
JANUARY 2011 UILU-ENG-11-2203
CRHC-11-03

DEPENDENCY-BASED DECOMPOSITION
OF SYSTEMS INVOLVING RARE
EVENTS

Eric W.D. Rozier and William H. Sanders

Coordinated Science Laboratory
1308 West Main Street, Urbana, IL 61801
University o f Illinois at Urbana-Champaign

REPORT DOCUMENTATION PAGE Form A p p roved
O M B NO. 0704-0188

P u b lic re p o rt in g b u rd e n fo r th is c o lle c tio n o f In fo rm a tio n is e s tim a te d to a v e ra g e 1 h o u r p e r re s p o n s e , In c lu d in g th e t im e fo r re v ie w in g in s tru c tio n s , s e a rc h in g e x is t in g d a ta s o u rc e s ,
g a th e r in g a n d m a in ta in in g th e d a ta n e e d e d , a n d c o m p le tin g a n d re v ie w in g th e c o lle c tio n o f in fo rm a tio n . S e n d c o m m e n t re g a rd in g th is b u rd e n e s tim a te o r a n y o th e r a s p e c t o f th is
c o lle c tio n o f in fo rm a tio n , in c lu d in g s u g g e s tio n s fo r re d u c in g th is b u rd e n , to W a s h in g to n H e a d q u a rte rs S e rv ic e s D ire c to ra te fo r in fo rm a tio n O p e ra tio n s a n d R e p o rts , 1 2 1 5 J e ffe rs o n
D a v is H ig h w a y , S u ite 1 20 4 , A r lin g to n , V A 2 2 2 0 2 -4 3 0 2 , a n d to th e O ffic e o f M a n a g e m e n t a n d B u d g e t, P a p e rw o rk R e d u c tio n P ro je c t (0 7 0 4 -0 1 8 8), W a s h in g to n , D C 2 0 5 0 3 .

1. AGENCY USE ONLY (Leave blank) 2 . REPORT DATE
J a n u a ry 2 0 1 1

3. REPORT TYPE AND DATES COVERED

4. T ITLE A N D S U B TIT LE

D e p e n d e n c y - B a s e d D e c o m p o s i t i o n o f S y s t e m s I n v o l v i n g R a r e E v e n t s
5. FUNDING NUMBERS
n o t a p p l i c a b le

6. AUTHOR(S)
Eric W. D. Rozier and William H. Sanders

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Coordinated Science Laboratory, University o f Illinois at Urbana-Champaign, 1308 W.
Main Street, Urbana, Illinois, 61801-2307, USA

8. PERFORMING RGANIZATION
REPORT NUMBER

UILU-ENG-11-2203
CRHC-11-03

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

IBM University Programs
Thomas J. Watson Research Center
P.O. Box 218
Yorktown Heights, NY, 10598__________________________

10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES

12a. DISTRIBUTION/AVAILABILITY STATEMENT

Approved for public release; distribution unlimited.

12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 words)

Analysis o f the dependability o f large-scale systems presents challenges due to both the state space explosion problem and the
increasing potential impact o f rare events on dependability metrics. We propose a novel decomposition method that utilizes
information on rare events o f interest and system dependencies. We decompose models by building a graph that represents specified
reward variables and the dependence relations implied in the model specification. Near-independent relationships that involve rare
events and their consequences are then identified and used to decompose the model. The resulting submodels can then be assumed to
be independent until the first rare event fires, at which point the resulting model state can be reanalyzed, modifying the decomposition
to maintain the validity o f the assumed independence. A simplified model based on a real data deduplication system is presented as
evidence o f one application o f our approach.

14 SUBJECT TERMS

Dependence; Decomposition; Dependability; Rare event; Modeling
15. NUMBER OF PAGES

32
16. PRICE CODE

17. SECURITY CLASSIFICATION
OF REPORT

UNCLASSIFIED

18. SECURITY CLASSIFICATION
OF THIS PAGE

UNCLASSIFIED

19. SECURITY CLASSIFICATION
OF ABSTRACT

UNCLASSIFIED

20. LIMITATION OF ABSTRACT

UL

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
Prescribed by ANSI Std. 239-18
298-102

CSL
C o o r d i n a t e d S c i e n c e L a b o r a t o r y

T he U n iv e r s it y o f Illinois a t U r b a n a -C h a m p a ig n - College of Engineering

Technical Report

Dependency-Based Decomposition of Systems
Involving Rare Events

Eric W. D. Rozier and William H. Sanders
Coordinated Science Laboratory

University of Illinois at Urbana-Champaign
1308 West Main Street, Urbana, Illinois

{erozier2,whs}Qillinois.edu

K eyw ords— dependence, decomposition, dependability, rare event, modeling

1 INTRODUCTION

Abstract

Analysis of the dependability of large-scale systems presents challenges due to both the state space

explosion problem and the increasing potential impact of rare events on dependability metrics. W e

propose a novel decomposition method that utilizes information on rare events of interest and system

dependencies. W e decompose models by building a graph that represents specified reward variables

and the dependence relations implied in the model specification. Near-independent relationships that

involve rare events and their consequences are then identified and used to decompose the model.

The resulting submodels can then be assumed to be independent until the first rare event fires, at

which point the resulting model state can be reanalyzed, modifying the decomposition to maintain

the validity of the assumed independence. A simplified model based on a real data deduplication

system is presented as evidence of one application of our approach.

1 Introduction

Large and complex systems present numerous problems for modelers. As systems become larger, they

encounter the state-space explosion problem, presenting challenges for numerical solution. Though sim

ulation can be used to estimate reward variables for even infinite state spaces, solution time grows with

the number of events that must be processed. In cases where events in the model have rates that differ

by many orders of magnitude, so-called rare events, the model presented becomes stiff, increasing the

number of events that must be observed for the estimates of the chosen metrics to converge.

We examine these problems in the context of dependable systems that are composed of sets of nearly

independent subsystems. This encompasses a rich domain with many practical applications. Scientific

computing has historically driven work on large-scale computing resources, improving supercomputer

performance by two orders of magnitude each decade, as well as increasing the performance gap between

the processing ability of systems and that of individual nodes within a system [1]. The frequency of failure

of these components and the propagation of these failures to other resources are increasingly important for

understanding system dependability [2]. Large-scale storage systems have also witnessed similar trends,

with rises in the capacity of storage systems outstripping trends in individual disk capacity. Combined

with recent trends in rare silent disk failures [3] and the increased risk of error propagation posed by data

deduplication [4, 5], there is a need to develop new ways to handle the complexity of these systems and

the rare events that impact their dependability.

University of Illinois 1 Technical Report

1 INTRODUCTION

One of the most critical problems facing the modeling community is the “state-space explosion prob

lem.” Complex systems can feature large, or even infinite, state spaces, making it impossible to explore

the space in its entirety. While there are many approaches to mitigating the computational challenges

posed by large state spaces, two of the most common methods include largeness tolerance and largeness

avoidance. Largeness tolerance utilizes algorithms and data structures to maximize both the number of

states that can be represented within a given set of resources, and the speed at which these states can

be accessed and modified. Examples include lumped matrix diagrams [6], specialized search trees [7],

avoidance of explicit state-space representation [8], Kronecker products [9], and the algorithms presented

by Kemper [10] and Buchholz [11].

State-space reduction methods typically focus on exploiting model or system characteristics that

reduce the number of states that must be considered to compute a solution. Examples include methods

for partial exploration of a state space [12], symmetry detection [13], and other methods that take

advantage of structural properties, such as hierarchical modeling [14].

Rare events, despite the low probability of their occurrence, can have a large impact on the systems in

which they occur. For safety-critical systems they may define unsafe situations that can cause a critical

breakdown that results in loss of life. Outside of life-critical systems, they can represent faults that can

result in catastrophic data loss [3] or system failure. As systems increase in size and complexity, rare

event failures pose an increased risk when they occur on a per-component basis. While such failures may

still occur with the same proportion to other events, large-scale systems, such as petascale computing

resources, can often be expected to suffer a number of rare events within their normal lifetimes [15].

Two primary strategies exist for increasing the tractability of models that contain rare events: im

portance sampling and importance splitting. Importance sampling attempts to reduce the variance of

estimates of a model’s reward variables through mathematical biasing of the simulation, increasing the

proportion of rare events witnessed. This is accomplished by biasing the distributions, yielding a biased

estimator. The modeler must then come up with an appropriate way to unbias the estimators to cor

rect for the biased distributions [16, 17]. While importance sampling can greatly speed up simulations of

models that have rare events, choosing an appropriate set of biased distributions, and unbiasing functions

for the estimators, is a bit of an art, and can prove difficult. Improper choices may have the effect of

slowing down the simulation, or, worse, yielding incorrect estimators for the reward variables.

Importance splitting also attempts to bias the simulation to make rare events less rare, but does so

University of Illinois 2 Technical Report

2 MODEL DESCRIPTION

using a different approach. With importance splitting, the state space is partitioned into a number of

subsets (or levels). A level contains those states that form critical points on “important paths” in the

simulation, i.e., those that result in an increased probability of witnessing a rare event. Simulation paths

that reach a level are split and re-sampled to increase the likelihood of witnessing a rare event. All

trajectories resulting from a split are correlated, and generation of an unbiased estimator of the variance

is not a straightforward process. Selection of appropriate points to split and levels is a model-specific

problem that can impact the efficiency of solutions using this technique [18, 19].

Decomposition techniques also offer an approach to solving large, complex systems. They do so by

dividing them into smaller submodels and finding solutions for the submodels separately. If the model

cannot be broken into wholly independent submodels, the submodel interactions must also be character

ized. If the submodels are weakly coupled, we may be able to consider the system as a composition of

nearly independent submodels [20, 21].

In this paper we present a novel method for automatic decomposition of models that contain rare

events. Our technique relies on models whose structures consist of a number of nearly independent

submodels, made dependent by one or more rare events within the model. In Section 2 we present a

model specification language, which is intended to generalize our techniques, since they do not rely on a

specific formalism. In Section 3 we discuss a method for characterizing the dependence relationships in a

model as a first step towards decomposition. We then present in Section 4 a definition of rare events and

methods for identifying rare events in a model. In Section 5 we present an algorithm that uses our graph

of model dependencies and identified rare events to decompose models. We discuss solution methods for

the results of our decomposition in Section 6; in Section 7 we present an example of our methods and

discuss the results. Finally, we conclude with Section 8.

2 Model Description

We present our method in the context of a generic model specification language based on the notation

presented in [22]. This is intended as an alternative to presenting our results in a specific formalism,

both to simplify the discussion of our techniques and to generalize our methods. While many different

formalisms exist for describing discrete event systems, most can be mapped into our provided notation.

Definition 1. A high-level model specification is a 5-tuple (S, E, <I>, A, A).

University of Illinois 3 Technical Report

2 MODEL DESCRIPTION

• S is a finite set of state variables {si, S2, ■. ., sn} that take values in N.

• E is a finite set of events {ei, e2, . . . ,e m} that may occur in the model.

• $: E x 25xN —♦ {0 ,1 } is the event-enabling function specification. For each event e £ E, and any

set of state variables and their assignments q, event e is enabled and may occur for this set of state

variable assignments iff <&(e, q) = 1.

• A : E x 26xN —* (0,oo) is the transition rate function specification. For each event e, and set of

state variables and their assignments q, event e occurs with rate A(e, q) when the state variables of

the model have the values given in q.

• A : E x 2s *N —► 2‘9xN is the state variable transition function specification. For each event e £ E,

and each set of state variables and their assignments q £ 26’xN, A (e,q) —* q' defines the values

assigned to all state variables of the model when e occurs.

Definition 2. The state of a model M is obtained from the mapping if : S —i► N, where for all s £ S, ip(s)

is the value of the state variable s. $ = {ip\ip : S —* N} is the set of all such mappings.

Given definition 2 we define a set of functions 0, A, and 5, analogous to 4>, A, and A, which form the

part of the model underlying the specification from definition 3.

Definition 3. A model, M , is a 5-tuple (S, E, 0, A, ¿) in which

• S is a set of state variables {si, S2, . . . , s „ } that take values in N.

• E is the set of events {ei, e2, . . . , em} that may occur in the model.

• 0 : E x —> {0 ,1 } is the event-enabling function. For each e G E and ip G 0 (e,0) = 1 if event

ei may occur when the state of the model is ipi, and (p{ei, ipf) = 0 if the event e j may not occur when

the model is in state ipi.

• A : E x '1/ —► (0, oo) is the transition rate function. For each event e E E, and each state ip such

that <p(e,ip) = 1, the event e occurs with rate \{e,ip) while in state ip.

• 6 : E x ^ is the state transition function. For each event e £ E, and each state ip E $, the

transition function can be used to compute the new state resulting from the occurrence of e while

the model is in ip as 5(e,ip) —> ip'.

University of Illinois 4 Technical Report

3 ANALYZING MODEL DEPENDENCE

A trajectory, or behavior of a model, is described as a finite sequence of states and events. The model

is assumed to be in some initial state, with events occurring with a rate determined by A. When an

event fires, the model transitions in accordance with the state transition function S. The probability of

transitioning from some arbitrary state, to a particular next state, xpj, is the probability that an event

e is the next event such that 6(ipi, e) = ipj. We calculate this probability as:

p » * - * j) = (i)

In addition to specifying a model of a system, one must specify the performability, availability, or

dependability measures for a model. For the formalism given in definition 1, these measures are specified

in terms of reward variables [23]. Reward variables are specified as a reward structure [24] and a variable

type.

D efinition 4. Given a high-level model specification M = (S, E, <F, A, A), we define two reward struc

tures: rate rewards and impulse rewards.

• A rate reward is defined as a function 7Z : 2SxN —> R, where for q G 2SxN, 7Z(q) is the reward

accumulated when for all (s,n) 6 q the marking of s is n.

• An impulse reward is defined as a function X : E —> 1R, where for e G E,T(e) is the reward earned

upon completion of e.

Definition 5. Let © a/ = {0q,0 i , . . . } be a set of reward variables, each with reward structure 7Z or X

associated with a model M .

The type of a reward variable determines how the reward structure is evaluated, and can be defined

over an interval of time, an instant of time, or in steady state, as shown in [25, 23].

3 Analyzing Model Dependence

In order to decompose a given model M , we first analyze the dependence relationships present in the

specification. Our goal is to identify and exploit structural properties as they relate to rare events that

form dependence relationships with otherwise independent submodels.

In the ideal case, we would be able to identify fully independent submodels, which we could trivially

decompose. Most systems, however, are more complex and feature some level of dependence between

University of Illinois 5 Technical Report

3 ANALYZING MODEL DEPENDENCE

Figure 1: Two examples of near-independent submodels. The initial values of all state variables in both
models are given by so = S2 = 1, and .sq = .s3 = 0.

potential submodels. In these cases, it is sometimes possible to utilize the idea of near-independence

[26]. Characterizing the dependence of two portions of a model is complex, and involves developing a

measure of how far the model is from an ideal set of truly independent models. For that reason, using

the terminology discussed in [26], we will simply present a qualitative discussion of structures that can

arise in models that feature near-independence.

3.1 Nearly Decomposable Models

When rare events form the point of common connection between two near-independent submodels, we

wish to exploit the model structure to decompose it into a set of smaller, more tractable submodels,

H = {£o>£ii. •.}. Given that the rate of firing of rare events is much lower than that of other events

in our model, these near-independent relationships can be assumed during much of a trajectory of a

model to be equivalent to independence. In between subsequent rare events, submodels cannot interact,

potentially simplifying the solution process.

We present a Petri net, in Figure la, to aid in our discussion. A Petri net representation is used

simply because it may be familiar to the reader and because the simple nature of the example model

University of Illinois 6 Technical Report

3 ANALYZING MODEL DEPENDENCE

permits it. We do not mean to imply that all models that can be specified by definition 1 can be written

in this form. In Figure la we have a model with state variables .so, Si, .s'2, and S3 and events c0, ci, C2,

and e3. An arc connecting a state variable to an event indicates that the event is enabled only when the

indicated state variable has a value greater than zero, and that upon firing of the event, the state variable

is decremented. An arc connecting an event to a state variable indicates that the state variable should

be incremented when the event is fired. While the state of the submodel constructed of state variables

so and Si and events eo and e\ does not depend directly on events fired by the second submodel that is

constructed of state variables so and si and events eo and e\, it can still depend on the state of the other

submodel in two key ways.

• Rate dependence: The two submodels can be said to have rate dependence if the transition rate

function specification A of an event in one submodel is defined in terms of the state variables in the

other submodel.

• External dependence: When an event in one submodel has an event-enabling function specification,

defined in terms of the state or state variables of another submodel, we say the submodels feature

external dependence.

A third type of structure, synchronization dependence, is discussed in [26]. It corresponds to simul

taneous changes in the values of two or more state variables in two or more submodels. We expand upon

this notion in light of our concern with rare events to describe a new structural feature, illustrated in

Figure lb.

• A -dependence: When the firing of an event changes the value of state variables in two or more

otherwise independent submodels, we say that they feature A -dependence.

While the submodel shown in Figure lb would not normally be considered near-independent, if e\

and es represent rare events, the states of the two submodels depend on each other only rarely, when

those events fire.

For our technique, we propose to exploit these dependence relationships when the event that is the

root cause of the dependence is rare.

University of Illinois 7 Technical Report

3 ANALYZING MODEL DEPENDENCE

3.2 Model Dependency Graph

To exploit the structural properties described in the previous subsection, we must first analyze the model

in terms of our defined dependence relationships. To do so, we construct a model dependency graph.

Definition 6. The model dependency graph of a model M is defined as an undirected labeled graph,

G m = (V, A, L), where V is a set of vertices composed of two subsets V = Vs U Ve , A is a set of arcs

connecting two vertices such that one vertex is always an element of the subset Vs and one vertex is always

an element of the subset Ve , and L is a set of labels applied to elements of A from the set {<£, A, A, R}.

Let Vs denote the subset of vertices representing the state variables S £ M , and Ve denote the subset of

vertices representing the events E £ M.

Algorithm 1 Compute the model dependency graph, G\j
Vs 0

Vs* e S, Vs <— P's u vSi
Vej £ E ,V e <— Ve U vei
V <- Vs U VE
A *- 0

A, A, ft}
for all $(ej, q), e* € E,q £ 2s’xN do

for all Sj £ q such that Sj is not defined in q for all possible assignments do
A <— vSj vei with label $

end for
end for
for all A(ei,q),ei £ E,q £ 2SxN do

for all Sj £ q such that Sj is not defined in q for all possible assignments do
A <r- vs .vei with label A

end for
end for
for all A(ej, q), e* £ E,q £ 2SxN do

for all Sj £ q such that Sj is not defined in q for all possible assignments do
A <— vs .vei with label A

end for
end for
return Gm <— (V,A,L)

By performing algorithm 1, we construct using the model specification from definition 1. This

results in Gm having a node for every state variable in S and event in E, and arcs connecting an arbitrary

state variable Sj to an arbitrary event ej, iff

• The enabling condition of e .j depends on the value of s*. This indicates an external dependence and

is marked with the label <3>.

University of Illinois 8 Technical Report

3 ANALYZING MODEL DEPENDENCE

• The rate of the event ej depends on the value of s4. This represents a rate dependence and is marked

with the label A.

• The firing of ej changes the value of s*. This represents a A dependence and is marked with the

label A.

Proposition 1. For a given model M , the graph Gm constructed by algorithm 1 represents all possible

dependencies between all events and state variables in a model.

Proof. Proof by contradiction. Suppose there exist some state s* and some event e3 that are directly

dependent and not captured by Gm - All direct dependencies due to <3>, A, and A are encoded in Gm as

labeled edges by algorithm 1; thus, the dependence must be one outside of the definition of 4>, A, and A.

Since M is defined using definition 1, no such direct dependencies can exist. Thus our graph represents

all possible direct dependencies.

Suppose there exist two elements a, (3 e SU E that are indirectly dependent and not captured by the

graph Gm - They are indirectly dependent if they are both state variables and the value of a can affect

the value of (3 or vice versa. If a is a state variable and (3 is an event, they are indirectly dependent if the

firing of (3 can affect the value of a, or if the value of a can affect the value of <&(/?, q), A((3, q), or A ((3, q)

for q e 2sxN. If a and (3 are both events, they are indirectly dependent if the firing of a can affect the

value of 4>(/?, q), A(/?, q), or A(/?, q) for q £ 25xN and vice versa.

In the model this indirect dependency will take the form of a series of event firings and state variable

changes, each of which is either enabled by, or has its rates set by, a state variable upon which it depends,

and which changes the value of subsequent state variables upon which future events depend. For such

a sequence {sj, ej,Sk, e j,. . . } to exist, every consecutive pair in the sequence (s4, e^), (ej, s*), (s*, e /) ,. . .

must be directly dependent. If this is true, then from algorithm 1, there must exist a path defined

by a series of vertices in V and arcs in A from the vertex representing the starting state or event in

the sequence, to the vertex representing the final state or event in the sequence, such that path visits

each vertex that corresponds to intermediate states and events in the sequence. Therefore the indirect

dependence of a and (3 must be represented by the path va, vaVi, Vi, . . . , Vj,VjVp, vp. □

In addition to analyzing the dependencies in M, we also wish to study the dependencies implied by

the pair (M, © m)- Recall from definition 4 that a reward variable may have one of two reward structures,

rate reward or impulse reward. In the case of rate rewards, the reward structures are defined in terms

University of Illinois 9 Technical Report

4 IDENTIFYING RARE EVENTS

of a mapping between 2sxN and M; for impulse rewards, the reward structures are defined in terms of a

mapping between E and M. These relations imply a new category of dependence.

• Reward dependence: When a reward variable 9i G ©m exists such that its reward structure is

defined in terms of the state variables of two submodels, or in terms of the events of two submodels,

we say they feature reward dependence.

Unlike the other forms of dependence we have defined, reward dependence is more likely to inhibit

decomposition of our model into submodels, for reasons that will become apparent in Section 5. We add

these dependencies to Gm using algorithm 2.

A lgorithm 2 Add reward dependencies to the model dependency graph
Given Gm as generated from algorithm 1
V© 4 -0
V8t e e , v© u v0i
for all Oi G 0 do

if 6i is a rate reward defined over q G 2s xN then
for all Sj G q such that Sj is not defined in q for all possible assignments do

A 4— vSj VQi with label R
end for

end if
if Qi is a rate reward defined over E' C E then

for all ej G E f do
A 4— vejv0i with label R

end for
end if

end for
return G m <— (V A, L)

We add reward dependencies to the model dependency graph by first creating a new subset of vertices,

V©, which represent our reward variables. Arcs in A can now additionally connect a vertex vL G V© to

a vertex v3 G Vs if v* represents a rate reward and can connect a vertex e* G V© to a vertex vj G Ve if

Vi represents an impulse reward. Our previously unused arc label R is used to label all arcs in A that

contain at least one vertex in V©, indicating that they represent reward dependencies.

4 Identifying Rare Events

Having constructed our model dependency graph Gm , we wish to attempt decomposition of our model

using the encoded dependence relationships, when Gm indicates that they involve rare events. To perform

University of Illinois 10 Technical Report

4 IDENTIFYING RARE EVENTS

this decomposition we also need E r C E , the set of rare events in M. In this section we will discuss rare

events and methods for identifying them in our model.

4.1 Rare Events

Identification of rare events in a model M is not as simple as examining the supplied definition of A(e, q)

for all events. In addition to their locally defined rates, events may be considered rare for reasons such

as competition and enabling conditions. Before examining these in detail, we first present a definition

of a rare event in terms of a trajectory of model behavior. Recall from Section 2 that a trajectory

is characterized by a sequence of states and events, beginning with the initial state and transitioning

probabilistically as defined by equation 1. We present our definition of a rare event in terms of trajectories

of model behavior. We use T* to denote the set of all possible trajectories of model behavior, T G T* to

represent an individual trajectory, P(T\M) to be the probability of witnessing a trajectory T for model

M, obs(cft, T) to be the number of times event e« was observed in the multi-set T, tq̂t to be the starting

time of trajectory T, and to be the time of the last event firing of the finite trajectory T.

Definition 7. An event er G E in a model M — (S, E, 4>, A, A) is rare if per < some pmax where

Per = Pt ■ P(T), ht = ’ an(̂^ ™ ^ e se* ° f m°del trajectories.

Definition 7 allows us to capture a broad set of rare events discussed in the following subsections.

We call the parameter /imax the partition parameter, which forms the bounds between rare and non-rare

events. Its selection is model-dependent and is discussed at the end of this section.

For a given event e*, A(e», q) may be given such that it represents a rate that is several orders of

magnitude less than that of other events in the model, partitioned by the parameter pmax- In these cases

we can classify the local rate of e* to be rare. In the case of an event with a state-dependent rate (i.e.,

where A (et,q) varies for different q G 25xN), it may be useful to create two virtual events, e^i and

with the first virtual event replacing e t for values of A(e,, q) that constitute non-rare events, and e i 2

replacing e* for values that qualify as representing rare events.

Figure 2 illustrates an example in which the local rates defined by the transition rate function do

not necessarily differentiate rare events from non-rare events. Assume that the rate of the event labeled

eo is defined as A(eo,g) = G 2SxN, and that the events labeled e i,e2,e3 have rates defined as

A(cj, q) = //, W/ G 2SxN as well. Considering the case when the enabling function is defined for all events

except eo as

University of Illinois 11 Technical Report

4 IDENTIFYING RARE EVENTS

• ••

Figure 2: Models exhibiting rare events due to competition.

Figure 3: Models exhibiting rare events due to rare enabling conditions.

University of Illinois 12 Technical Report

4 IDENTIFYING RARE EVENTS

$(e»,s0)
1, if So > 1

<
0, otherwise

and the state transition function is defined in part by A(ei, (so = 1)) = (so = 0).

If we imagine a similar case in which n such events are in competition, their effective rates might be

much lower than t he local rates defined in A would imply. The effective rate of each event can be easily

determined using uniformization.

The final, and most difficult to identify, fashion in which events may be rare is when their enabling

conditions defined by $ are rare. Consider the model presented in Figure 3. Assume that all events

labeled either e or r have the same transition rate function, and that the model begins with state

variables ,s0 and .S4 equal to one, with all other state variables equal to zero. Assume that an event is

enabled when all state variables with outgoing arcs pointing to the event have values greater than zero,

and is disabled otherwise. Additionally, assume that when an event fires, it decrements by one all state

variables with outgoing arcs pointed at the event, and increments by one all state variables with incoming

arcs originating in the event.

Although the rates of all events are similar, the enabling conditions of the events labeled r are true

far less often than those of the events labeled e. The enabling conditions require that the submodels be

“synchronized,” i.e., that S2 = S7 = 1 in order to fire. The enabling condition for the second r requires

that s$ = 1, a condition that can only be true after the firing of a rare event, and before any other events

have been fired. We call these events rare because their enabling conditions depend on a model state

that is rare.

We combine these notions of how an event might qualify as rare by calculating the effective global rate

of an event. For an event ej we solve for the global rate ¡iCi, given a specification of the form presented

in definition 3, and solve for n*, the steady-state occupancy probability vector, as follows:

/» . .= E Xie' ’ * j)----- W f e] (2)

While A and 0 in equation 2 are given by the model definition, 7r* is not, and can be difficult to

calculate. In fact, the ability to solve n* would likely negate the need for our methods. In models we

University of Illinois 13 Technical Report

4 IDENTIFYING RARE EVENTS

have examined that represented real storage and high-performance computing systems, we have not yet

encountered a need to find rare events that are rare due to enabling conditions, but in the interest of

making our approach broad, we propose a method for approximating n* that may yield enough accuracy

to identify rare events.

4.2 Algorithm for Estimating Enabling Conditions

We propose the use of a bounded state-space exploration algorithm to approximate 7r*, exploiting the

fact that it is not necessarily important to derive a precise estimate of 7r*. Since the events we are looking

for are rarer than ot her events in the model, as defined by the parameter fxmax, our estimate need only

be good enough to differentiate events with rate less than ¡¿max from other events in our model.

Given a model M whose state variables S are in some initial marking q € 26xN, we utilize uniformiza-

tion to transform the continuous time Markov chain (CTMC) describing M (as given in definition 3) and

transform it into a discrete time Markov chain (DTMC) using equation 1. We then step through the

state space, using Welford’s algorithm [27] to form an estimate for 7T* that we will call n*.

A lgorithm 3 Estimate n*
n <— 0
7T(0)[^o] « - 1
W>i|t # 0,7r(0)[V>t] « - 0
W 'i.t# »] 0
Vej e E, (p[ei\ <— 0
7T* <— 7r(0)
Vej e E, ip[ei] <— 0
while Stopping criteria not met do

Let ar[] be the next state probability vector, given 0, A, and 6, and the current state occupancy
probability vector 7r(n).
n *— n + 1
d <— x — it*
v <— v -t- (dTd)11̂ L
7T* *— 7T* d—n
7T(n) *— X
Vej € E, ip[ej] = E * fc(E* 7T(n)[il>k\ • <Kej,1>k)
V>d *-
Vv *-

<Ps *- \ J v v e <n\ipvVi)i] # 0

c Vs
end while
return 7T *,<P,C

University of Illinois 14 Technical Report

4 IDENTIFYING RARE EVENTS

The algorithm builds an estimate -ft* of n* through bounded exploration of the state space of the

model M. Beginning with the initial state, we use equation 1 to explore all possible next states, and the

probability of being in those next states during the next time step. We build a running estimate of n*

as well as the variance of the estimates of the state occupancy probability for each state using Welford’s

one-pass algorithm, and store it in the vector v.

We propose stopping criteria based on two measures. First, a certain number of steps must have

been taken in the state-space exploration. At a minimum, we should take enough steps so as to form an

estimate of the value of (¿>[e4], the probability of the event et being enabled for all et € E. More formally,

0 N ~ $ 2 (3)

Algorithm 3 calculates this estimate using a version of Welford’s one-pass algorithm modified for

use with vectors, and also calculates confidence bounds using t*, the critical values for an n — 1 sample

student-t distribution for a 1 — a • 100% confidence interval, providing us with the bounds

- C < ^ 2 ■ 0 (et> tpj) < (p[et] -I- c (4)

It should be noted that our estimates need not be what might be traditionally considered “good”

estimates. Provided that we can distinguish between rough classes of enabling conditions, expecting

many orders of magnitude difference between rare and non-rare states, and given a reasonable estimate,

if*, and non-overlapping values of </?[ej], Ve*, a rough estimate may suffice to identify those events in our

model that are rare due to rare enabling conditions.

If for some reason we cannot identify events that are rare due to rare enabling conditions, we can still

identify those with locally rare rates, or rare rates due to competition, approximating fiei as p.ei,

K - E A fa .fr) f r) (5)
V V > j | V ̂ VeeE|^(c,V>j)=l /

Given either fiei based on an estimation of if*, or fiei based on the assumption that Vc4, e3 g E, cp[e*] ~

<p[ej], we can now identify a certain subset Er c E as rare events, given some partitioning scheme.

Choice of a static parameter with which to partition has been well-studied for hybrid simulation [28].

Some algorithms even propose methods for dynamic partitioning while simulating a given system [29].

University of Illinois 15 Technical Report

5 DECOMPOSING MODELS WITH RARE EVENTS

The exact choice of partitioning method is unimportant for the correctness of the general application of

our technique, but some approaches may have advantages when applied to certain specific models. For

the rest of our discussion we will assume a static partitioning parameter pmax that defines the maximum

estimated rate that results in classification of an event as a rare event.

5 Decomposing Models with Rare Events

In Section 2 we discussed the definition of a model M and a set of reward variables 0 ^ associated with

the model. In Section 3 we presented an algorithm for constructing a model dependency graph Gm that

accounts for all possible direct and indirect dependencies inherent in M and the reward variables ©m

associated with it. In Section 4 we discussed methods for identifying a subset of events Er C E in M

that can be considered rare. In this section we present an algorithm for decomposing M, based on the

graph Gm , into a set of n submodels E = {¿¡o- £i, • ■ •, fy } that can be considered independent in the

absence of the firing of a rare event. Additionally, we discuss how to repartition M using Gm after a rare

event has fired to produce a new set of independent submodels.

5.1 Decomposing the Model Dependency Graph

Given the model dependency graph G m and the set of rare events E r we produce a decomposed model

dependency graph.

Definition 8. Let G'M denote the model dependency graph for M in which all A-dependencies that

involve events in E r have been removed. For every vertex associated with a state variable whose only A -

dependencies involve events in E r , we replace those vertices with new vertices from a set Vc, representing

constant state variables whose values are equal to their initial conditions. All vertices that represent events

with rates dependent on state variables that are now represented by constant vertices are examined. If

such events have transition rate function specifications such that A(e, q) = 0 for all valid q G 2SxN given

Vc or have enabling function specifications such that $(e, <7) = 0 for all valid q G 2sxN given Vc, they

are removed. All dependencies of removed events are also removed. The process is repeated, examining

all Vr and Vr iteratively until no new vertices are removed.

We present a method for generating G'M using Gm and E r in algorithm 4.

University of Illinois 16 Technical Report

5 DECOMPOSING MODELS WITH RARE EVENTS

A lgorithm 4 Compute G'M by removing rare-event-based dependencies.

p ^ -E r
while P ^ 0 do

Remove all edges in A! in which one member of the edge is a vertex representing an event in P. If
the edge is labeled 4* or A and the event vertex corresponds to an event in Er , do not remove it.
P -> 0
for all Vi E V' that represent state variables do

if \3viVj E A' such that Viiu has label A then
V' *- V' \ Vi
Create a new constant vertex vCi E Vc
V ' <— V' U vCi
Associate a value equal to the initial marking of Si E S associated with Vi with vCi

end if
end for
for all Vj E V representing Events do

if 3vi\viVj E A! labeled $ such that Vi E Vc then
if !3q E 2s xN such that q is consistent with the constant markings associated with vertices in
Vc and $ (ej,q) = 1 then

P 4- P U Vj
end if

end if
if 3vi\viVj E A' labeled A such that Vi E Vc then

if !3q E 25xN such that q is consistent with the constant markings associated with vertices in
Vc and A(e7, q) ^ 0 then

P <— P U Vj
end if

end if
end for
V' <- V' \ P

end while
return G'K[= (V', A', L')

University of Illinois 17 Technical Report

5 DECOMPOSING MODELS WITH RARE EVENTS

Figure 4: Example decomposition of a model dependency graph Gm to G'M.

The graph G'M that results from the application of algorithm 4 to G m and Eft is then used to determine

if a valid partition of the model M exists for our technique. If G'M defines multiple unconnected sub

graphs, G'm = {g '0 \Jg[U . . . } , a valid partition exists. If it does not, our technique is not applicable. The

sub-graphs of G'M correspond to the submodels in our partition E. For a given sub-graph, g[— (V/, A '),

for each v'j £ V/ such that v'j £ Vs, we add the corresponding state variable to For each v'j £ V/

such that v'j £ Ve , we add the corresponding event to In addition, for each & £ E we restrict the

definitions of $ (e j, q), A(ej, q) and A (ej,q) to e.j £ & and q £ 2Sii xN such that S^

To further explain our decomposition algorithm, we present an example model dependency graph

and its decomposition in Figure 4. The dependency graph Gm is generated from a high-level model

specification using algorithm 1, as shown in Figure 4a. We assume that the event represented by the

vertex e2 is a rare event in the model. Applying algorithm 4, we begin with a set P = e2, remove those

edges labeled A that involve e2, and clear P. We note that the state variable represented by s2 remains

constant in the absence of e2’s A edge, and replace it with a constant vertex c2 with value equal to its

initial conditions. We then find that events e3 and have dependencies that are marked by $ labeled as

arcs, indicating an external dependency. Assume that the enabling conditions of e3 are not met by the

constant value of c2, but the enabling conditions of e4 are met. We add e3 to the now-empty P and iterate

again, this time removing e3. We do not remove s3, despite the A-dependency, as s3 has an additional

A-dependency on e\. At this point, P is empty, and we exit the algorithm, yielding G'M = G'0 U G[as

University of Illinois 18 Technical Report

6 SOLVING THE DECOMPOSED MODEL

shown in Figure 4.

5.2 Analyzing Reward Variable Dependencies

In Section 3 we used algorithm 2 to add reward variables and their dependence relationships to G\f. They

were subsequently preserved in G'M by algorithm 4. These dependencies prevent decomposition of oth

erwise independent sub-graphs by maintaining connectivity based on reward dependence. Additionally,

they help us choose solution methods for submodels in E.

P roposition 2. In the absence of the firing of a rare event, the reward variable &i is independent from

a submodel if no direct dependence exists in G'M from 0, to a vertex in g'3.

Proof. If a direct dependence existed between a reward variable 0* and a state or event in then algorithm

2 would add an edge to G'M connecting 0* to a vertex in g'3, and thus a path would exist. If there were

an indirect dependency between 9t and a vertex in g'3, then a path would exist between a vertex Vk that

has a direct dependency with 0t and a vertex in </'. If such a path existed, then Vk would be a vertex in

g'3, and thus 0j would have an edge connecting directly to a vertex in g'j. □

Given G'm, we divide all submodels in E defined by the independent sub-graphs of G"M into two sets:

those upon which reward variables do and do not depend in the absence of rare events. These sets of

submodels are called E« and E ^, respectively.

6 Solving the Decomposed Model

The primary contributions of our research are the methods proposed in Sections 3, 4, and 5, which

provide a potential means to decompose a model M into a set of submodels Eß,Em e E based on

structural features in the model M that involve dependence relationships with rare events. While we

believe our methods are useful for a variety of solution techniques, we present in this section an additional

contribution in the form of an algorithm for hybrid simulation of decomposed models, and a discussion

of complementary solution methods from the literature. Our hybrid simulation algorithm was designed

to help study the dependability characteristics of deduplicated data storage systems (in joint work with

IBM Almaden Research Center). A simplified example model based on our joint work is presented in

Section 7 to illustrate potential improvements provided by our decomposition methods.

University of Illinois 19 Technical Report

6 SOLVING THE DECOMPOSED MODEL

6.1 Hybrid Simulation of Rare-Event Decomposed Systems

Our study of rare-event-based decomposition methods was motivated by a desire to study the dependabil

ity characteristics of storage systems that utilize data deduplication, in a fault environment characterized

by rare events. In order to estimate the value of reward variables defined for models of these systems, we

have employed our decomposition methods and a hybrid simulation algorithm.

When solving our model, we view trajectories of model execution as a time series

r0 — * 7i — > r2 — » r3 — > ... (6)

where To represents our start time, and each subsequent t* represents the firing of a rare event. Given a

model of our system, M, and the set of reward variables, Qm , we produce the model dependency graph

G m , set of rare events E r : decomposed model dependency graph C'M , and set of submodels E r , E\r £ E.

Using these submodel classifications and the subset E e r E E of submodels containing rare events, we

produce two new sets of submodels,

-Sim — U (E\r f l E e r) (7)

—Num = E i r \ (E i r D E e r). (8)

A lgorithm 5 Hybrid Simulation of M
Given a model M, reward variables @ m , and initial values qo £ 2SxN for M.
while Stopping criteria for our reward variables 0 m have not been met do

Set S for model M using qo.
Generate Gm from M using Algorithms 1 and 2.
Generate G'M and E from Gm using Algorithm 4.
Derive Esim and E^m using equations 7 and 8.
Solve Esim using Discrete Event Simulation until the next event is in the set E r .
Generate 7r|. for each submodel in ENum-
Generate a random variate for each submodel & £ ENum using 7r£. to define the probability mass
function of a random variable.
Recompose E to M. Use Discrete Event Simulation to solve M for the next event.
Store the current state of the model in qo.

end while

The set Esim has all submodels that contain either a rare event or a reward dependency. The set

ENum has all submodels that contain neither rare events nor reward dependencies. Prom proposition 2

University of Illinois 20 Technical Report

6 SOLVING THE DECOMPOSED MODEL

we know that the evaluation of reward variables does not depend on ENum. Thus we need only solve

the state occupancy probability for all submodels in ENUm at the time of the next rare event firing. We

do so by making the assumption that the submodels enter steady state between firings of rare events.

Simulation of the model M is performed using algorithm 5.

The general improvement offered by this algorithm comes from the reduction of events that must be

simulated in order to estimate the effect of rare events in the system. Bucklew and Radeke [30] give

a general rule of thumb that in order to estimate the impact of an event with probability p, we must

process approximately 100/p simulations. Our method seeks to reduce the number of events that must be

processed for each computed trajectory of the simulation by eliminating those events that cannot impact

our reward variables without the firing of a rare event.

The actual performance improvement offered by this algorithm varies with the model, and with the

degree of dependence of the state variables and events in the model. For models whose resulting H does

not have the proper structure, our proposed hybrid simulator may provide no improvement, suggesting

that other methods from the literature should be used for solving a set of related submodels. In general,

between firings of a rare event, our method will produce a speed-up proportional to the rate at which we

remove events from explicit simulation. Thus, given E' as the set of all events e* € Enuhi U ej € M such

that ej ^ S, our improvement is proportional to

X^ej€E' ^ (ei>

YheitE "0i)
6 (9)

6.2 Limitations

Our methods work best in situations where the underlying submodel is loosely coupled, with the points of

loose connection being dependent on rare events. We believe this class represents a subset of interesting

models used to study dependability characteristics of high-performance computing resources [31] and

large-scale storage systems [3, 15, 32]. Additional models for which our techniques are appropriate may

also exist, provided they bear structural resemblance to our primary models of interest.

A limitation imposed by our hybrid simulation algorithm is our assumption that submodels in the

set HNum reach steady state. While we believe this assumption holds for the systems we have studied,

we could relax it by using approximate methods for generating the transient state occupancy probability

vector instead of n* [33].

University of Illinois 21 Technical Report

7 CASE STUDY: SIMPLIFIED DATA DEDUPLICATION STORAGE SYSTEM

6.3 Related Solution Methods

The methods of [26] provide an attractive application of our decomposition techniques. While the authors

do not provide a means for automatic decomposition, they provide a way to approximate a decomposed

system by describing the interaction of a set of submodels with an import graph that solves the resulting

system via fixed-point iteration.

Provided that some of the submodels identified by our method represent highly similar sub-systems,

our methods might be used with Simultaneous Simulation methods, such as those proposed by [34]. By

combining a single-clock, multi-system simulation with adaptive uniformization, these methods simulate

all alternative configurations of independent systems simultaneously, reducing the overhead involved in

event list management.

Model solution using analytic methods can also benefit from our approach. The state spaces for our

submodels are guaranteed to be smaller than that of the model as a whole, potentially decreasing the

solution time by solving the submodels and appropriately combining the solutions to form a solution of

the overall model. That approach is similar to the methods described in [20].

7 Case Study: Simplified Data Deduplication Storage System

In this section, we present an example based on a simplified deduplicated storage system [35] and demon

strate our technique for models that use rare events and a model dependency graph. Figure 5 provides

a high-level diagram of our system. The system consists of a set of n simplified storage systems, each

of which can store two objects and suffer from disk failures and fail-silent errors [15] as well as parity

pollution [3]. Each storage system can suffer a maximum of two failures before losing data.

Two processes attempt to mitigate faults before they can manifest as data loss: disk rebuilds and

a scrubbing process that evaluates disks in the system weekly, checking for silent failures and parity

pollution. An I/O workload is used to measure the reads of corrupt data and to evaluate the impact of

parity pollution.

Each subsystem can store two objects from a finite set, representing a subset of a file system. When

an object appears more than once in the entire system, the first storage system with a copy stores the

object instance and the rest of the storage systems store deduplicated objects as references to the original.

Correlated failures occur for references when an instance is lost.

University of Illinois 22 Technical Report

7 CASE STUDY: SIMPLIFIED DATA DEDUPLICATION STORAGE SYSTEM

Read
Scrubbing

Write

Figure 5: Simplified deduplication system modeling full disk failures, undetected disk errors, and parity
pollution.

D efinition 9. Summarized System Model

State Variables

• f i l e o o , . . . , f i l e o,n- i - First, fde on each of n storage subsystems.

• f i l e ito, • • •, f i l e iin- i - Second file on each of n storage subsystems.

• workingo, . . . , uiorkingn-\: Number of working drives on each of n storage subsystems.

• fa iled o , . . . , fa iled ,t_i : Number of whole disk failures on each of n storage subsystems.

• s ilen to , . . . , s i le n tn-\: Number of silent disk failures on each of n storage subsystems.

• p ollu ted o , . . . , p ollu ted n -i: Number of parity pollutions on each of n storage subsystems.

• scrubLocation: Current progress of the scrub.

• corruptedReads: Number of corrupted reads.

Events

University of Illinois 23 Technical Report

7 CASE STUDY: SIMPLIFIED DATA DEDUPLICATION STORAGE SYSTEM

• d i s k F a i l o , . . . , d i s k F a i l n- \ : Failure of a disk on each of n storage subsystems. Enabled when

workingi > 0. A = 10- lo ,V</ G 2lS:xN.

A = working^ = working^ - 1,

f a iled j = fa iled j + 1.

• s i l e n t F a i l o , . . . , s i l e n t F a i l n- \ : Silent failure of a disk on each of n storage subsystems. Enabled

when workingi > 0. Rate is given as 10-12 for all states.

A = working^ = working^ - 1,

s ilen ti = s ilen ti + 1.

• r e b u i ld ^ , . . . , r e b u i l d ^ - Rebuilds a failed disk on each of n storage subsystems. Enabled when

f a i le d ^ > 0. A = 0.004,Vq G 25xN.

A = workingi = workingi + 1,

fa ile d i = fa iled i — 1.

advanceScrub: Finishes scrubbing a storage subsystem, and advances to the next in order. Always

enabled. A = ^ . Transition function is defined as

A =
scrubLocation + 1, if scrub Location > 1

0, otherwise

scrubo,... , scrv.bndisks- i : Set of events, one per disk subsystem. Scrubs and repairs parity and

silent failures. The event scrubi is enabled when

s ilen ti + polluted^ > 0 and scrubLocation = i

University of Illinois 24 Technical Report

7 CASE STUDY: SIMPLIFIED DATA DEDUPLICATION STORAGE SYSTEM

A = 100, Vç G 2SxN.

A = working^ = polluted^ + silent*,

polluted^ = 0, silent* = 0

• w riteo , . . u/ri£endisks_i : Set of write events, one per storage subsystem. Enabled while workingi >

0 A = l,V9 e 2 SxN.

A = polluted^ = silent*, s ile n t i = 0,

f i l e 0,* = DiscreteUniform(0, n fiie objects),

f ilei,* = DiscreteUniform(0, rime objects).

• reado,. . r e a d ^ ^ - i ; Set of read events, one per storage subsystem. Enabled while workingi > 0.

A = 99, V<7 € 2SxN.

A = corruptedReads = silent*

Reward variables defined for the model include a rate reward defined when working* = 0, which

checks the state of each file on the subsystem, including whether it is a reference. A reward variable is

also defined for corruptedReads over the lifetime of the system.

Decomposition produced a submodel that accounted for the scrubbing process, each storage subsys

tem, and the I/O workload, all falling into the category HNum. A separate submodel was generated for

the fault process and disk repair state, falling into the category Hsim. The state occupancy probabilities

were calculated for each submodel prior to a rare event firing, and upon firing G'M was recalculated, with

the scrubbing process, I/O workload, and all storage subsystems that dependent on the error (i.e., that

have references to object instances on the faulty storage subsystem) composed in a single submodel. This

submodel was simulated until the failure was mitigated by scrub* or rebuild*, which are both identified

by our method as rare events due to rare state, allowing us to recalculate G'M and decompose the failed

components on successful repair.

University of Illinois 25 Technical Report

7 CASE STUDY: SIMPLIFIED DATA DEDUPLICATION STORAGE SYSTEM

M odel States
3 Storage Subsystems

Complete Model 12,288,000
Submodels £o, £i, £2 16
Submodels £3, £4, £5 1
Submodels £6 3

10 Storage Subsystems
Complete Model ~ 1 0 "
Submodels £0, • • •, £9 16
Submodels £10, . . . , £19 1
Submodels £n 10

100 Storage Subsystems
Complete Model ~ 10J"
Submodels £0, • • •, £99 16
Submodels £100, • • •, £199 1
Submodels £200 100

Figure 6: Comparison of the state space of the complete model and decomposed submodels.

Figure 6 presents the state spaces of the submodels, and of the composed model, with the state vari

able corruptedReads removed. Although corruptedReads has potentially infinite values, producing an

infinite state space, its constant nature between rare events for models in Hnuhi allowed us to numerically

solve large portions of the model provided we simulated those in Hsim- As can be seen, our methods

produced a drastic improvement in the state spaces of the submodels to be solved, when compared with

the complete model.

Direct comparisons for model solution performance between Discrete Event Simulation and Hybrid

Simulation were not possible, since our Discrete Event Simulator did not process all planned simulated

failures within the time allotted. Our decomposition-based solution was able to deliver results promptly,

processing an average of around 105 events per rare event. To provide a better comparison between

the approaches, the I/O workload model was removed, and we solved the resulting model using both

methods.

Figure 7 demonstrates the increased performance our simulator provides, for various ratios of slowest

events (s ilen t) to fastest events (rebuild) in the model. At a ratio of 10~4, we cannot choose an

appropriate /imax, as the scrubbing process and all faults are of the same order. Our method fails to find

a valid decomposition, resulting in a performance that is slightly worse than that of the Discrete Event

Simulator, reflecting our increased overhead. At a ratio of 10-5 , though we can set nmax to identify

s ile n t as rare, our algorithm fails to find a useful decomposition, owing to the indirect dependence

University of Illinois 26 Technical Report

8 CONCLUSION

Per Rare Event Averaged Performance

Ratio of Rarest Event to Least Rare in the Model

Figure 7: Comparison of performance of a Discrete Event Simulator and Hybrid Simulator with Decom
position.

between the two events which arises because of the external dependencies of each s ile n t and f a i l

event, when the external dependencies relate to the same state variable. The result is a slightly worse

performance for our algorithm, due to overhead.

For ratios of 10-6 and above, we show constant performance, as our decomposition does not change.

For all of the parameter values, we are able to obtain an ideal decomposition, simulating only when a

rare event occurs, and before it has been mitigated.

While our example seems ideal for our algorithm, it is based on a real system that we are currently

studying with our industry partners. Additionally, it is likely that our methods will provide reasonable

improvements in performance for other similar systems made up of smaller subsystems, such as high

performance clusters [31] and networks.

8 Conclusion

We have presented a new approach for decomposing models that contain rare events. This approach is

based on the degree of independence of potential subsystems of the model with respect to rare events and

the reward variables to be calculated. When portions of the model exhibit near-independence relating

to rare events in the system, we can exploit these relationships to solve large, complex models efficiently

and exactly. We provide an algorithm for our technique that automatically builds and examines a

model dependency graph that characterizes all dependence relationships using a high-level specification

of the model. All model state variables and events are converted into nodes in the graph, which are

University of Illinois 27 Technical Report

REFERENCES

connected based on the definition of the model event-enabling function specification, transition rate

function specification, and state transition function specification. Our presented techniques can be used

as the input for many solution techniques, including those discussed in Section 6. Using the Mobius

simulator and state-space generator, we obtained a large reduction in the size of the state space for our

example model.

Acknowledgments

This material is based upon work supported by an IBM Ph.D. Fellowship. The authors would like to

thank the storage group at IBM Almaden for their input, and ongoing collaboration that enabled us to

complete this technical report. We would also like to thank Jenny Applequist for her editorial comments,

as well as Robin Berthier, Ryan Lefever, Elizabeth LeMay, Kristin Y. Rozier, Sankalp Singh, and Saman

Aliari Zonouz for their comments.

References

[1] E. Strohmaier, J. Dongarra, H. Meuer, and H. Simon, “The marketplace of high-performance com

puting,” Parallel Comput. 25, pp. 1517-1544, 1999.

[2] Y. Liang, Y. Zhang, A. Sivasubramaniam, M. Jette, and R. Sahoo, “Bluegene/1 failure analysis and

prediction models,” DSN, pp. 425-434, 2006.

[3] J. L. Hafner, V. Deenadhayalan, W. Belluomini, and K. Rao, “Undetected disk errors in RAID

arrays,” IBM J Research and Development 52, no. 4, pp. 413-425, 2008.

[4] A. Z. Broder, “Identifying and filtering near-duplicate documents,” in CPM. Springer, 2000, pp.

1- 10.

[5] L. Freeman, “How safe is deduplication,” NetApp, Tech. Rep., 2008. [Online]. Available:

http://media.netapp.com/documents/tot0608.pdf

[6] S. Derisavi, P. Kemper, and W. H. Sanders, “Lumping matrix diagram representations of Markov

models,” in DSN, 2005, pp. 742-751.

University of Illinois 28 Technical Report

http://media.netapp.com/documents/tot0608.pdf

REFERENCES

[7] G. Ciardo and A. Miner, “Storage alternatives for large structured state space,” in TOOLS. Springer,

1997, pp. 44-57.

[8] D. Deavours and W. H. Sanders, “On-the-fly solution techniques for stochastic Petri nets and ex

tensions,” IEEE TSE 24, pp- 889-902, 1998.

[9] M. Davio, “Kronecker products and shuffle algebra,” IEEE TC 30, no. 2, pp. 116-125, 1981.

[10] P. Kemper, “Numerical analysis of superposed GSPNs,” in PNPM, 1995, pp. 52-61.

[11] P. Buchholz and P. Kemper, “Numerical analysis of stochastic marked graph nets,” IEEE PNPM,

p. 32, 1995.

[12] E. de Souza e Silva and P. M. Ochoa, “State space exploration in Markov models,” in SIGMETRICS,

1992, pp. 152-166.

[13] W. D. Obal II, M. G. McQuinn, and W. H. Sanders, “Detecting and exploiting symmetry in discrete-

state Markov models,” in PRDC, 2006, pp. 26-38.

[14] P. Buchholz, “Hierarchical Markovian models: Symmetries and reduction,” Performance Eval. 22,

pp. 93-100, 1995.

[15] E. Rozier, W. Belluomini, V. Deenadhayalan, J. Hafner, K. K. Rao, and P. Zhou, “Evaluating the

impact of undetected disk errors in raid systems,” in DSN. IEEE, 2009, pp. 83-92.

[16] P. Shahabuddin, “Importance sampling for the simulation of highly reliable Markovian systems,”

Manage. Sei. 40, pp. 333-352, 1994.

[17] P. W. Glynn and D. L. Iglehart, “Importance sampling for stochastic simulations,” Manage. Sei. 35,

pp. 1367-1392, 1989.

[18] H. Kahn and T. E. Harris, “Estimation of particle transmission by random sampling,” in NBS AMS,

1951, pp. 27-30.

[19] M. J. J. Garvels, “The splitting method in rare event simulation,” Ph.D. dissertation, Univ. of

Twente, Enschede, 2000.

[20] P. J. Courtois, Decomposability: Queueing and Computer System Applications. New York: Aca

demic Press, 1977.

University of Illinois 29 Technical Report

REFERENCES

[21] K. S. Trivedi and R. M. Geist, “Decomposition in reliability analysis of fault-tolerant systems,” IEEE

Trans, on Reliability, vol. R-32, no. 5, pp. 463-468, 1983.

[22] W. D. Obal II, “Measure-adaptive state-space construction methods,” Ph.D. dissertation, 1998.

[23] W. Sanders and J. Meyer, “A unified approach for specifying measures of performance, dependability,

and performability,” in Dependable Computing for Critical Applications 4■ Springer, 1991, pp. 215-

237.

[24] R. A. Howard, Dynamic Probabilistic Systems. Vol II: Semi-Markov and Decision Processes. New

York: Wiley, 1971.

[25] J. F. Meyer, “On evaluating the performability of degradable computing systems,” IEEE TC 29, pp.

720-731, 1980.

[26] G. Ciardo and K. S. Trivedi, “A decomposition approach for stochastic reward net models,” Perfor

mance Evaluation 18, no. 1, pp. 37-59, 1993.

[27] L. M. Leemis and S. K. Park, Discrete-Event Simulation: A First Course. Prentice-Hall, 2005.

[28] T. R. Kiehl, R. M. Mattheyses, and M. K. Simmons, “Hybrid simulation of cellular behavior,”

Bioinformatics 20, pp. 316-322, 2004.

[29] H. Salis and Y. Kaznessis, “Accurate hybrid stochastic simulation of a system of coupled chemical

or biochemical reactions,” J Chemical Physics 122, no. 5, 2005.

[30] J. Bucklew and R. Radeke, “On the Monte Carlo simulation of digital communication systems in

Gaussian noise,” IEEE Trans. Comm. 51, no. 2, pp. 267-274, 2003.

[31] S. Gaonkar, E. Rozier, A. Tong, and W. H. Sanders, “Scaling file systems to support petascale

clusters: A dependability analysis to support informed design choices,” in IEEE/IFIP DSN, 2008,

pp. 386-391.

[32] A. T. Clements, I. Ahmad, M. Vilayannur, J. Li, and V. Inc, “Decentralized deduplication in san

cluster file systems,” in Usenix ATEC, 2009.

[33] J. D. Diener and W. H. Sanders, “Empirical comparison of uniformization methods for continuous

time Markov chains,” in NSMC, 1995, pp. 547-570.

University of Illinois 30 Technical Report

REFERENCES

[34] S. Gaonkar and W. H. Sanders, “Simultaneous simulation of alternative system configurations,” in

PRDC, 2005, pp. 41-48.

[35] B. Zhu, K. Li, and H. Patterson, “Avoiding the disk bottleneck in the data domain deduplication

file system,” in FAST. USENIX Association, 2008, pp. 1-14.

University of Illinois 31 Technical Report

