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Recursive Gate-Arrays1

C. Chiang2, S, Maddila3, M. Sarrafzadeh2

Abstract

We propose a regular architecture, called recursive gate-arrays, suitable for circuits 

with modules of non-uniform size. A set of n (rectangular and L-shaped) modules can 

be placed in a recursive gate-array occupying ©(Amin) area, where Amin is the sum of 
area of the modules. The placement can be obtained in 0(n  log n) time.

^ h is  work was supported in part by the National Science Foundation under Grant MIP-8709074 and 

ECS-8410902.

2 Department of Electrical Engineering and Computer Science, The Technological Institute, Northwestern 
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Design automation is motivated by the complexity of present day computing systems in 

the VLSI environment. The use of a regular structure facilitates the design process. In 

gate-array architecture a square region of the plane is partitioned into equal-sized square 

subregions and each module (functional cell) is placed in a distinct region.

Consider a circuit p which is a set of modules {M \,. . . ,  Mn}, where n is assumed to be 

a perfect square. Let a t- denote the area of module Mt. A gate-array layout of p requires 

0 (720:max) area, where 0^  =  max,- a,* is the area of the largest module of p. Thus, gate-arrays 

are suitable for circuits with “equal-sized” modules [CFKNS]. For circuits with non-uniform 

size modules the gate-array layout may result in excessive wastage of the layout area. In this 

paper, we propose a recursive-gate-array structure which requires ©(Amin) area to lay out 

an arbitrary circuit p, consisting of rectangular and L-shaped modules, where i4min =  J2i a i-

In a recursive-gate-array (RGA) architecture, a square region of the plane is partitioned 

into equal-sized square subregions. Each square subregion either contains a module or is 

itself an RGA (see Figure 1).

Layout of a graph G =  (V ,E ), in the unit-square-grid U =  (P, L) (see [LP] for a formal

definition of grids suitable for routing) is an embedding of G into U. Namely, each vertex

v € V  is mapped to a grid-point p 6 P  and each edge e G E  is realized by a sequence

of grid-edges (-£,■ 6 L). We assume that each grid edge is used by at most one

wire (i.e., using knock-knee layout mode where overlap of wires is not allowed [T]). Each 

module is layout of a graph G,-; boundary of each module is either rectangular or L- 

shaped. Area of each module is the area (measured in terms of grid units) enclosed by its 

boundary (see Figure 2).

If two modules correspond to the layout of the same graph then we say they can be 

converted to each other. If two modules with the same area (in an asymptotic sense) can

1



Figure 1: An RGA consisting of 15 modules

Figure 2: An L-shaped module with area 32

be converted to each other then they are called equivalent Consider a module M  occupying 

(grid) columns 1 thru i. If we remove all (horizontal) wires between column i and column 

z + 1 we obtain two modules: one with i columns and the other with t —i columns. We say M  

has been partitioned along x =  i. Hereafter, we write M  =  (uj, i )  representing a rectangular 

module M  with width w and length £\ by convention w <  i. The next lemma shows a way 

o reconfigure rectangular modules without excessive wastage.

Lem m a 1 There exists a module M ' =  (uj', £') equivalent to a given module M  =  (u>, t), for

u j <  <j j ' <  \ f w i.

Proof: This result has been established in [L] for u)' =  y/uJI. Here, we prove the result

for uj <  uj' <  y/uJl. Assume M  occupies columns 1 thru £. We partition M  along columns
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Figure 3: Converting a module

x =  £, x =  2 £ , . . .  , and a; =  into k equal modules M1?. . . ,  M*, where M, =  (cj, £) for

all ¿. We place the southwest corner of Mt- at the grid point (1, o;(z — 1) +  1) and therefore 

its northeast corner at the grid point ( f ,  uji) (see Figure 3). Next we interconnect Mi and 

Mt+1, l  <  i <  k — 1, as they were connected in M , that is, we add wires to realize the 

removed wires. The module M ' =  (a/, i') is the rectangle enclosing all submodules and wires 

with u/ =  ujk and t' — % +  2lj (see Figure 3).

The area of M ' is a.' =  u'i' =  uk(^  +  2a;) =  a +  2a;2fc, where a is the area of M. 

Next, we establish a bound on the extra area used by this layout. By hypothesis we know 

u/ =  wk <  V u l  =  yJoL or wk < y/a . Since we have assumed u < l  (we have), a; <  y/a. 

By combining these two we get oj2k <  a, or equivalently, a' <  a +  2a. Since M' and M  

correspond to the same graph and a! =  0 (a ) then M ' and M  are equivalent. □

Using the previous lemma we can change the aspect ratio (width/length) of a rectangular 

module. Our placement technique consists of two phases. In the first phase we convert all

3



,empty

f
module M module M '

Case 1

” 1 Ni

Ns Ns

M 1 Mo.

Case 2

Figure 4: Converting an L-shaped module to a rectangular module

the modules into rectangles and in the second phase we reconfigure them appropriately.

Phase 1. Conversion to Rectangles

In this phase, all L-shaped modules are converted into rectangles. Let a,b,c,d,e, and f 

denote the six sides of an L-shaped module M in Figure 4, starting from the left side in a 

clockwise ordering. The area of M is denoted by a.

Case 1) length of side e =  0(V<*) and length of side b =  0(>/<*)

Since the area of M is 0 (a )  (more precisely, a) then \c\ =  0(y/a) and \d\ =  0(y/a), where 

|x| is length of side x. Let M f be the smallest rectangle enclosing M, and let a ' denote its 

area (see Figure 4). Note a' =  a  +  |c||d| =  a +  0 (a ). Therefore, a' =  0 (a ).

Case 2) length of side e =  o(y/a)

We partition M  (by cutting the nets Ni , . . .N 3, where s <  |e|) into two rectangles M\ 

and M2, where Mi =  (a, b) and M 2 =  (e,d). We denote areas of Mi and M2 by a i (=  ab) 

and a2(=  ed), respectively, (see Figure 4)

We convert both Mi and M2 into squares M[ and M'2 of sides ai and a2, respectively (see 

Lemma 1). Without loss of generality, assume ai >  a2. Note that a\ =  0 (a) .  We place MJ
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Figure 5: Interconnecting two sub-modules

in a square M% of side a\. We place M[ and M%, with total area 0 (a ) ,  next to each other. 

Nets TVi,. . . ,  Na are realized using s horizontal line and s vertical line. Thus each dimension 

is enlarged by s =  o(y/a). (see Figure 5)

Case 3) length of side b — o(y/a)

Analysis is symmetric to Case 2.

Thus we can write the following lemma.

Lem m a 2 An L-shaped module can be converted into an equivalent rectangular module.

Phase 2. Placement

In this phase, first we convert all rectangles (output of Phase 1) into squares, as described 

in Lemma 1. We call the side of the smallest square one unit. Next we place each square in a 

square of side 2* units, for some integer i. Note that the length of the side of the latter square 

is at most twice the length of the side of the former one, and thus, its area is at most four times 

the area of the former one. We obtain a set of square modules p* =  {Mf*, . . . ,  M*},  where 

a* denote the area of M*. By virtue of Lemma 1 and Lemma 2 we know =  ©(A^n), 

where A ^ n =  £ ,  a*.

We first place every four modules of side length 2* in a module of side length 2t+1. This
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Figure 6: Recursive gate-array of f t , . . . ,  ft+1

process is continued till there are no more than three modules of each size. This gives a set 

of blocks each of which is a recursive gate-array. Note that the sum of areas of

all the blocks is A^;„. Next, we sort all the blocks with respect to their area and obtain 

an ordering { (B„ i , B„2, B^3) , . . . ,  (B^i, Bv2 , B ^ ) } ,  where groups of three blocks are all of the 

same size. Note that some of B wjs may not exist. Let &,• be the side of B^js and 6t- <  b{> for 

i < i'. Let ft denote the group of equal-sized blocks (B^i, Bv?, B ^ ). Inductively assume that 

f t , . . . ,  ft have been placed in a recursive gate array of side 2 We can place f t , . . . ,  ft+i 

in a recursive gate-array of side 26,+i as follows. Take a square of side 26,+i and partition it 

into four squares of side 6t+1. Place -ftrj+1 > i ? * ? » and f+1 in three of the squares and place 

the recursive gate-array corresponding to f t , ,  ft, with side 26,-, in the fourth square. This 

is always possible since 26t- <  6,+i (see Figure 6).

By induction, we conclude that f t , . . . ,  ft, can be placed in a recursive gate-array of side 

2bt. Since sum of the areas of Jfts is AJ^n (or ©(Amin)), and is greater than b2 (for there is 

at least one module with side bt) then (2bt)2 =  ©(Amin). Note that each (conversion) step 

takes 0(1) time per module and sorting requires a total of 0 (n  log n) time. We conclude:

T heorem  -1 A recursive gate-array layout o f n modules, with minimum achievable area, 

can be obtained in 0 (n  log n) time.

The proposed placement technique has been implemented. An example is given in Figure 7.
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Figure 7: Demonstrating the proposed algorithm
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