
UILU ENG 75-2211REPORT R-676 APRI L » 1975

COORDINATED SCIENCE LABORATORY

RESTRUCTURING OF
ARITHMETIC EXPRESSIONS
FOR PARALLEL EVALUATION

DAVID E. MULLER
FRANCO P. PREPARATA

APPROVED FOR PUBLIC RELEASE. DISTRIBUTION UNLIMITED.

UNIVERSITY OF ILLINOIS - URBANA, ILLINOIS

1 UNCLASSIFIED
0 .SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

REPORT DOCUMENTATION PAGE READ INSTRUCTIONS
BEFORE COMPLETING FORM

1 1. REPORT NUMBER 2. GOVT ACCESSION NO. 3. RECIPIENT’ S CATALOG NUMBER

«
4. T ITLE (and Subtitle)

RESTRUCTURING OF ARITHMETIC EXPRESSIONS
FOR PARALLEL EVALUATION

5. TYPE OF REPORT & PERIOD COVERED

Technical Report

f t
6. PERFORMING ORG. REPORT NUMBER

R-676; UILU-ENG 75-2210
t

I

7. AUTHORfs;

David E. Muller
Franco P. Preparata

8c CONTRACT OR GRANT NUMBERfs.)

DAAB-07-72-C-0259

M

1
9. PERFORMING ORGANIZATION NAME AND ADDRESS

Coordinated Science Laboratory
University of I l l in o is
Urbana, I l l in o is 61801

10. PROGRAM ELEMENT, PROJECT, TASK
AREA & WORK UNIT NUMBERS

■
11. CONTROLLING OFFICE NAME AND ADDRESS

Joint Services Electronics Program
12. REPORT DATE

April 1975

1 Fort Monmouth, New Jersey 13. NUMBER OF PAGES

28
14. MONITORING AGENCY NAME a ADDRESSfi/ different from Controlling O ffice) 15. SECURITY CLASS, (o f this report)

1 UNCLASSIFIED

f t

15a. DECLASSI FI CATION/DOWN GRADIN G
SCHEDULE

w 16. DISTRIBUTION STATEMENT (o f this Report)

i
Approved for public release; distribution unlimited.

i

«

17. DISTRIBUTION STATEMENT (o f the abstract entered in B lock 20, if different from Report)

i
18. SUPPLEMENTARY NOTES

i

I

19. KEY WORDS (Continue on reverse side if necessary and identify by block number)

Evaluation of Arithmetic Expressions General Arithmetic Expressions
Far&llel Computation
Computation of Arithmetic Expressions
Computational Complexity
Division-free Expressions

1
I

i

20. ABSTRACT (Continue on reverse side if necessary and identify by block number)

Let E be an arithmetic expression involving n variables, each o f which appears
just once, and the possible operations of addition, multiplication, and division
Although other cases are considered, when these three operations take unit time
the restructuring algorithms presented in this paper yield evaluation times no
greater than 2.88 log2n + 1 and 2.08 log2n for general and division-free
expressions, respectively. The coeffic ients are precisely given by
2/iog2a « 2.88 and l/ lo g^ « 2.08, where a and P are the positive real roots of

•

DD 1 J A N ^ 1473 EDITION OF 1 NOV 65 IS OBSOLETE

V SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

SECURITY C L A R IF IC A T IO N O F THrS1»AOgf1Wiwi Data Entered) I

I
UNCLASSIFIED

I20. Abstract (Continued)

2 4the equations z = z + 1 and z = 2z + 1, respectively. While these times
were known to be of order log2n, the best previously known coefficients
were 4 and 2.15 for the two cases.

We conjecture that the present coeffic ients are the best possible and we
have exhibited expressions which seem to require these times within an
additive constant.

We also present upper-bounds to the restructuring time of a given expres­
sion E and to the number of processors required for its paralle l evaluation.
We show that at most 0 (n^*^) and 0 (n̂ -*) operations are needed for
restructuring general and divis ion-free expressions, respectively. I t is
pointed out that, since the order of the compiling time is greater than
n log n, the numbers of required processors exhibit the same rate of
growth in n as the corresponding compiling times.

f t

I

f t

I

1

«

1

I

8

1

t

I

I

I

I

ISECURITY CLASSIFICATION OF THIS PAGEfH7i*n Data Entered)

UILU-ENG 2211

RESTRUCTURING OF ARITHMETIC EXPRESSIONS FOR PARALLEL EVALUATION

by

David E. Muller and Franco P. Preparata

This work was supported in part by the Joint Services Electronics

Program (U.S. Army, U.S. Navy and U.S. Air Force) under Contract DAAB-07-

72-C-0259.

Reproduction in whole or in part is permitted for any purpose

of the United States Government.

Approved for public release. Distribution unlimited.

I

I

I

I

I

f

Restructuring of Arithmetic Expressions for Paralle l Evaluation

David E. Muller* and Franco P. Preparata**
Coordinated Science Laboratory

University of I l l in o is at Urbana-Champaign
Urbana, I l l in o is 61801

Abstract

Let E be an arithmetic expression involving n variables, each of

which appears just once, and the possible operations of addition, multi­

plication, and division. Although other cases are considered, when these

three operations take unit time the restructuring algorithms presented in this

paper yie ld evaluation times no greater than 2.88 lc^n + 1 and 2.08 l°g 2n

for general and division-free expressions, respectively. The coeffic ients

are precisely given by 2/log^ 2.88 and l/log^P w 2.08, where <y and
2 4

3 are the positive real roots of the equations z = z + 1 and z = 2z + 1 ,

respectively. While these times were known to be of order log2n, the

best previously known coeffic ients were 4 and 2.15 for the two cases.

We conjecture that the present coeffic ients are the best possible

and we have exhibited expressions which seem to require these times

within an additive constant.

We also present upper-bounds to the restructuring time of a given

expression E and to the number of processors required for its parallel

1 44 1 817evaluation. We show that at most 0(n) and 0(n) operations are

needed for restructuring general and division-free expressions, respectively.

I t is pointed out that, since the order of the compiling time is greater

than n log n, the numbers of required processors exhibit the same rate

of growth in n as the corresponding compiling times.

VcDepartment of Mathematics, University of I l l in o is at Urbana-Champaign.

Department of E lectr ica l Engineering, University of I l l in o is at Urbana-Champaign
This work was supported by the Joint Services Electronics Program (U.S. Army, U.S.
Navy, and U.S. A ir Force) under Contract DAAB-07-72-C-0259.

1

I

I

I

«

I

I

i

f t

1

I

I

I

I

I

t

I

I

t

I

1. Introduction.' 1 1 ■ " '■ ' r /

In recent times several computing systems have beep designed or

conceived so that many arithmetic operations may be executed simultaneously; thus

i t is important to study ways of arranging computations to take best

advantage of such capability. One aspect of this problem which has

attracted the attention of many investigators is the restructuring of

an algebraic expression by means of algebraic identities so as to yield

a computation tree of minimum depth, and hence a minimum computation

time. I t is possible to either assume that the number of available

processors is unlimited, or to regard the problem as a trade-off

between the cost of additional processors and the advantage of greater

speed. In this paper we make the f i r s t assumption, because the

mathematical methods we have developed are applicable in this case, but

we are mindful of the importance of the more general trade-off

between number of processors and speed, and we fee l that the methods

used here may be adapted to the general case as well.

The early work by Baer and Bovet [l]used associativity and

commutativity of arithmetic operations to achieve limited restructuring

of the computation tree. Later workers such as Muraoka [2] and Brent,

Kuck, and Maruyama [3] used d istr ibutiv ity as well; the latter group

showed that any algebraic expression not involving division and con­

taining n distinct variables called atoms could be evaluated in no

more than 2.465 + 0(1) steps. Later, Preparata and Muller [4]

showed that the coeffic ient of log^n may be reduced to 2.1507. In the

present paper a further reduction to 2.080 is achieved and i t is

conjectured that this is the minimum possible.

2

The special cases of polynomial evaluation was treated by Maruyama [5]

and by Munro and Paterson [6] who showed that n-th degree polynomials

could be evaluated in + 0 (^/Tog~n) steps. Also, Kuck and

Maruyama [7] have shown, among other interesting results, that continued

fractions with n terms require no more than 2 log2n + 0 (1) steps.

The case of general arithmetic expressions, which might involve

divis ion as well as the other arithmetic operations, was treated by

Winograd [8] and by Brent [9] . Brent's objective was the minimization

of computation time with an unlimited number of processors, and so his

results are more directly comparable to ours. His method involves the

restructuring of a general expression into a rational form. This form

can be evaluated by performing a single division at the end a fter the

numerator and denominator have been computed without using division.

He showed that any algebraic expression of n atoms could be evaluated

in this way using no more than 4 log^n + 0 (1) steps. In the present

paper, the same method of "end division" is used and the coeffic ient of

4 is reduced to 2.880. We also conjecture that some algebraic expressions

require this much time for their evluatior^ so that this is the minimum

possible. I t should be pointed out, however, that while Brent's method

uses a number of processors which is proportional to n, the one described

1.44here uses a number which is proportional to n

In the next section we shall analyze general arithmetic expressions

and establish upper-bounds on the time for their parallel evaluation as

well as on the number of required processors. An analogous analysis

w i l l be presented in Section 3 for the class of division-free arithmetic

express ions.

3

2. General arithmetic expressions.

2.1. Evaluation time.

Let E La an expression involving numerical variables and the

operations of addition, subtraction, multiplication, and division.

We ca ll E a primitive expression i f each variable appears only once

and we ca ll the function i t represents a primitive function. The

variables appearing in a primitive expression w i l l be assumed to be

of two kinds: atomic variables a^, . . . , a^ and free variables x^,

. . . , xfi. The weight of E, written |e |, is defined as the number

of atomic variables appearing in E.

As is well-known, an expression E may be transformed to a rational

form P/P' representing the same function, where P and P' are polynomials

in the variables and are re la t ive ly prime. Also, i f E is primitive,

then P and P' w il l not involve higher powers than the f i r s t in any of

the variables.

Let P and P' be expressed as Maclaurin's series in the free variables

writing P = E X + . . . + E X and P' = E'X. + . . . + E'\ , where each l i mm I I mm

expression X is either 1 or a product of distinct free variables, and

the coefficients Ê ̂ and El̂ are either 0 or are expressions involving

atomic variables. These expressions for P and P' are unique except for

possible order of the terms and algebraic transformations of the coeffic ients.

Define t(E^) as the minimum time required to compute E ̂ and similarly

define t (E p for i = 1, . . . , m. I t is assumed that we are allowed to

take advantage of any algebraic identities and that as many independent

processors are available as are needed to carry out different types of

I

I

I

t
«

I
I

I

I

I

9
<

«a
i

ia
I

c

operations simultaneously. We le t represent the time required for addition

or subtraction, and the time required for multiplication, and we assume

these times are known for purposes of calculating the bounds to t(E^)

and t (E p . The time for division is not needed for these calculations,

since E. and E' do not involve division, and we shall assume that division 1 i

w i l l not be a r t i f i c ia l l y introduced even i f doing so speeds the calculation

of E . and E !.l l

Now, define £(E) as the maximum of a l l the times t(E^,), . . . , t(En) ,

t (E p , . . . , t(E^) . As remarked before, the sums P and P' are unique,

so t(E) is thus uniquely defined when E is a primitive expression.

Let A and B be two primitive expressions with different variables

and let be any free variable in A. Then, we define the composition

of A and B with respect to x^, written A B as the primitive expression

obtained by substituting B for the free variable x ̂ in A. When the free

variable x ̂ is understood, we shall simply write the composition as

A o B. I t is obvious that

IA o B | = IA | + IBI .

Lemma 1: Let A and B be two primitive expressions with distinct

variables and let t^ and t ̂ be constructively achievable upper-bounds

to the computation times t(A) and t(B) respectively. Then the upper-

bound t(A^ o B) ^ + t ^ + *-s constructively achievable.

Proof: Let us tranform A into its rational form

A -X + . . . + A X + +mm 1 1 m m—--------------- r—rr— and B into its rational form —pr-j-----------------------
A 'X. + . . . + A X 1 1 mm

b ;x ; + . . . + B' ,X ' , *1 1 m m

Next, construct the rational form for A 0 B, the composition of A and B

5

with respect to some free variable x. in A. Let X and X. be two products
1 j k

in the rational form for A such that X. = x.X, and let X* be any product
J i k &

in the rational form for B. Then, there is a numerator term (A_.B̂ + A^B)̂X^X^

and a denominator term (A.'B. + A 'B ')X,Xfl' in the rational form for A o B.

Since the time to compute any of the coeffic ients is bounded by the

bound given in the lemma, the proof is complete.

Lemma 2; Let A and B be two primitive expressions with distinct

variables and let t- and t~ be constructively achievable upper-bounds
1 z VA

to the computation times t(A) and t(B) respectively. Then the following

upper-bounds are constructively achievable:

(i) î (A + B) £ ta + tm + max (t ^ t^),

(i i) t(A ’ B) £ t m + max (t ^ t^) ,

(i ü) î (A / B) ^ t m + max (t 1} t2) .

Proof: Let rational forms be given for A and B which are written

as in the proof of Lemma 1. Then, i f X. and X,1 are products in the
J k

rational forms for A and B respectively, we have the following

constructions.

(i) There is a numerator term (A.B' +A .,B,)X.X1' and a denominatorj k j k j k

term AjB.'X.X,1 in the rational form for A + B.J k J k -

(i i) There is a numerator term A .B, X.Xi* and a denominator termj k j k

AJB'X.Xi' in the rational form for A • B.J k j k

(i i i) There is a numerator term A3^XjX^ and a denominator term

AlB.X.Xi' in the rational form for A/B.
J k '^ k

We note that the times required to compute the coefficients of these

terms are bounded as given by the statement of the lemma and the proof

is complete.

6

We now cite a lemma which is a slight generalization of similar

lemma appearing in [3.] and [9] , and which is written here using our

notation, without proof.

Lemma 3: Let E be any primitive expression and q a real number

in the range 1 <. q ^ |e [. Then E may be written in the form

A ^x^| (B 0 C), where A, B, and C are primitive expressions with no

common variables, where is a free variable of A and the only variable

of A, B, and C which does not appear in E, and where B 0 C denotes one

of the expressions B + C , B • C, B / C, or C /B. Furthermore, A, B,

and C and be algorithmically chosen so that j Bj £ jcj < q, while

I B| + |C| a q.

Lemma 4: Let = 1, and let a be the positive root of the
2

equation z = z + 1. I f E is any primitive expression, the upper-bound

t(E) £ log|E|/log a is algorithmically achievable.

Proof: Assume inductively that for some given integer n, the

result holds whenever |e | < n. By constructing the f i r s t few cases,

i t is easy to show that the induction may be started with n no smaller

than 4.

Now le t E be some primitive expression satisfying |e | = n. Using

Lemma 3 we choose primitive expressions A, B, and C such that

E = A o (B 0 C), where the composition and operation 9 satisfy the

—2 —2conditions of Lemma 3 and where |b | £ |c| < a n but |b| + |c| ^ <y~ n.

-2 -2Since n ^ 4 and ^ w 1.44 we have a n > 1 and hence we can take <y n

to be the number q of Lemma 3.

7

By our inductive assumption, since jcj < n the rational form for

C can be algorithmically constructed so that t(C) £ log |C |/log a <

logo? n/log & = log n/log a - 2 is achieved. Since | B | ^ |c|,the same

bound applies to t (B) . Hence, by Lemma 2, the rational form for B 0 C

may be algorithmically constructed so that t(B 9 C) £ log n/log a - 1

is achieved.
“ 2 ~1Also, |A| = |E| - |B| - |C| £ n - a n = a n, by the defining

equation for a . Again, |A| < n, so inductively t(A) £ log <y ^n/log a =

log n/log o' - 1 may be achieved. Thus, by Lemma 1, there is an algorithm

for obtaining t(E) = £(A o (B 0 C)) ^ log n/log o', and the lemma is proved.

We wish to point out that the reason i t is possible to use a

larger root ot in the proof of this lemma than was used by previous

investigators (see [9]) , is that we allow the free variables of E to

appear anywhere in the expression, and do not constrain them to l ie on

a single path of the original computation tree of E, as was done in

[9] .

Theorem 1: Let E be a primitive expression containing no free

variables and involving possibly the operations of addition, subtraction,

multiplication, and division, requiring times t ^, and t d respectively.

Then a constructively achievable upper-bound to the time t(E) required

to compute E is given by

(tA + TM)l0g lEl i .----------------------- + td « 1-44 (ta + tm) log2|E|+ r D.log 01

8

Proof: Since E contains no free variables, its equivalent rational

form P/P ' is just E^E^, because ^ = 1. We have t(E) - max(t(E) , t (E p) ,

so that t(E) ^ t(E) + Tp.

Now, Lemma 4 applies to a l l primitive expressions, so i t applies

to the special case in which E contains no free variables. In Lemma 4,

the time scale was normalized to make r . + Tn = 1. Hence, to achieveA D

the present result we simply multiply the value of t(E) so normalized

by t^ This completes the proof of the theorem.

Although the proofs which have been given show that the upper-

bound stated in Theorem 1 is achievable, we shall now exhibit two

additional techniques which may be used for restructuring of general

expressions and may improve the actual computation time in some cases.

These techniques are described below.

1. The f i r s t technique is a variant of the algorithm described

in the proof of Lemma 4. Rather than choosing the parameter q of Lemma
-2

3 to be ^ n, we allow i t to be selected anywhere in the range
-2 -1

a n £ q £ a n. The va lid ity of the algorithm w i l l be proved by

"assertions" following the individual steps.

Step 1. Choose a subexpression B 9 C of E such that E = A o (B 9 C),

|B| + |C| ;> q, and |b| <£ |c| < q.

_2
Step 2. I f |c| < a n, construct E as A o (B 9 C).

_ £
Assertion: Since |b| £ |c| < a n, we have t (B), t(C) <; log n/log a - 2

giving t(B 9 C) <: log n/log oi - l . Also, |A| = |e | - |b| - |c| <; n - q <;
-2 -1 ^

n - a n = a nso t(A) £ log n/log cx - 1. Hence t(E) = t(A o (B 9 C))<:

log n/log a.

9

_ 2
Step 3. I f a n £ |c| < q then form F = A o (B 9 x ') , where x'

is a new free variable which does not appear in E. Construct E as

F © C.

Assertion: F is primitive and | f | = |E | - | c| <> n - a n = a n

so t:(F) £ log n/log ot - 1. Also, |c| < q <. ot *n so £(C) £ log n/log ot - 1.

Hence t(E) = t (F (^ C) <. log n/log ot •

This flexibility in the choice of the bound q of Lemma 3 may enable

one to consider several alternative stopping points in the algorithm

described in the proof of that lemma and choose one which yields the

shortest time. I t may be noted in this connection that, according to

Lemma 2’, the operation 0 may sometimes require less than unit time.

In such an application, l i t t l e additional compiling time is required

i f one bases one's time estimates on the weights |A| , |b| , and jc j .

2. A second technique for speeding the process described in

Lemma 4 is to obtain tighter upper-bounds for starting the induction

process. I f for a given integer k i t is possible to find a positive

constant 6 such that £(E) £ log |e J / log ot - 6 whenever |e | lies in the

range ot k £ |e | < k, then the inductive process of Lemma 4 can be

directly extended to show that i t also holds when JEj ^ k.

One method which might be used to find such a constant 6 is to use

exhaustive methods to compute t(E) for a l l expressions E satisfying

|E|< k for some small value of k. Computer methods might be used to

improve 6 by increasing k. To carry out an algorithm for taking

10

advantage of such an improved value of 6 , i t would be necessary to

tabulate the fastest forms for expressions of weight less than k.

We next point out that the upper-bound to the computing time given

in Theorem 1 does not require that the processors be capable of executing

independent programs, but i t holds also for computing systems in which

a l l processors perform the same operation at any given time. This

occurs because each of the basic formulas used in Lemmas 1 and 2

is either a product or a sum of two products: so the computation

sequence consists of alternating multiplication and (possibly dummy)

addition-subtraction for the entire set of processors. Division is

performed only once at the end of the entire calculation.

We conclude this section with the conjecture that there exist

primitive expressions E which require at least time (T . + T) log lEl/logo- - C

for their evaluation, where C is a constant. A possible method for

constructing such an expression is by the inductive definition:

(i) Tq = a, an atomic variable;
a .

(i i) ____]____
b. + T. *
J J

Here, i t is understood that the atomic variables appearing in T. and T.

are distinct although they contain isomorphic parts and that the atomic

variables a ., b. also appear nowhere else.

2.2. Number of processors and compiling time.

We now wish to obtain upper-bounds to the compiling time of a

restructured expression and to the number of processors required for

its parallel evaluation. For this and for subsequent related results

11

we require the following lemma, whose proof is omitted because i t can

be obtained by standard analytical techniques [10] .

Lemma 5. Let f (x) be a convex-downward function of a real variable

x and le t g = a^f(x^) + . . . + a ^ f ^ p , where x^, . are real non­

negative variables and a^, a^ are positive constants. I f the domain

of g is the convex hull defined by a set of extreme points, a l l the

maxima of g occur at extreme points.

In the preceding subsection we have described two algorithms for

restructuring of a general expression. The f i r s t of these, which was

also the easiest to describe, was used in the proof of Lemma 4. The

second algorithm involved considering two cases but allowed one to

-2 -1choose the parameter q anywhere in the range o' n ^ q £ o' n, while
-2

the f i r s t required q ^ ct n. In the following analyses we assume that

the restructuring has been performed by the f i r s t algorithm; a detailed

analysis of the second algorithm shows, however, that,in the worst

case,the same upper-bound is obtained.

Let W(E) denote the number of operations performed by the

restructuring algorithm in processing a given primitive expression E.

For brevity, W(E) w i l l be referred to as the "compiling work". I t is

convenient to distinguish two processes in compiling, although they are

interleaved in the actual operation. The f i r s t process concerns the

decomposition of a given expression E into three expressions A, B, and C

so that E = A o (B 9 C) (see Lemma 3), and we denote by W^(E) the

corresponding work. The second process concerns the assignment of

processors to carry out the operation 0 in B 0 C (see Lemma 2) and

12

the composition of A with (B 9 C) (see Lemna 1); we let Ŵ CE) denote

the corresponding work.

We begin by analyzing W^E). The corresponding algorithm (sketched

in [3]) consists of two basic steps. In the f i r s t step, for each

vertex of the tree T(E) representing E we compute the weight of the

expression described by its subtree. In the second step, we trace a

path from the root of T(E) following at each vertex the branch of

larger weight until B and C are found. Together these two steps require

work which is bounded above by kjE| , for some constant k̂ > 0. In

fact, since free variables do not contribute to the weight, only those

vertices of T(E) must be considered by the algorithm whose descendant

subtrees have positive weights; the number of such vertices is |e | - 1 .

The algorithm associated with Lemma 4 applies the previous algorithm

recursively and we obtain

(1) Wt (E) £ WX(A) + WX(B) + W^C) + kjjEl .

We now analyze W2 (E). A basic operation is the assignment of

operands to a processor. Referring to the algorithms associated with

Lemmas 1 and 2, the number of such assignments is at most three times

the number of numerator and denominator terms in the rational form of

the result (since three assignments are needed to compute wx + yz

from operands w, x, y, z) .

Let p, pA , pB, and pc be the numbers of free variables in E, A, B,

and C respectively. Thus, in forming B 9 C, there are no more than
PB + Pc

6*2 such assignments, and in forming the composition of A with

13

B 0 C there are no more than 6 . 2P. Hence, the corresponding compiling
pB + pc P

work is bounded above by k2(2 + 2) , where k2 > 0 is some constant.

Again, the algorithm associated with Lemma 4 applies the previous

two recursively and we obtain:
P + p

(2) W2(E) £ W2 (A) + W2 (B) + W2 (C) + k2(2 3 C + 2P) .

Both inequalities (1) and (2) may be used to obtain upper-bounds

to W^(E) and W2 (E) by the application of Lemma 5.

In the case of W2 (E), we assume inductively that for given n > 1,

when |E| < n, then W^(E) <; k2 (2P + 1)(|E|^ - 1), where | ;> 1 is a

constant to be evaluated later. We note that k2 (2P + 1) (|E| ̂ - 1)

is convex-downward and that the induction may be started by suitable

choice of k2. To complete the inductive step, we let |e | = n and

inequality (2) becomes

w2 (E) s k2(2 a + 1)(|A|? - 1) + k2 (2P® + 1)(|b|5 - 1) +

Pr er Pa + Pt,
k2(2 U + 1) (|Cp - 1) + k2(2 A 3 + 2P) .

We shall obtain an upper-bound to the right hand side of this inequality

by treating |A|, |b |, and |c| as real variables. In accordance with

Lemma 5, its maximum can be shown to occur at the extreme point

“ 1 2corresponding to |A| =<* n, |b | = 1 , |c| = a~ n - 1 , and pA = p + 1 ,

PB = Pc = 0. Thus, we obtain W2 (E) <; k2 ((2 P+1 + 1) - 1) +

2((a n - 1) ̂ - 1) + 2P + 1). Now, | must be chosen so that

W2 Ê) ^ ^2 (2P + l)(n^ - 1) . I f we replace (o' ^n - 1) ̂ by
-2 P

(o' n) ̂ in the right hand side of the preceding inequality, then

clearly | need not be larger than is necessary to satisfy the equation:

14

+ l) f a ' ?r£ - 1) + 2(a _25n? - 1) + 2P + 1) = k2(2p + 1) (n5 - 1) .

This equation is satis fied i f = 1/2, (which yields | = l/ lo g^ ss 1.44)

and the inductive step is ju st if ied .

In the case to which Theorem 1 applies, E has no free variables;

that is , p = 0. Then, we obtain

(3) W2 (E) s 2k2 (|E| 1 ,44 - 1) < 2k21E| 1‘ 44.

Returning to W^(E), we make the inductive assumption that for

given n > 1 , when |e | < n, then W^E) £ k3 1E| log2 |e | , where k3 is a

constant to be evaluated later. Again, lE llog2|E|is convex-downward

and the induction may be started i f k̂ is made large enough. To

complete the inductive step, we assume |E| = n and inequality (a) becomes

Wl(E) 5 k3 |A|log2|A| + k3 |B|log2|B| + k3 |C|log2|C| + k jn .

To prove that W^E) <; k3 |E(log2 |E|, k3 must be chosen so that

k3 (|A|log2|A| + |B|log2 |B| + |c|log2|c|) + kjn £ k3n log2n.

Treating |Aj, |b| , and |C| as real variables, in accordance with

Lemma 5, i t can be shown that the maximum of the le f t hand side of this

inequality occurs at the extreme point corresponding to |A| = oi“ ^n9
_2

|B| = 1, |C| = a n - 1 . This yields:
(

Ŵ CE) £ k^fo n̂ log2a *n + (a 2n - l) lo g 2(cr 2n - 1)) + k^n.

The constant k~ must be chosen so that the W (E) £ k n log n. I f 3 1 o
-2 -2 -2 -2we replace (q/ n - l) l o g 2(a n - 1) by <y n lo g^ n in the right

hand side of the preceding inequality, then k̂ need be larger than is

required to satisfy the equation:

15

, -1 , -1 -2 -2
k (a n log a n + or n log a n) + k n = k n log n.

3 1 j

- 2 SThis equation is sa tis fied for a l l values of n i f k = k / (I + cv") lo g 9a,
3 1 2

and we have

(4) W^(E) £ k3 1E| log2 |E | for a l l E.

Combining the two results, we may write

W(E) = W^(E) + W2 (E) £ k̂ | E | log2 1E | + 2k2 |E| .̂ Since g > 1, the second

term dominates as |e | becomes large and W(E) grows as |E |

We now turn to the equally important problem of obtaining an

upper-bound to the number of processors required for the evaluation

of an expression E which has been restructured by applying the algorithm

associated with Lemma 4. This problem is closely related to the

previous one, and in particular to the evaluation of an upper-bound to

W2 (E). Certainly, the total number of processors cannot exceed the

number W2 (E) of processor assignments performed by the compiling

algorithm. Hence, an upper-bound to the number of processors is k̂ |E | 1

where k̂ is some constant^ y This bound does not take advantage of the

fact that a single processor may be used repeatedly, but i t seems

unlikely that this property can be used to reduce the order of the

upper-bound, and in any case could do no more than divide i t by the

upper-bound to t (E) , which grows only as log2|E|.

^ I t is worth pointing out that for the restructuring algorithm of
general expressions described in [9] , an analogous analysis shows
that 5 = 1 , whereby W (E) becomes the dominating term and W(E) grows
as |E|log2 |E|.

(2)
An analogous analysis can be developed for the restructuring algorithm of
division-free expressions described in [3] . This analysis shows that the
required number of processors grows no faster than k|E|^*^^, for some k > 0

whereas Brent et a l . estimated this bound at 0(|E|1*71)(notice that
1.232.. 1/2 log2Y , where y is the real positive root of = z + 1.)

16

3. Division-free arithmetic expressions.

3.1. Evaluation time.

In this section we shall consider the paralle l evaluation of

expressions involving numerical variables and the operations of

addition, subtraction and multiplication. We shall ca l l these

expressions " d iv is ion-free11.

We shall use the nomenclature developed in Section 2. We know

by Lemma 3 that any primitive expression E can be written in the form

A @ (B 6 C), where A, B, and C are primitive expressions with no

common variable, x is a free variable of A not appearing in E, and

9 represents either "+" or The expression E can be expanded in

Maclaurin's series with respect to x and x can be replaced by

(B 9 C). Since E is division-free we obtain

E = A '(B 9 C) + A".

Notice that, d ifferen tly from the general case, A' and A" are primitive

expressions and that jA 'j £ |Aj , JA" | ^ |A| . The notion of free variables

is not essential to the following analysis, although the notation of

composition (hereafter simplified by omitting the specification of

the free variable involved) is quite convenient.

We shall now provide a constructive upper-bound to the time for

paralle l evaluation of division-free expressions. As in the general

case, we shall describe an algorithm for restructuring a given primitive

expression into an algebraically equivalent one, so that the computation

tree of the latter has bounded depth. Unfortunately, as the reader w il l

17

notice, the tree of the restructured expression does not exhibit the

alternation of addition and multiplication, as we found for general

expressions. For this reason we shall assume that addition and multi­

plication require identical unit times, and express the bounds in terms

of time units. For a given expression E, we let t(E) denote the

minimum time required to compute E.

Lemma 6 : Let 3 be the positive real root of the equation
4

z - 2z + 1 and let E be a primitive division-free expression. Then

t(E) £ log |E| /log g.

Prjoof: We assume inductively that for given integer n the following

hypothese.s hold (they are seen to be true for n ̂ 4) ;

PI. I f |E| < n then t(E) £ log |E| /log 3*

P2. Let Ê and Ê be primitive division-free expressions and

A B3
define r = Y + S ^ (|E L| > 3 | E2|) . I f r < n, then

t (E i + E 2) ^ log r/log 3 .

The proof is constructive and is supplied by a procedure for restructuring

division-free expressions. The procedure consists of two parts, Algorithms

PI and P2, which provide the proofs of the inductive extensions of PI and P2,

respectively. In each step, when i t is shown that an expression satisfies

the conditions of PI or P2, i t is assumed that the corresponding algorithm

is recursively called to carry out the restructuring. The two algorithms

mutually ca ll each other, as we shall see below. We shall follow the

same step-assertion format used in the preceding section. We begin

by proving the inductive extension of PI.

\

Proof for P I : Let |e | = n

Algorithm PI

18

Step 1. Choose a subexpression (B 0 C) of E such that E = A o (B 0 C)

|B e C| a n (l - g*2) , |b| £ |C| < n (l - g ' 2) .

_2 o
Assertion: We have |A| = |e | - |b 0 C| £ n - n (l - 0) = np’ .

~2 “ 2Moreover we have |b| £ |c| < n (l - 0) < np . Therefore, by PI, we

obtain

(5) t (A ') , t (A ") , t (B) , t(C) <£ log n/log 0 - 2 .

Step 2. I f |C| <> np , then set E «- A ' (B 0 C) + A" and halt.

Assertion: |b | £ |c| £ np implies t(B 0 C) £ log n/log p - 2 by

PI. This and (5) y ield t(A '(B 0 C)) £ log n/log 0 - 1 and t(E) £ log n/log 0.

Step 3. (| C | > n0) . I f 0 represents "+", then set E * - A ' C + A o B

and halt.

Assertion: |A o = |e | - |c| < n - n0 < np" , which by PI

implies t(A o B) ̂ log n/log 0 - 1 . This and (5) yie ld t(E) ^ log n/log 0 .

Step 4. (|C| > n0 and 0 represents Choose a subexpression

(B ̂ 0 ' c p of C such that C = A^ o (B^ 0 1 c p , with

|B1 9 ' a n (l - g ' 1) , |B1| £ < n (l - g ' 1)

and set E - A'BAj (B ̂ 0 * Cp + A o (BA'p.

Assertion: Notice that |A o BA” | = |e | - |b ̂ 0 ' C.J £ n - n (l - 0 = n0- \

which shows, by PI, that t(A o BA'p £ log n/log 0 - 1 . To complete the

proof we must show that the product E' = A'BA^(B^ 0 ' c p is computable

19

in time at most log n/log g - 1. We begin by transforming the expression

A|(B^ 0 ' C^) to a product of the form S^S2.

i i -4Step 5. I f |CjJ > ng and 0 represent n» " , set «- AjB^ and

S2 *" c 1(Case !) J else set SL A| and S2 - (B^ 0 ' C^) (Case 2) .

Assertion: We shall show that in a l l cases

(6) t (S L) £ log n/log g - 4, t(S2) £ log n/log g - 3.

(Case 1): |A|B̂ | ̂ |C| - |C ĵ < n (l - p) - ng 4 < ng 4, which implies

by PI, t(A 'B) £ log n/log p - 4; we also have |Ĉ | £ n (l - g’ 1) < ng"3,

whence by PI, t(C^) ̂ log n/log p - 3. (Case 2): Notice at f i r s t

!All = lc l - I®]. 8 ' c !l < " (1 - g ' 2) - " (1 - g ' 1) = n ^ ' 1 - g ' 2) < ng '4,

which by PI implies t(A|) ^ log n/log p - 4. We have now two subcases

to consider:

i i -4(i) | C1 j £ np , which yields t(B 0 ' C) £ log n/log p - 3, by PI;

i i -4(i i) |Ĉ | > np and 0 ' represents +, in which case

IcJ < n (l - g ' 1) < ng"6(l + g) and |b J £ |c| - IcJ < n (l - g "2) -

ng 4 < ng 7 (1 + g) ; i t follows that [g 3/ (l + p)] max(|c;L| ,p|b 1|) < ng’ 3,

whence, by P2, t ^ + C) <: log n/log g - 3.

i i -4Step 6 . I f |BI <; ng , set E ' «- A '^ B S ^ s p (Case 1); i f

ng" 4 < |B| £ ng’ 3, set E' - (A 'B X S ^) (Case 2); i f

ng' 3 < |b|, set E* - ((A 'S 1)S2)B (Case 3) and halt.

i i -4Assertion: (Case 1): |B| £ ng => t(B) £ log n/log g - 4, by PI;

this, (5) and (6) yield the result t (E ') £ log n/log g - 1. (Case 2);
-4 , , -3

ng < |B| £ ng imply t(B) £ log n/log g - 3 by PI and

20

_3 A — 2
| A | = |E| - |BI - |c| < n - ng - ng =113 ; this in turn yields

t (E ’) ^ log n/log 3 - 3 , whence t (E ') ^ log n/log 3 - 1. (Case 3)
"3 —3 l\

|B| > n3 implies ¡A| < n - 2n3 = n3 , whence t (A ’) <; log n/log 3 - 4;

this, (5) and (6) y ie ld t (E ') £ log n/log g - 1. This completes the

proof for PI.

Proof for P2. We shall at f i r s t consider expression E ̂ alone and show

that i t can be restructured as a sum (F^ + Gp with the following properties;
o O o

lett ing |EjJ = r (l + B)B" = r (p ' + B) , with n £ r < n + 1 , we have

t (Fx) s log r/log g - 1 and |gi | s r6 " 5(l + B).

Algorithm P2

Step 1. Choose a subexpression (B ̂ 9 c p of Ê such that

E 1 = AL 0 (B1 6 C1) ’ IB1 9 Cll a r (9 " 2 + 8"3) ‘ r (8 " 4 + 8" 5)

and |B1| £ I c j < r(B_2 + fi’ 3) - r(B ' 4 + B '5) .

Assertion; We have jA^j = |Ê | - |B̂ 9 Ĉ | £ r(B~2 + g ”2) -

r (6 -2 + b"3> + t(B ' 4 + B’ 5) = r(B ' 4 + b ' 5) = rB '5(l + B) < rB '2.
2 3 A r 2

Moreover, we have |bJ £ | C < r (3 + 3 - 3 - B) < rg .
-2Since rg < n by PI we obtain

(7) t (A p , t (A ”) , t (B p , t (C p <; log r/log 3 - 2.

Step 2. I f |C1| £ rg" , then set F l - A pB L 9 c p and Gl - A” and halt.

— 3Assertion; |bJ £ | C ̂ | £ rg ' implies that t(B^ 0 c p £ log r/log g - 3

by PI; this and (7) yield t (F p = t (A ' (B ̂ 9 C }) <: log r/log g - 1. We showed

above that | G1| <: |A | £ rg "5(l + g) .

_ O
Step_3. (|C1| > rg) . I f 9 represents define D = AjB^, set

F ̂ «- DC ,̂ G-̂ «- A' ̂ and halt.

21

Assertion: Notice that |A|B| £ |Ej - IcJ < r(p 2 + p”3) - rp”3 = rp”2;

thus, by PI, tCAjB^) £ log r/log p - 2. This and (7) y ie ld

t (F 1) = t(DC1) £ log r/log P - 1.

Step 4. (| C > rp and 0 represent "+ ") . I f |bJ £ r(p 3 + p") ,

set F^«- A^B^ + C^), ♦- Â ' and halt.

Assertion: Since p 2 + p” 3 < 2(p 4 + p 5) we have | c j < r(p 4 + p"5)

= r (l + p)p 5. Also, we have ¡bJ <; r (p ' 5 + p“ 6) = (1 + p)p’ 6. Letting

3 3

r ' " p + i mx (I c il » we have r ‘ * p~+~l r (l + 3)P 5 = rB 2, which,

by P2, implies t(B^ + C^) £ log r/log p - 2 and, consequently, t(F^) =

t(A|(B^ + C ^) <£ log r/log p - 1 .

Step 5. (| C ̂ | > r0 3, 0 represents +, and |p̂ | > r(p 5 + p 0)) .

Choose a subexpression (B ̂ 0 C2) of B̂ such that

B1 = A 1 ° (B2 9 ’ c 2) > lB2 6 ' C2I a r6 "4. |b2| s |C2| < rp '4.

Similarly find a subexpression (B ̂ 0" C^) of C^, such

that CL = A3 o (B3 0 " C3) , |b3 0 " C3 1 £ rp”4 ,

IB31 £ | C31 < rp 4. Define = AjA2 and D3 = A1A3* set

F1 < V B2 9 ' C2) + D3(B3 9" C3>>* G1 " Al 0 (A2 + Ap and h a lt*

Assertion: Notice f i r s t that |AjA3| £ |e J - | B ̂ | - |b3 0" C3| <
“ 2 «■ 3 ■ C C. / 3

r(p + 8) - r(p + 6) - rp < rp . I t follows, by PI, that

t(D3) £ log r/log 0 - 3 . Similarly, a f o r t i o r i , we obtain t(D2) ^

log r/log p - 3. Next, we notice that |b2| ^ | | < rp 4 imply, by PI,

t(B2 0 ' C2) ^ log r/log p - 3; similarly, t(B3 0 " C3) £ log r/log p - 3

holds. This shows that t(D2 (B2 0 ' C2) + D3 (B3 0" C3)) £ log r/log p - 1. Finally,

we observe that JGjJ = |Â o (A2 + A 3')| = |Ê | - |b2 0 ' C2| - |b3 0 " C3|

£ r (p '2 + p '3) - 2rp"4 < r (p '4 + p ' 5) = rp '5(l + p) .

22

In a l l cases, can be restructured as a sura expression of the form

(F^ + G)̂ where t(F^) £ log r/log 3 - 1 and |gJ £ rj3 ^(1 + p) .

Similarly E2 can be restructured as (F^ + G2) , with t (F2) ^ log r/log 3 - 2

and |G21 £ rp (1 + 3) . Notice now that max(|Ĝ | , B | Ĝ |) 3 / (I + 3)
2 a

^ rp = r " . Thus E ̂ + E2 can be structured as

E1 + E2 = Fi + (f 2 + (Gx + G2))

where t(G^ + G2) ^ log r/log 3 = log r/log 3 - 2 by the inductive

hypothesis P2, thereby yielding t(E^ + E2) ^ log r/log 3 . This completes

the proof of the lemma.

As an immediate consequence of the preceding lemma, we have the

following result.

Theorem 2. Let E be a primitive division-free arithmetic expression.

Assuming that both addition and multiplication require unit time, E can

be evaluated in paralle l in at most log |E| /log 3 « 2.0806 log2jEjtime

units.

F inally, we formulate the conjecture that there exist primitive

expressions E which require at least log |EJ/log 3 - c ' time units for

their evaluation. One possible family of such expressions is given

by the following inductive construction:

(i) Tq = a, an atomic variable;

(i i) T. = T. „(T ! -T. . + a .) + b.,J J-3 j -4 y 2

where i t is understood that a ̂ , b̂ and a l l variables appearing in

expressions T. OJ T! 0 and T. , are distinct.J“3 j-3 J-4

23

3.2. Number of processors and compiling time.

We now seek an upper-bound to the number of processors required for

the parallel evaluation of division-free expressions. For convenience,

we shall say that an expression has been Pi-restructured i f i t has been

processed by Algorithm P i , where i = 1 , 2.

We assume inductively that there are three constants c^ > 0, > 0,

and | > 1 such that:

1) I f E is a primitive expression and |E| < n, the number of

processors required for Pl-restructuring of E is at most

2) I f E is a primitive expression and |e | 6/ (1 + |3) < n, the

number of processors required for P2-restructuring of E is

at most c2 • |e | .̂

The analysis here is considerably more complicated than that for

general expressions (see preceding section), due to the large number of

cases and to the interplay of the two algorithms. Therefore we shall

omit the most tedious details and sketch the adopted approach.

We shall f i r s t consider Algorithm PI. This algorithm is characterized

by several restructuring patterns for E. In Steps 2 and 3 two different

patterns are given • Steps 5 and 6 deal with different subexpressions

and each has three patterns corresponding to the three cases of Step 5

and the three cases of Step 6 . Hence nine additional patterns arise

from considering Steps 5 and 6 . Each of these patterns is an

expression G(E , . . . , E) whose terms E , E_, . . . E are themselves l s 1 L 7 s

expressions; of these, without loss of generality, E,, E are
1 m

Pl-restruetured and E^^, . . . , Eg are P2-restructured. Moreover, there

24

are linear constraints on the nonnegative weights |E |, |e |, so

that the s-tuple (|EL|/|E |, . . . , |Eg|/|E |) is restricted to the

convex hull of a f in ite set of (extreme) points. Contrary to what we

found for general expressions, the restructured computation trees of

division-free expressions have no internal fan-out, i . e . , in general

the number of processors required by a term E., defined above, depends

only on jÊ | and no apparent advantage can be taken of the fact that

E. may share l ite ra ls with other terms of the set E........... E . Let
J 1 * s

Ni (Ej) be the number of processors required to evaluate one Pi-restructured

expression E ̂ . For any given restructuring pattern the number N^(E)

of processors is bounded as follows:

m s
N (E) £ max(N (G), £ N (E) + £ N (E .))

j= l J i=m+l Z 1

where G is the expression describing the pattern. According to our
F e

inductive assumptions ^ c1 lEj! > N^E.^ ^ c2 lE i • * since lEJ < n

for k = 1, . . . , s. Moreover, we shall assume for convenience that

and c ̂ are su ffic iently large to guarantee

m £ s -
N (G) ^ c £ |E | + c £ |E P even when E , . . . , E are individual

j= l J ̂i=m+l 1 1 s

variables. We note that the function c £ |E . + c £ |E . |̂ achieves
j = l J i=nrt-l 1

its maximum at an extreme point of the convex domain of the n-tuples

(IE1|, . . . , |ES|) by Lemma 5, since £ > 1, c > 0, c2 > 0 . The constants

5, c^, and c ̂ must be chosen such that N^(E) ^ c^|E|^. Therefore, we

shall select them so that

25

(8) c
1

j= l J i=m+l

Any restructuring pattern of Algorithm PI yields a relation of this type.

Similarly, we analyze Algorithm P2. Here again, there are four

restructuring patterns, exhibited respectively in Step 2, Step 3, Step 4,

Suppose now we pair a relation of type (8) with a relation of

type (9). We obtain two equations which can be solved for the unknowns

the largest value of § as the solution corresponding to the equation

pair.

In principle, this procedure should be carried out for each equation

pair and the largest value of £ should be retained; in practice, simple

considerations allow disregarding a large number of equation pairs. We

spare the reader the obvious but laborious details which lead to showing

that the following pattern pair yields the largest value of

Algorithm P I : (Step 5, Case 1) (Step 6 , Case 1), yielding the

and Step 5. Each such pattern is an expression H(F][, . . . , F) , where

F^, •••» Fj. are expressions, F^, . . . , F ̂ are Pl-restructured and

Fp_j_̂ > Fj. are P2-restructured. Reasoning as above, any such

patterns yields a relation of the type

c 1 /°2 anc* 5 at t îe extreme points of the convex domain of the real variables

(|E!|/!EU •••> lEsl/lEl> |F1 |/|B| , j F11 /1 E |) : we shall retain

equation:

(10) |a|? +]b|5 + |a o(A'̂ b)|? + |a ’b1|5+ |c |5 = |E|?

26

Algorithm P2; (Step 2) yielding the equation

(11) 2|a l |? + I b J S + | c x|5 = c 2/ C i | e |? .

The extreme points yielding the maximum value of § is given by:

|A|/|E| = e ‘ 2, |b|/lE| = 0, |A1|/|E| = e ' 1 - B '2, |B1 |/|E| = 0,

¡C | /1E| = 1 - p ^, for the variables appearing in (10), and by

|AjJ/|E| = 1 - p)B^|/|e | = 0 and |Ĉ |/|e | = p ̂ for the variables

appearing in (11). I t is worth pointing out that since c2^c i results to be less

than 1 the value of £ is entirely determined by (10) and is given by

§ fssi 1.817. Thus the number N(E) of required processors grows as

lE l1-817.
, ,1.232

This bound may be contrasted with the result N(E) <: 0(}E|)

which we have shown to hold for the restructuring algorithm of Brent

et a l . (see footnote (2), Section 2.2). The reason for this difference

may be traced to the fact that in the latter algorithm, as in the

algorithm described in Section 2.1, the restructuring consists essentially

of computing coeffic ients of the rational form, whereas in Algorithms

PI and P2 new expressions are being formed by composing subexpressions

of the original expression (see, particularly Steps 3 and 4 of Algorithm

PI and Step 5 of Algorithm P2).

We conclude this section with the remark that an upper-bound to the

compiling work can be obtained exactly along the lines described in

Section 2.2, resulting in the conclusion that the compiling work has the

1 817same worst-case rate of growth 0 (|E(*) .

27

4. Concluding remarks.

In this paper we have presented improved upper-bounds to the time

required for the parallel evaluation of general as wel l as division-free

arithmetic expressions. We have shown that, assuming that a l l operations

take one unit of time, an expression with n atoms can be evaluated in

at most 2.88 log n steps or 2.080 log n steps, depending upon whether

or not i t involves division. We have also exhibited families of

expressions which we conjecture to require times for their evaluation

within additive constants of the corresponding upper-bounds.

We have also investigated the growth of the compiling time for

restructured expressions and of the number of processors required for

evaluation, and elucidated an interesting connection between these

two quantities.

References

J. L. Baer and D. P. Bovet, "Compilation of Arithmetic Expressions
for Para lle l Computations," Proc. of IFIP Congress, 1968, pp. 340-
346.

Y. Muraoka, "Parallelism Exposure and Exploitation in Programs,"
Ph.D. thesis, University of I l l in o is at Urbana-Champaign , Depart­
ment of Computer Science Report No. 424, Feb. 1971.

R. P. Brent, D. J. Kuck, and K. Maruyama, "The Para lle l Evaluation
of Arithmetic Expressions Without D ivision," IEEE Transactions on
Computers, Vol. C-22, No. 5, May 1973, pp. 532-534.

F. P. Preparata and D. E. Muller, "The time required to evaluate
d ivis ion -free arithmetic expressions," to appear in Information
Processing Letters .

K. Maruyama, "On the Para lle l Evaluation of Polynomials," IEEE
Transactions on Computers. Vol. C-22, No. 1, Jan. 1973, pp. 2-5,
(o r ig in a lly , Report 437, Department of Computer Science, University
of I l l in o is at Urbana, March 1971.)

I . Munro and M. Paterson, "Optimal Algorithm for Para lle l Polynomial
Evaluation," Proc. IEEE Twelfth Annual Symposium on Switching and
Automata Theory, Oct. 1971, pp. 132-139.

D. J. Kuck and K. Maruyama, "Time bounds on the para lle l evaluation
of arithmetic expressions," to appear in SIAM Journal on Computing.

S. Winograd, "On the para lle l evaluation of certain arithmetic
expressions," to appear in JACM (also available as IBM Report
RC 4804, Yorktown Heights, N.Y., A pril 1974).

R. P. Brent, "The Para lle l Evaluation of General Arithmetic Expressions,
Journal of the ACM, Vol. 19, No. 2, A p ril 1974, pp. 201-206.

D. Blackwell and M. A. Girshick, Theory of Games and S ta tis tica l
Decisions. J. Wiley, New York, 1954.

