f (x;  x k , Sk) =  e 2Sk .
Assume that uTj(7 (0 , æ, r/) w Gaussian in variable y. Then the following identity holds.

/  f i { y ) u T ,a ( 0 , x , y ) d y
J x

= 1____Y e  2(^ +s2)
i V s? +  s2

Proof

/  f i (y)uT,a(0, x , y)dy
Jx

=  [  f i { y ) k ( T - y ; s 2)dy
J x

=  /  y ' a fĉ (y ;æ fc, 4 )  f c ( r - î / ; s 2)c?î/
*/Rn \fc - t  /

=  (f>(y;xk,Sk)k(T - y \ s 2) dy ]
k=l  /

=  ^ 2 a k(SkV27t)n (  f  k ( y - x k]6k) k ( T - y ; s 2)dy
k=l 

p

(64)

(65)

(66)

(67)

(68)

(69)

(70)

___  / r  p 2(6̂ +s2)
ak(SkV2n)n /  — ■  = —fc(t/ —

I V  + s 2 ) ) n

s 2Xfc +  5 | r

+  «2) >  W f̂c +  S2 ’ <5fc+S2
) # 7

y

p

^ ___ }ne~ 2 ^+ ^) ^ »-/- s2*A; +  ^ T  <^S2
a 2 )

=  J 2 a k (-

r ll^fc—r H
^ ___ Y e  2(5fc+s2>

* - 1  T P ?

where in (71) we use the Gaussian product result from proposition 0.

(73)

□
Proposition 7 The regularized objective function z(0, 0q, r, <r) can be written using 
transformation kernels as follows.

z { 0 i 0 o, r , o )

=  [h( . , 0o, r ) ® k ( . - , o 2)](O)

=  J ^ (^ (0  ~ 0 o;r2 +  o 2)f2(x) J  (,f i {y )uTj r20 +  a20c
Vr2+a2 r 2 +  (Ji , x , y Ÿ )  dy ' j i

(74)

(75)

m
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Proof For computing z, we proceed as below.

z ( 0 , 0 o,r,c7)
= [h { . , 0 o , r ) * k ( . ] a 2)}(G)

l{^Jx  (M0 “  Oo;r2) f i (T {x - ,0) ) f2{ x ) )  dx^j *fc(.;a2)](0) 

^ f2 {x ) [ ( k (0  -  0o;r2)/i(r(a:;0))^ * k { .; <j2)](0)  ̂dx

J  { ^ ^ x ) J_ (W o  ~  t;r2)fi(r(x;t))k(0 -  t ; a 2)̂ ) dt ^ d x

f  Ilfl-Q n ll2
f  / e 2 (r'2 + a2)

f 2 (x)  /  ( f l ( T (x ; t ) )  -----y ^ H t
k *'0 y^/2n(r2 +  a2) J
/  IIQ-Onll2

f  (  e 2(’"2+<t2) r /
/  /  ........... =T \m f2 (x )  /  ( / i ( i / ) w T ,
7* \  yyf2'K(r2 + a2) j 7*

(77)
(78)

(79)

(80)

(81)

cr20o + r 20 r 2a 2
r 2 +  a2 ’ r 2 + ^ 2 )) dt 18&)

r20 +  cr2Oo
’ V^+T2 r2 + (j2 

Thus, regularized objective function from (27) leads to the following result.

,* ,2 /)) dy  Idsc(J83)

z ( 0 , 0 o,r,cr)

[ h ( . ,0 o, r ) ® k ( . ; a 2)](0)

^k(0 -  0o; r 2 +  a 2) f 2( x ) J  ( f i ( y ) u T,
r 20 +  (j 20q

( „ 9 , - 9  , X lV)V  r2-f <x2 r2 +  (J

(84)

(85)

□
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