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Restructuring of Arithmetic Expressions for Paralle l Evaluation

David E. Muller* and Franco P. Preparata**
Coordinated Science Laboratory 

University of I l l in o is  at Urbana-Champaign 
Urbana, I l l in o is  61801

Abstract

Let E be an arithmetic expression involving n variables, each of 

which appears just once, and the possible operations of addition, multi

plication, and division. Although other cases are considered, when these 

three operations take unit time the restructuring algorithms presented in this 

paper yie ld evaluation times no greater than 2.88 lc^n  + 1 and 2.08 l°g 2n 

for general and division-free expressions, respectively. The coeffic ients

are precisely given by 2/log^ 2.88 and l/log^P w 2.08, where <y and
2 4

3 are the positive real roots of the equations z = z + 1 and z = 2z + 1 , 

respectively. While these times were known to be of order log2n, the 

best previously known coeffic ients were 4 and 2.15 for the two cases.

We conjecture that the present coeffic ients are the best possible 

and we have exhibited expressions which seem to require these times 

within an additive constant.

We also present upper-bounds to the restructuring time of a given

expression E and to the number of processors required for its parallel

1 44 1 817evaluation. We show that at most 0(n ) and 0(n ) operations are

needed for restructuring general and division-free expressions, respectively.

I t  is pointed out that, since the order of the compiling time is greater 

than n log n, the numbers of required processors exhibit the same rate 

of growth in n as the corresponding compiling times.

VcDepartment of Mathematics, University of I l l in o is  at Urbana-Champaign.

Department of E lectr ica l Engineering, University of I l l in o is  at Urbana-Champaign 
This work was supported by the Joint Services Electronics Program (U.S. Army, U.S. 
Navy, and U.S. A ir Force) under Contract DAAB-07-72-C-0259.



1

I

I

I

«

I

I

i

f t

1

I

I

I

I

I

t

I

I

t

I

1. Introduction.' 1 1 ■ " '■ ' r /

In recent times several computing systems have beep designed or 

conceived so that many arithmetic operations may be executed simultaneously; thus 

i t  is important to study ways of arranging computations to take best 

advantage of such capability. One aspect of this problem which has 

attracted the attention of many investigators is the restructuring of 

an algebraic expression by means of algebraic identities so as to yield 

a computation tree of minimum depth, and hence a minimum computation 

time. I t  is possible to either assume that the number of available 

processors is unlimited, or to regard the problem as a trade-off 

between the cost of additional processors and the advantage of greater 

speed. In this paper we make the f i r s t  assumption, because the 

mathematical methods we have developed are applicable in this case, but 

we are mindful of the importance of the more general trade-off 

between number of processors and speed, and we fee l that the methods 

used here may be adapted to the general case as well.

The early work by Baer and Bovet [l]used associativity and 

commutativity of arithmetic operations to achieve limited restructuring 

of the computation tree. Later workers such as Muraoka [2] and Brent,

Kuck, and Maruyama [3] used d istr ibutiv ity  as well; the latter group 

showed that any algebraic expression not involving division and con

taining n distinct variables called atoms could be evaluated in no 

more than 2.465 + 0(1) steps. Later, Preparata and Muller [4]

showed that the coeffic ient of log^n may be reduced to 2.1507. In the 

present paper a further reduction to 2.080 is achieved and i t  is 

conjectured that this is the minimum possible.
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The special cases of polynomial evaluation was treated by Maruyama [5] 

and by Munro and Paterson [ 6] who showed that n-th degree polynomials 

could be evaluated in + 0 (^/Tog~n) steps. Also, Kuck and

Maruyama [7] have shown, among other interesting results, that continued 

fractions with n terms require no more than 2 log2n + 0 ( 1) steps.

The case of general arithmetic expressions, which might involve

divis ion as well as the other arithmetic operations, was treated by

Winograd [ 8] and by Brent [9] . Brent's objective was the minimization

of computation time with an unlimited number of processors, and so his

results are more directly comparable to ours. His method involves the

restructuring of a general expression into a rational form. This form

can be evaluated by performing a single division at the end a fter the

numerator and denominator have been computed without using division.

He showed that any algebraic expression of n atoms could be evaluated

in this way using no more than 4 log^n + 0 (1 )  steps. In the present

paper, the same method of "end division" is used and the coeffic ient of

4 is reduced to 2.880. We also conjecture that some algebraic expressions

require this much time for their evluatior^ so that this is the minimum

possible. I t  should be pointed out, however, that while Brent's method

uses a number of processors which is proportional to n, the one described

1.44here uses a number which is proportional to n

In the next section we shall analyze general arithmetic expressions 

and establish upper-bounds on the time for their parallel evaluation as 

well as on the number of required processors. An analogous analysis 

w i l l  be presented in Section 3 for the class of division-free arithmetic

express ions.
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2. General arithmetic expressions.

2.1. Evaluation time.

Let E La an expression involving numerical variables and the 

operations of addition, subtraction, multiplication, and division.

We ca ll E a primitive expression i f  each variable appears only once 

and we ca ll the function i t  represents a primitive function. The 

variables appearing in a primitive expression w i l l  be assumed to be 

of two kinds: atomic variables a^, . . . ,  a^ and free variables x^,

. . . ,  xfi. The weight of E, written |e |, is defined as the number 

of atomic variables appearing in E.

As is well-known, an expression E may be transformed to a rational 

form P/P' representing the same function, where P and P' are polynomials 

in the variables and are re la t ive ly  prime. Also, i f  E is primitive, 

then P and P' w il l  not involve higher powers than the f i r s t  in any of 

the variables.

Let P and P' be expressed as Maclaurin's series in the free variables

writing P = E X + . . .  + E X and P' = E'X. + . . .  + E'\ , where each l i  mm I I  mm

expression X is either 1 or a product of distinct free variables, and 

the coefficients Ê  ̂ and El̂  are either 0 or are expressions involving 

atomic variables. These expressions for P and P' are unique except for 

possible order of the terms and algebraic transformations of the coeffic ients.

Define t(E^) as the minimum time required to compute E  ̂ and similarly 

define t (E p  for i  = 1, . . . ,  m. I t  is assumed that we are allowed to 

take advantage of any algebraic identities and that as many independent 

processors are available as are needed to carry out different types of
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operations simultaneously. We le t  represent the time required for addition

or subtraction, and the time required for multiplication, and we assume

these times are known for purposes of calculating the bounds to t(E^)

and t (E p .  The time for division is not needed for these calculations,

since E. and E' do not involve division, and we shall assume that division 1 i

w i l l  not be a r t i f i c ia l l y  introduced even i f  doing so speeds the calculation 

of E . and E !.l  l

Now, define £(E) as the maximum of a l l  the times t(E^,), . . . ,  t(En) ,  

t (E p ,  . . . ,  t(E^) . As remarked before, the sums P and P' are unique, 

so t(E ) is thus uniquely defined when E is a primitive expression.

Let A and B be two primitive expressions with different variables 

and let be any free variable in A. Then, we define the composition

of A and B with respect to x^, written A B as the primitive expression

obtained by substituting B for the free variable x  ̂ in A. When the free 

variable x  ̂ is understood, we shall simply write the composition as 

A o B. I t  is obvious that

IA o B | = IA | + IBI .

Lemma 1: Let A and B be two primitive expressions with distinct

variables and let t^ and t  ̂ be constructively achievable upper-bounds

to the computation times t(A) and t(B) respectively. Then the upper-

bound t(A^ o B) ^ + t ^ + *-s constructively achievable.

Proof: Let us tranform A into its rational form

A -X + . . .  + A X + +mm 1 1  m m—--------------- r—rr— and B into its rational form —pr-j-----------------------
A 'X. + . . .  + A X 1 1  mm

b ;x ; + . . .  + B' ,X ' , *1 1  m m

Next, construct the rational form for A 0 B, the composition of A and B
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with respect to some free variable x. in A. Let X and X. be two products
1 j k

in the rational form for A such that X. = x.X, and let X* be any product
J i k &

in the rational form for B. Then, there is a numerator term (A_.B̂  + A^B )̂X^X^

and a denominator term (A.'B. + A 'B ')X,Xfl' in the rational form for A o B.

Since the time to compute any of the coeffic ients is bounded by the

bound given in the lemma, the proof is complete.

Lemma 2; Let A and B be two primitive expressions with distinct

variables and let t- and t~ be constructively achievable upper-bounds
1 z VA

to the computation times t(A) and t(B) respectively. Then the following 

upper-bounds are constructively achievable:

( i )  î (A  + B) £ ta + tm + max ( t ^  t^),

( i i )  t(A  ’ B) £ t m + max ( t ^  t^ ) ,

( i ü )  î (A / B) ^ t m + max ( t 1} t2) .

Proof: Let rational forms be given for A and B which are written

as in the proof of Lemma 1. Then, i f  X. and X,1 are products in the
J k

rational forms for A and B respectively, we have the following 

constructions.

( i )  There is a numerator term (A.B' +A .,B,)X.X1' and a denominatorj k j k j k

term AjB.'X.X,1 in the rational form for A + B.J k J k -

( i i )  There is a numerator term A .B, X.Xi* and a denominator termj k j  k

AJB'X.Xi' in the rational form for A • B.J k j k

( i i i )  There is a numerator term A3^XjX^ and a denominator term

AlB.X.Xi' in the rational form for A/B.
J k '^ k

We note that the times required to compute the coefficients of these 

terms are bounded as given by the statement of the lemma and the proof

is complete.
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We now cite  a lemma which is a slight generalization of similar 

lemma appearing in [3.] and [9] , and which is written here using our 

notation, without proof.

Lemma 3: Let E be any primitive expression and q a real number

in the range 1 <. q ^ |e [ .  Then E may be written in the form 

A ^x^| (B 0 C), where A, B, and C are primitive expressions with no 

common variables, where is a free variable of A and the only variable 

of A, B, and C which does not appear in E, and where B 0 C denotes one 

of the expressions B + C ,  B • C, B / C, or C /B.  Furthermore, A, B, 

and C and be algorithmically chosen so that j Bj £ jcj < q, while 

I B| + |C| a q.

Lemma 4: Let = 1, and let a be the positive root of the
2

equation z = z + 1. I f  E is any primitive expression, the upper-bound 

t(E) £ log|E|/log a is algorithmically achievable.

Proof: Assume inductively that for some given integer n, the

result holds whenever |e | < n. By constructing the f i r s t  few cases, 

i t  is easy to show that the induction may be started with n no smaller 

than 4.

Now le t  E be some primitive expression satisfying |e | = n. Using

Lemma 3 we choose primitive expressions A, B, and C such that

E = A o (B 0 C), where the composition and operation 9 satisfy the

—2 —2conditions of Lemma 3 and where |b | £ |c| < a n but |b| + |c| ^ <y~ n.

-2 -2Since n ^ 4 and ^ w 1.44 we have a n > 1 and hence we can take <y n 

to be the number q of Lemma 3.
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By our inductive assumption, since jcj < n the rational form for 

C can be algorithmically constructed so that t(C) £ log |C |/log a < 

logo? n/log & = log n/log a - 2 is achieved. Since | B | ^ |c|,the same 

bound applies to t (B ) . Hence, by Lemma 2, the rational form for B 0 C 

may be algorithmically constructed so that t(B 9 C) £ log n/log a - 1 

is achieved.
“ 2 ~1Also, |A| = |E| - |B| - |C| £ n - a  n = a n, by the defining 

equation for a . Again, |A| < n, so inductively t(A) £ log <y ^n/log a = 

log n/log o' - 1 may be achieved. Thus, by Lemma 1, there is an algorithm 

for obtaining t(E) = £(A o (B 0 C)) ^ log n/log o', and the lemma is proved.

We wish to point out that the reason i t  is possible to use a 

larger root ot in the proof of this lemma than was used by previous 

investigators (see [ 9 ] ) ,  is that we allow the free variables of E to 

appear anywhere in the expression, and do not constrain them to l ie  on 

a single path of the original computation tree of E, as was done in 

[9 ] .

Theorem 1: Let E be a primitive expression containing no free

variables and involving possibly the operations of addition, subtraction, 

multiplication, and division, requiring times t ^, and t d respectively. 

Then a constructively achievable upper-bound to the time t(E) required 

to compute E is given by

(tA + TM)l0g lEl i .----------------------- + td «  1-44 (ta + tm) log2|E|+ r D.log 01
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Proof: Since E contains no free variables, its equivalent rational

form P/P ' is just E^E^, because ^  = 1. We have t(E) -  max(t(E ) , t ( E p ) , 

so that t(E) ^ t(E) + Tp.

Now, Lemma 4 applies to a l l  primitive expressions, so i t  applies 

to the special case in which E contains no free variables. In Lemma 4, 

the time scale was normalized to make r . + Tn = 1. Hence, to achieveA D

the present result we simply multiply the value of t(E) so normalized 

by t^ This completes the proof of the theorem.

Although the proofs which have been given show that the upper-

bound stated in Theorem 1 is achievable, we shall now exhibit two

additional techniques which may be used for restructuring of general

expressions and may improve the actual computation time in some cases.

These techniques are described below.

1. The f i r s t  technique is a variant of the algorithm described

in the proof of Lemma 4. Rather than choosing the parameter q of Lemma 
-2

3 to be ^ n, we allow i t  to be selected anywhere in the range 
-2 -1

a n £ q £ a n. The va lid ity  of the algorithm w i l l  be proved by 

"assertions" following the individual steps.

Step 1. Choose a subexpression B 9 C of E such that E = A o (B 9 C),

|B| + |C| ;> q, and |b| <£ |c| < q.

_2
Step 2. I f  |c| < a n, construct E as A o (B 9 C ).

_ £
Assertion: Since |b| £ |c| < a n, we have t (B ),  t(C) <; log n/log a - 2

giving t(B 9 C) <: log n/log oi - l .  Also, |A| = |e | - |b| - |c| <; n - q <;
-2 -1  ^

n - a n = a  nso  t(A) £ log n/log cx - 1. Hence t(E) = t(A o (B 9 C))<: 

log n/log a.
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_ 2
Step 3. I f  a n £ |c| < q then form F = A o (B 9 x ' ) ,  where x' 

is a new free variable which does not appear in E. Construct E as 

F ©  C.

Assertion: F is primitive and | f | = |E | - | c| <> n - a n = a n 

so t:(F) £ log n/log ot - 1. Also, |c| < q <. ot *n so £(C) £ log n/log ot - 1. 

Hence t(E ) = t ( F ( ^  C) <. log n/log ot •

This flexibility in the choice of the bound q of Lemma 3 may enable 

one to consider several alternative stopping points in the algorithm 

described in the proof of that lemma and choose one which yields the 

shortest time. I t  may be noted in this connection that, according to 

Lemma 2’, the operation 0 may sometimes require less than unit time.

In such an application, l i t t l e  additional compiling time is required 

i f  one bases one's time estimates on the weights |A| , |b| , and jc j .

2. A second technique for speeding the process described in 

Lemma 4 is to obtain tighter upper-bounds for starting the induction 

process. I f  for a given integer k i t  is possible to find a positive 

constant 6 such that £(E) £ log |e J / log ot - 6 whenever |e | lies in the 

range ot k £ |e | < k, then the inductive process of Lemma 4 can be 

directly extended to show that i t  also holds when JEj ^ k.

One method which might be used to find such a constant 6 is to use 

exhaustive methods to compute t(E) for a l l  expressions E satisfying 

|E|< k for some small value of k. Computer methods might be used to 

improve 6 by increasing k. To carry out an algorithm for taking
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advantage of such an improved value of 6 , i t  would be necessary to 

tabulate the fastest forms for expressions of weight less than k.

We next point out that the upper-bound to the computing time given 

in Theorem 1 does not require that the processors be capable of executing 

independent programs, but i t  holds also for computing systems in which 

a l l  processors perform the same operation at any given time. This 

occurs because each of the basic formulas used in Lemmas 1 and 2 

is either a product or a sum of two products: so the computation

sequence consists of alternating multiplication and (possibly dummy) 

addition-subtraction for the entire set of processors. Division is 

performed only once at the end of the entire calculation.

We conclude this section with the conjecture that there exist 

primitive expressions E which require at least time (T . + T ) log lEl/logo- - C 

for their evaluation, where C is a constant. A possible method for 

constructing such an expression is by the inductive definition:

( i )  Tq = a, an atomic variable;
a .

( i i ) ____]____
b. + T. * 
J J

Here, i t  is understood that the atomic variables appearing in T. and T. 

are distinct although they contain isomorphic parts and that the atomic 

variables a .,  b. also appear nowhere else.

2.2. Number of processors and compiling time.

We now wish to obtain upper-bounds to the compiling time of a 

restructured expression and to the number of processors required for 

its parallel evaluation. For this and for subsequent related results
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we require the following lemma, whose proof is omitted because i t  can 

be obtained by standard analytical techniques [ 10] .

Lemma 5. Let f (x )  be a convex-downward function of a real variable 

x and le t  g = a^f(x^) + . . .  + a ^ f ^ p ,  where x^, . are real non

negative variables and a^, a^ are positive constants. I f  the domain

of g is the convex hull defined by a set of extreme points, a l l  the 

maxima of g occur at extreme points.

In the preceding subsection we have described two algorithms for 

restructuring of a general expression. The f i r s t  of these, which was 

also the easiest to describe, was used in the proof of Lemma 4. The

second algorithm involved considering two cases but allowed one to

-2  -1choose the parameter q anywhere in the range o' n ^ q £ o' n, while
-2

the f i r s t  required q ^ ct n. In the following analyses we assume that 

the restructuring has been performed by the f i r s t  algorithm; a detailed 

analysis of the second algorithm shows, however, that,in the worst 

case,the same upper-bound is obtained.

Let W(E) denote the number of operations performed by the 

restructuring algorithm in processing a given primitive expression E.

For brevity, W(E) w i l l  be referred to as the "compiling work". I t  is 

convenient to distinguish two processes in compiling, although they are 

interleaved in the actual operation. The f i r s t  process concerns the 

decomposition of a given expression E into three expressions A, B, and C 

so that E = A o (B 9 C) (see Lemma 3), and we denote by W^(E) the 

corresponding work. The second process concerns the assignment of 

processors to carry out the operation 0 in B 0 C (see Lemma 2) and
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the composition of A with (B 9 C) (see Lemna 1); we let Ŵ CE) denote 

the corresponding work.

We begin by analyzing W^E). The corresponding algorithm (sketched 

in [3 ] )  consists of two basic steps. In the f i r s t  step, for each 

vertex of the tree T(E) representing E we compute the weight of the 

expression described by its  subtree. In the second step, we trace a 

path from the root of T(E) following at each vertex the branch of 

larger weight until B and C are found. Together these two steps require 

work which is bounded above by kjE| , for some constant k̂  > 0. In 

fact, since free variables do not contribute to the weight, only those 

vertices of T(E) must be considered by the algorithm whose descendant 

subtrees have positive weights; the number of such vertices is |e | - 1 .

The algorithm associated with Lemma 4 applies the previous algorithm 

recursively and we obtain

( 1) Wt (E) £ WX(A) + WX(B) + W^C) + kjjEl .

We now analyze W2 (E). A basic operation is the assignment of 

operands to a processor. Referring to the algorithms associated with 

Lemmas 1 and 2, the number of such assignments is at most three times 

the number of numerator and denominator terms in the rational form of 

the result (since three assignments are needed to compute wx + yz 

from operands w, x, y, z ) .

Let p, pA , pB, and pc be the numbers of free variables in E, A, B, 

and C respectively. Thus, in forming B 9 C, there are no more than
PB + Pc

6*2 such assignments, and in forming the composition of A with
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B 0 C there are no more than 6 . 2P. Hence, the corresponding compiling
pB + pc P

work is bounded above by k2(2 + 2 ) ,  where k2 > 0 is some constant.

Again, the algorithm associated with Lemma 4 applies the previous 

two recursively and we obtain:
P + p

(2) W2(E) £ W2 (A) + W2 (B) + W2 (C) + k2(2 3 C + 2P) .

Both inequalities (1) and (2) may be used to obtain upper-bounds 

to W^(E) and W2 (E) by the application of Lemma 5.

In the case of W2 (E), we assume inductively that for given n > 1, 

when |E| < n, then W^(E) <; k2 (2P + 1)(|E|^ - 1), where | ;> 1 is a 

constant to be evaluated later. We note that k2 (2P + 1) ( |E|  ̂ - 1) 

is convex-downward and that the induction may be started by suitable 

choice of k2. To complete the inductive step, we let |e | = n and 

inequality ( 2) becomes

w2 (E) s k2(2 a + 1)(|A|? - 1) + k2 (2P® + 1)(|b|5 - 1) +

Pr er Pa + Pt,
k2(2 U + 1) (|Cp - 1) + k2(2 A 3 + 2P) .

We shall obtain an upper-bound to the right hand side of this inequality

by treating |A|, |b |, and |c| as real variables. In accordance with

Lemma 5, its maximum can be shown to occur at the extreme point

“ 1 2corresponding to |A| =<* n, |b | = 1 , |c| = a~ n - 1 , and pA = p + 1 ,

PB = Pc = 0. Thus, we obtain W2 (E) <; k2 ( (2 P+1 + 1) - 1) +

2((a n - 1)  ̂ - 1) + 2P + 1). Now, | must be chosen so that

W2 Ê) ^ ^2 ( 2P + l)(n^ - 1 ) .  I f  we replace (o' ^n - 1)  ̂ by 
-2 P

(o' n)  ̂ in the right hand side of the preceding inequality, then

clearly | need not be larger than is necessary to satisfy the equation:
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+ l ) f a ' ?r£ - 1) + 2(a _25n? - 1) + 2P + 1) = k2( 2p + 1) (n5 - 1) .

This equation is satis fied  i f  = 1/2, (which yields | = l/ lo g^  ss 1.44) 

and the inductive step is ju st if ied .

In the case to which Theorem 1 applies, E has no free variables; 

that is , p = 0. Then, we obtain

(3) W2 (E) s 2k2 (|E| 1 ,44 - 1) < 2k21E| 1‘ 44.

Returning to W^(E), we make the inductive assumption that for 

given n > 1 , when |e | < n, then W^E) £ k3 1E| log2 |e | , where k3 is a 

constant to be evaluated later. Again, lE llog2|E|is convex-downward 

and the induction may be started i f  k̂  is made large enough. To 

complete the inductive step, we assume |E| = n and inequality (a) becomes 

Wl(E) 5 k3 |A|log2|A| + k3 |B|log2|B| + k3 |C|log2|C| + k jn .

To prove that W^E) <; k3 |E( log2 |E|, k3 must be chosen so that 

k3 (|A|log2|A| + |B|log2 |B| + |c|log2|c|) + kjn £ k3n log2n.

Treating |Aj, |b| , and |C| as real variables, in accordance with

Lemma 5, i t  can be shown that the maximum of the le f t  hand side of this

inequality occurs at the extreme point corresponding to |A| = oi“ ^n9 
_2

|B| = 1, |C| = a n - 1 .  This yields:
(

Ŵ CE) £ k^fo n̂ log2a *n + (a 2n - l ) lo g 2(cr 2n - 1) )  + k^n.

The constant k~ must be chosen so that the W (E) £ k n log n. I f  3 1 o
-2 -2 -2 -2we replace (q/ n - l ) l o g 2(a n - 1) by <y n lo g^  n in the right

hand side of the preceding inequality, then k̂  need be larger than is 

required to satisfy the equation:
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, -1  , -1  -2 -2
k (a n log a n + or n log a n) + k n = k n log n.

3 1 j

- 2 SThis equation is sa tis fied  for a l l  values of n i f  k = k / (I + cv" ) lo g 9a,
3 1 2

and we have

(4) W^(E) £ k3 1E| log2 |E | for a l l  E.

Combining the two results, we may write 

W(E) = W^(E) + W2 (E) £ k̂  | E | log2 1E | + 2k2 |E| .̂ Since g > 1, the second 

term dominates as |e | becomes large and W(E) grows as |E |

We now turn to the equally important problem of obtaining an 

upper-bound to the number of processors required for the evaluation 

of an expression E which has been restructured by applying the algorithm 

associated with Lemma 4. This problem is closely related to the 

previous one, and in particular to the evaluation of an upper-bound to 

W2 (E). Certainly, the total number of processors cannot exceed the 

number W2 (E) of processor assignments performed by the compiling 

algorithm. Hence, an upper-bound to the number of processors is k̂ |E | 1 

where k̂  is some constant^ y This bound does not take advantage of the 

fact that a single processor may be used repeatedly, but i t  seems 

unlikely that this property can be used to reduce the order of the 

upper-bound, and in any case could do no more than divide i t  by the 

upper-bound to t (E ) , which grows only as log2|E|.

^ I t  is worth pointing out that for the restructuring algorithm of 
general expressions described in [ 9] ,  an analogous analysis shows 
that 5 = 1 ,  whereby W (E) becomes the dominating term and W(E) grows 
as |E|log2 |E|.

( 2)
An analogous analysis can be developed for the restructuring algorithm of 
division-free expressions described in [3] . This analysis shows that the 
required number of processors grows no faster than k|E|^*^^, for some k > 0 

whereas Brent et a l . estimated this bound at 0(|E|1*71)(notice that 
1.232.. 1/2 log2Y , where y is the real positive root of = z + 1.)
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3. Division-free arithmetic expressions.

3.1. Evaluation time.

In this section we shall consider the paralle l evaluation of 

expressions involving numerical variables and the operations of 

addition, subtraction and multiplication. We shall ca l l  these 

expressions " d iv is ion-free11.

We shall use the nomenclature developed in Section 2. We know 

by Lemma 3 that any primitive expression E can be written in the form 

A @  (B 6 C ), where A, B, and C are primitive expressions with no 

common variable, x is a free variable of A not appearing in E, and 

9 represents either "+" or The expression E can be expanded in

Maclaurin's series with respect to x and x can be replaced by 

(B 9 C ). Since E is division-free we obtain

E = A '(B 9 C) + A".

Notice that, d ifferen tly  from the general case, A' and A" are primitive 

expressions and that jA 'j £ |Aj , JA" | ^ |A| . The notion of free variables 

is not essential to the following analysis, although the notation of 

composition (hereafter simplified by omitting the specification of 

the free variable involved) is quite convenient.

We shall now provide a constructive upper-bound to the time for 

paralle l evaluation of division-free expressions. As in the general 

case, we shall describe an algorithm for restructuring a given primitive 

expression into an algebraically equivalent one, so that the computation 

tree of the latter has bounded depth. Unfortunately, as the reader w il l
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notice, the tree of the restructured expression does not exhibit the 

alternation of addition and multiplication, as we found for general 

expressions. For this reason we shall assume that addition and multi

plication require identical unit times, and express the bounds in terms 

of time units. For a given expression E, we let t(E) denote the 

minimum time required to compute E.

Lemma 6 : Let 3 be the positive real root of the equation
4

z - 2z + 1 and let E be a primitive division-free expression. Then

t(E) £ log |E| /log g.

Prjoof: We assume inductively that for given integer n the following

hypothese.s hold (they are seen to be true for n  ̂ 4) ;

PI. I f  |E| < n then t(E) £ log |E| /log 3*

P2. Let Ê  and Ê  be primitive division-free expressions and 

A B3
define r = Y + S  ^  ( |E L| > 3 | E2| ) . I f  r < n, then 

t (E i  + E 2) ^ log r/log 3 .

The proof is constructive and is supplied by a procedure for restructuring 

division-free expressions. The procedure consists of two parts, Algorithms 

PI and P2, which provide the proofs of the inductive extensions of PI and P2, 

respectively. In each step, when i t  is shown that an expression satisfies 

the conditions of PI or P2, i t  is assumed that the corresponding algorithm 

is recursively called to carry out the restructuring. The two algorithms 

mutually ca ll each other, as we shall see below. We shall follow the 

same step-assertion format used in the preceding section. We begin 

by proving the inductive extension of PI.
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Proof for P I : Let |e | = n

Algorithm PI

18

Step 1. Choose a subexpression (B 0 C) of E such that E = A o (B 0 C) 

|B e C| a n (l  - g*2) ,  |b| £ |C| < n ( l  - g ' 2) .

_2 o
Assertion: We have |A| = |e | - |b 0 C| £ n - n (l - 0 ) = np’  .

~2 “ 2Moreover we have |b| £ |c| < n (l  - 0 ) < np . Therefore, by PI, we

obtain

(5) t (A ' ) ,  t (A " ) ,  t (B ) , t(C) <£ log n/log 0 - 2 .

Step 2. I f  |C| <> np , then set E «- A ' (B 0 C) + A" and halt.

Assertion: |b | £ |c| £ np implies t(B 0 C) £ log n/log p - 2 by

PI. This and (5) y ield t(A '(B  0 C)) £ log n/log 0 - 1 and t(E) £ log n/log 0.

Step 3. ( | C | > n0 ) .  I f  0 represents "+", then set E * - A ' C + A o B

and halt.

Assertion: |A o = |e | - |c| < n - n0 < np" , which by PI 

implies t(A o B)  ̂ log n/log 0 - 1 .  This and (5) yie ld t(E) ^ log n/log 0 .

Step 4. ( |C| > n0 and 0 represents Choose a subexpression

(B  ̂ 0 ' c p  of C such that C = A^ o (B^ 0 1 c p ,  with 

|B1 9 ' a n ( l  - g ' 1) ,  |B1| £ < n (l - g ' 1)

and set E -  A'BAj (B  ̂ 0 * Cp + A o (BA'p.

Assertion: Notice that |A o BA” | = |e | - |b  ̂ 0 ' C.J £ n - n (l - 0 = n0- \

which shows, by PI, that t(A o BA'p £ log n/log 0 - 1 .  To complete the 

proof we must show that the product E' = A'BA^(B^ 0 ' c p  is computable
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in time at most log n/log g - 1. We begin by transforming the expression 

A|(B^ 0 ' C^) to a product of the form S^S2.

i i -4Step 5. I f  |CjJ > ng and 0 represent n» " ,  set «- AjB^ and

S2 *" c 1(Case ! )  J else set SL A| and S2 -  (B^ 0 ' C^) (Case 2) .

Assertion: We shall show that in a l l  cases

( 6) t (S L) £ log n/log g - 4, t(S2) £ log n/log g - 3.

(Case 1): |A|B̂ |  ̂ |C| - |C ĵ < n ( l  - p ) - ng 4 < ng 4, which implies

by PI, t(A 'B) £ log n/log p - 4; we also have |Ĉ | £ n (l - g’ 1) < ng"3,

whence by PI, t(C^)  ̂ log n/log p - 3. (Case 2): Notice at f i r s t

!All = lc l - I®]. 8 ' c !l < " (1  - g ' 2) - " (1  - g ' 1) = n ^ ' 1 - g ' 2) < ng '4, 

which by PI implies t(A|) ^ log n/log p - 4. We have now two subcases 

to consider:

i i -4( i )  | C1 j £ np , which yields t(B 0 ' C ) £ log n/log p - 3, by PI;

i i -4( i i )  |Ĉ | > np and 0 ' represents +, in which case

IcJ  < n (l  - g ' 1) < ng"6( l  + g) and |b J  £ |c| - IcJ  < n (l  - g "2) -

ng 4 < ng 7 (1 + g) ; i t  follows that [g 3/ (l + p)] max(|c;L| ,p|b 1| ) < ng’ 3,

whence, by P2, t ^  + C ) <: log n/log g - 3.

i i -4Step 6 . I f  |BI <; ng , set E ' «- A '^ B S ^ s p  (Case 1); i f

ng" 4 < |B| £ ng’ 3, set E' -  (A 'B X S ^ )  (Case 2); i f  

ng' 3 < |b|, set E* -  ( (A 'S 1)S2)B (Case 3) and halt.

i i -4Assertion: (Case 1): |B| £ ng => t(B) £ log n/log g - 4, by PI;

this, (5) and (6 ) yield the result t (E ')  £ log n/log g - 1. (Case 2);
-4 , , -3

ng < |B| £ ng imply t(B) £ log n/log g - 3 by PI and
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_3 A — 2
| A | = |E| - |BI - |c| < n - ng - ng =113 ; this in turn yields

t (E ’ ) ^ log n/log 3 - 3 ,  whence t (E ' )  ^ log n/log 3 - 1. (Case 3)
"3 —3 l\

|B| > n3 implies ¡A| < n - 2n3 = n3 , whence t (A ’ ) <; log n/log 3 - 4;

this, (5) and ( 6) y ie ld t (E ')  £ log n/log g - 1. This completes the 

proof for PI.

Proof for P2. We shall at f i r s t  consider expression E  ̂ alone and show 

that i t  can be restructured as a sum (F^ + Gp with the following properties;
o O o

lett ing |EjJ = r ( l  + B)B" = r (p ' + B ) ,  with n £ r < n + 1 , we have 

t (Fx) s log r/log g - 1 and |gi | s r6 " 5( l  + B).

Algorithm P2

Step 1. Choose a subexpression (B  ̂ 9 c p  of Ê  such that

E 1 = AL 0 (B1 6 C1) ’ IB1 9 Cll  a r ( 9 " 2 + 8"3) ‘  r ( 8 " 4 + 8" 5)

and |B1| £ I c j  < r(B_2 + fi’ 3) - r(B ' 4 + B '5) .

Assertion; We have jA^j = |Ê | - |B̂  9 Ĉ | £ r(B~2 + g ”2) -

r (6 -2 + b"3> + t(B ' 4 + B’ 5) = r(B ' 4 + b ' 5) = rB '5( l  + B) < rB '2.
2 3 A r 2

Moreover, we have |bJ  £ | C < r (3 + 3  - 3  - B ) < rg .
-2Since rg < n by PI we obtain

(7) t (A p  , t (A ” ) ,  t (B p ,  t (C p  <; log r/log 3 - 2.

Step 2. I f  |C1| £ rg" , then set F l  -  A pB L 9 c p  and Gl  -  A” and halt.

— 3Assertion; |bJ £ | C ̂  | £ rg ' implies that t(B^ 0 c p  £ log r/log g - 3 

by PI; this and ( 7)  yield t (F p  = t (A ' (B  ̂ 9 C }) <: log r/log g - 1. We showed 

above that | G1| <: |A | £ rg "5( l  + g ) .

_ O
Step_3. (|C1| > rg ) .  I f  9 represents define D = AjB^, set

F  ̂ «- DC ,̂ G-̂  «- A'  ̂ and halt.
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Assertion: Notice that |A|B| £ |Ej - IcJ  < r(p 2 + p”3) - rp”3 = rp”2;

thus, by PI, tCAjB^) £ log r/log p - 2. This and ( 7) y ie ld  

t (F 1) = t(DC1) £ log r/log P - 1.

Step 4. ( | C > rp and 0 represent "+ ") . I f  |bJ  £ r(p 3 + p" ) ,

set F^«- A^B^ + C^), ♦- Â ' and halt.

Assertion: Since p 2 + p” 3 < 2(p 4 + p 5) we have | c j  < r(p 4 + p"5)

= r ( l  + p)p 5. Also, we have ¡bJ  <; r (p ' 5 + p“ 6) = (1 + p)p’ 6. Letting

3 3

r ' "  p + i  mx ( I c il » we have r ‘ *  p~+~l r ( l  + 3)P 5 = rB 2, which,

by P2, implies t(B^ + C^) £ log r/log p - 2 and, consequently, t(F^) =

t(A|(B^ + C ^ ) <£ log r/log p - 1 .

Step 5. ( | C ̂  | > r0 3, 0 represents +, and |p̂ | > r(p 5 + p 0) ) .

Choose a subexpression (B  ̂ 0 C2) of B̂  such that

B1 = A 1 ° (B2 9 ’ c 2) > lB2 6 ' C2I a r6 "4. |b2| s |C2| < rp '4. 

Similarly find a subexpression (B  ̂ 0" C^) of C^, such

that CL = A3 o (B3 0 " C3) ,  |b3 0 " C3 1 £ rp”4 ,

IB31 £ | C31 < rp 4. Define = AjA2 and D3 = A1A3* set 

F1 < V B2 9 ' C2) + D3(B3 9" C3>>* G1 "  Al 0 (A2 + Ap  and h a lt*

Assertion: Notice f i r s t  that |AjA3| £ |e J - | B ̂  | - |b3 0" C3| <
“ 2 «■ 3 ■ C C. / 3

r(p + 8  ) - r(p + 6  ) - rp < rp . I t  follows, by PI, that 

t(D3) £ log r/log 0 - 3 .  Similarly, a f o r t i o r i , we obtain t(D2) ^

log r/log p - 3. Next, we notice that |b2| ^ | |  < rp 4 imply, by PI, 

t(B2 0 ' C2) ^ log r/log p - 3; similarly, t(B3 0 " C3) £ log r/log p - 3 

holds. This shows that t(D2 (B2 0 ' C2) + D3 (B3 0" C3) )  £ log r/log p - 1. Finally, 

we observe that JGjJ = |Â  o (A2 + A 3')| = |Ê | - |b2 0 ' C2| - |b3 0 " C3|

£ r ( p '2 + p '3) - 2rp"4 < r ( p '4 + p ' 5) = rp '5( l  + p) .
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In a l l  cases, can be restructured as a sura expression of the form

(F^ + G )̂ where t(F^) £ log r/log 3 - 1 and |gJ  £ rj3 ^(1 + p) .

Similarly E2 can be restructured as (F^ + G2) , with t (F2) ^ log r/log 3 - 2

and |G21 £ rp (1 + 3 ) . Notice now that max(|Ĝ | , B | Ĝ | ) 3 / (I + 3 )
2 a

^ rp = r " .  Thus E  ̂ + E2 can be structured as

E1 + E2 = Fi + ( f 2 + (Gx + G2) )

where t(G^ + G2) ^ log r/log 3 = log r/log 3 - 2 by the inductive 

hypothesis P2, thereby yielding t(E^ + E2 ) ^ log r/log 3 . This completes 

the proof of the lemma.

As an immediate consequence of the preceding lemma, we have the 

following result.

Theorem 2. Let E be a primitive division-free arithmetic expression. 

Assuming that both addition and multiplication require unit time, E can 

be evaluated in paralle l in at most log |E| /log 3 «  2.0806 log2jEjtime 

units.

F inally, we formulate the conjecture that there exist primitive

expressions E which require at least log |EJ/log 3 - c ' time units for

their evaluation. One possible family of such expressions is given

by the following inductive construction:

( i )  Tq = a, an atomic variable;

( i i )  T. = T. „(T ! -T. . + a .) + b.,J J-3 j -4 y  2

where i t  is understood that a ̂  , b̂  and a l l  variables appearing in

expressions T. OJ T! 0 and T. , are distinct.J“3 j-3 J-4
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3.2. Number of processors and compiling time.

We now seek an upper-bound to the number of processors required for 

the parallel evaluation of division-free expressions. For convenience, 

we shall say that an expression has been Pi-restructured i f  i t  has been 

processed by Algorithm P i ,  where i  = 1 , 2.

We assume inductively that there are three constants c^ > 0, > 0,

and | > 1 such that:

1) I f  E is a primitive expression and |E| < n, the number of 

processors required for Pl-restructuring of E is at most

2) I f  E is a primitive expression and |e | 6/ ( 1  + |3) < n, the 

number of processors required for P2-restructuring of E is 

at most c2 • |e | .̂

The analysis here is considerably more complicated than that for

general expressions (see preceding section), due to the large number of

cases and to the interplay of the two algorithms. Therefore we shall

omit the most tedious details and sketch the adopted approach.

We shall f i r s t  consider Algorithm PI. This algorithm is characterized

by several restructuring patterns for E. In Steps 2 and 3 two different

patterns are given • Steps 5 and 6 deal with different subexpressions

and each has three patterns corresponding to the three cases of Step 5

and the three cases of Step 6 . Hence nine additional patterns arise

from considering Steps 5 and 6 . Each of these patterns is an

expression G(E , . . . ,  E ) whose terms E , E_, . . .  E are themselves l s 1 L 7 s

expressions; of these, without loss of generality, E,, . . . .  E are
1 m

Pl-restruetured and E^^, . . . ,  Eg are P2-restructured. Moreover, there
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are linear constraints on the nonnegative weights |E |, |e |, so

that the s-tuple ( |EL|/|E |, . . . ,  |Eg|/|E |) is restricted to the

convex hull of a f in ite  set of (extreme) points. Contrary to what we

found for general expressions, the restructured computation trees of

division-free expressions have no internal fan-out, i . e . ,  in general

the number of processors required by a term E., defined above, depends

only on jÊ | and no apparent advantage can be taken of the fact that

E. may share l ite ra ls  with other terms of the set E...........  E . Let
J 1 * s

Ni ( Ej )  be the number of processors required to evaluate one Pi-restructured 

expression E ̂  . For any given restructuring pattern the number N^(E) 

of processors is bounded as follows:

m s
N (E) £ max(N (G), £ N (E ) + £ N (E .) )

j= l  J i=m+l Z 1

where G is the expression describing the pattern. According to our
F e

inductive assumptions ^ c1 lEj! > N^E.^ ^ c2 lE i  • * since lEJ  < n

for k = 1, . . . ,  s. Moreover, we shall assume for convenience that 

and c  ̂ are su ffic iently  large to guarantee

m £ s -
N (G) ^ c £ |E | + c £ |E P  even when E , . . . ,  E are individual 

j= l  J  ̂i=m+l 1 1 s

variables. We note that the function c £ |E . + c £ |E . |̂  achieves
j = l J i=nrt-l 1

its maximum at an extreme point of the convex domain of the n-tuples 

( IE1|, . . . ,  |ES|) by Lemma 5, since £ > 1, c > 0, c2 > 0 .  The constants 

5, c^, and c  ̂ must be chosen such that N^(E) ^ c^|E|^. Therefore, we 

shall select them so that
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( 8  ) c
1

j= l  J i=m+l

Any restructuring pattern of Algorithm PI yields a relation of this type.

Similarly, we analyze Algorithm P2. Here again, there are four 

restructuring patterns, exhibited respectively in Step 2, Step 3, Step 4,

Suppose now we pair a relation of type ( 8) with a relation of 

type (9 ). We obtain two equations which can be solved for the unknowns

the largest value of § as the solution corresponding to the equation 

pair.

In principle, this procedure should be carried out for each equation 

pair and the largest value of £ should be retained; in practice, simple 

considerations allow disregarding a large number of equation pairs. We 

spare the reader the obvious but laborious details which lead to showing 

that the following pattern pair yields the largest value of

Algorithm P I : (Step 5, Case 1) (Step 6 , Case 1), yielding the

and Step 5. Each such pattern is an expression H(F][, . . . ,  F ) ,  where 

F^, •••»  Fj. are expressions, F^, . . . , F  ̂ are Pl-restructured and 

Fp_j_̂ > Fj. are P2-restructured. Reasoning as above, any such

patterns yields a relation of the type

c 1 /°2 anc* 5 at t îe extreme points of the convex domain of the real variables 

(|E!|/!EU •••> lEsl/lEl> |F1 |/|B| , j F11 /1 E | ) : we shall retain

equation:

( 10) |a|? + ]b|5 + |a o(A'̂  b)|? + |a ’b1|5+ |c |5 = |E|?
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Algorithm P2; (Step 2) yielding the equation

( 11) 2|a l |? +  I b J S  +  | c x|5 = c 2/ C i | e |? .

The extreme points yielding the maximum value of § is given by:

|A|/|E| = e ‘ 2, |b|/lE| = 0, |A1|/|E| = e ' 1 - B '2, |B1 |/|E| = 0,

¡C | /1E| = 1 - p ^, for the variables appearing in (10), and by

|AjJ/|E| = 1 - p )B^|/|e | = 0 and |Ĉ |/|e | = p  ̂ for the variables

appearing in (11). I t  is worth pointing out that since c2^c i  results to be less

than 1 the value of £ is entirely determined by ( 10) and is given by

§ fssi 1.817. Thus the number N(E) of required processors grows as

lE l1-817.
, ,1.232

This bound may be contrasted with the result N(E) <: 0(}E| )

which we have shown to hold for the restructuring algorithm of Brent 

et a l . (see footnote (2 ), Section 2.2). The reason for this difference 

may be traced to the fact that in the latter algorithm, as in the 

algorithm described in Section 2.1, the restructuring consists essentially 

of computing coeffic ients of the rational form, whereas in Algorithms 

PI and P2 new expressions are being formed by composing subexpressions 

of the original expression (see, particularly Steps 3 and 4 of Algorithm 

PI and Step 5 of Algorithm P2).

We conclude this section with the remark that an upper-bound to the

compiling work can be obtained exactly along the lines described in

Section 2.2, resulting in the conclusion that the compiling work has the

1 817same worst-case rate of growth 0 ( |E( * ) .
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4. Concluding remarks.

In this paper we have presented improved upper-bounds to the time 

required for the parallel evaluation of general as wel l  as division-free 

arithmetic expressions. We have shown that, assuming that a l l  operations 

take one unit of time, an expression with n atoms can be evaluated in 

at most 2.88 log n steps or 2.080 log n steps, depending upon whether 

or not i t  involves division. We have also exhibited families of 

expressions which we conjecture to require times for their evaluation 

within additive constants of the corresponding upper-bounds.

We have also investigated the growth of the compiling time for 

restructured expressions and of the number of processors required for 

evaluation, and elucidated an interesting connection between these

two quantities.
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