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1 INTRODUCTION

Abstract

Analysis of the dependability of large-scale systems presents challenges due to both the state space 

explosion problem and the increasing potential impact of rare events on dependability metrics. W e  

propose a novel decomposition method that utilizes information on rare events of interest and system  

dependencies. W e decompose models by building a graph that represents specified reward variables 

and the dependence relations implied in the model specification. Near-independent relationships that 

involve rare events and their consequences are then identified and used to decompose the model. 

The resulting submodels can then be assumed to be independent until the first rare event fires, at 

which point the resulting model state can be reanalyzed, modifying the decomposition to maintain 

the validity of the assumed independence. A  simplified model based on a real data deduplication 

system is presented as evidence of one application of our approach.

1 Introduction

Large and complex systems present numerous problems for modelers. As systems become larger, they 

encounter the state-space explosion problem, presenting challenges for numerical solution. Though sim

ulation can be used to estimate reward variables for even infinite state spaces, solution time grows with 

the number of events that must be processed. In cases where events in the model have rates that differ 

by many orders of magnitude, so-called rare events, the model presented becomes stiff, increasing the 

number of events that must be observed for the estimates of the chosen metrics to converge.

We examine these problems in the context of dependable systems that are composed of sets of nearly 

independent subsystems. This encompasses a rich domain with many practical applications. Scientific 

computing has historically driven work on large-scale computing resources, improving supercomputer 

performance by two orders of magnitude each decade, as well as increasing the performance gap between 

the processing ability of systems and that of individual nodes within a system [1]. The frequency of failure 

of these components and the propagation of these failures to other resources are increasingly important for 

understanding system dependability [2]. Large-scale storage systems have also witnessed similar trends, 

with rises in the capacity of storage systems outstripping trends in individual disk capacity. Combined 

with recent trends in rare silent disk failures [3] and the increased risk of error propagation posed by data 

deduplication [4, 5], there is a need to develop new ways to handle the complexity of these systems and 

the rare events that impact their dependability.
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1 INTRODUCTION

One of the most critical problems facing the modeling community is the “state-space explosion prob

lem.” Complex systems can feature large, or even infinite, state spaces, making it impossible to explore 

the space in its entirety. While there are many approaches to mitigating the computational challenges 

posed by large state spaces, two of the most common methods include largeness tolerance and largeness 

avoidance. Largeness tolerance utilizes algorithms and data structures to maximize both the number of 

states that can be represented within a given set of resources, and the speed at which these states can 

be accessed and modified. Examples include lumped matrix diagrams [6], specialized search trees [7], 

avoidance of explicit state-space representation [8], Kronecker products [9], and the algorithms presented 

by Kemper [10] and Buchholz [11].

State-space reduction methods typically focus on exploiting model or system characteristics that 

reduce the number of states that must be considered to compute a solution. Examples include methods 

for partial exploration of a state space [12], symmetry detection [13], and other methods that take 

advantage of structural properties, such as hierarchical modeling [14].

Rare events, despite the low probability of their occurrence, can have a large impact on the systems in 

which they occur. For safety-critical systems they may define unsafe situations that can cause a critical 

breakdown that results in loss of life. Outside of life-critical systems, they can represent faults that can 

result in catastrophic data loss [3] or system failure. As systems increase in size and complexity, rare 

event failures pose an increased risk when they occur on a per-component basis. While such failures may 

still occur with the same proportion to other events, large-scale systems, such as petascale computing 

resources, can often be expected to suffer a number of rare events within their normal lifetimes [15].

Two primary strategies exist for increasing the tractability of models that contain rare events: im

portance sampling and importance splitting. Importance sampling attempts to reduce the variance of 

estimates of a model’s reward variables through mathematical biasing of the simulation, increasing the 

proportion of rare events witnessed. This is accomplished by biasing the distributions, yielding a biased 

estimator. The modeler must then come up with an appropriate way to unbias the estimators to cor

rect for the biased distributions [16, 17]. While importance sampling can greatly speed up simulations of 

models that have rare events, choosing an appropriate set of biased distributions, and unbiasing functions 

for the estimators, is a bit of an art, and can prove difficult. Improper choices may have the effect of 

slowing down the simulation, or, worse, yielding incorrect estimators for the reward variables.

Importance splitting also attempts to bias the simulation to make rare events less rare, but does so
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2 MODEL DESCRIPTION

using a different approach. With importance splitting, the state space is partitioned into a number of 

subsets (or levels). A level contains those states that form critical points on “important paths” in the 

simulation, i.e., those that result in an increased probability of witnessing a rare event. Simulation paths 

that reach a level are split and re-sampled to increase the likelihood of witnessing a rare event. All 

trajectories resulting from a split are correlated, and generation of an unbiased estimator of the variance 

is not a straightforward process. Selection of appropriate points to split and levels is a model-specific 

problem that can impact the efficiency of solutions using this technique [18, 19].

Decomposition techniques also offer an approach to solving large, complex systems. They do so by 

dividing them into smaller submodels and finding solutions for the submodels separately. If the model 

cannot be broken into wholly independent submodels, the submodel interactions must also be character

ized. If the submodels are weakly coupled, we may be able to consider the system as a composition of 

nearly independent submodels [20, 21].

In this paper we present a novel method for automatic decomposition of models that contain rare 

events. Our technique relies on models whose structures consist of a number of nearly independent 

submodels, made dependent by one or more rare events within the model. In Section 2 we present a 

model specification language, which is intended to generalize our techniques, since they do not rely on a 

specific formalism. In Section 3 we discuss a method for characterizing the dependence relationships in a 

model as a first step towards decomposition. We then present in Section 4 a definition of rare events and 

methods for identifying rare events in a model. In Section 5 we present an algorithm that uses our graph 

of model dependencies and identified rare events to decompose models. We discuss solution methods for 

the results of our decomposition in Section 6; in Section 7 we present an example of our methods and 

discuss the results. Finally, we conclude with Section 8.

2 Model Description

We present our method in the context of a generic model specification language based on the notation 

presented in [22]. This is intended as an alternative to presenting our results in a specific formalism, 

both to simplify the discussion of our techniques and to generalize our methods. While many different 

formalisms exist for describing discrete event systems, most can be mapped into our provided notation.

Definition 1. A high-level model specification is a 5-tuple (S, E, <I>, A, A).
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2 MODEL DESCRIPTION

• S is a finite set of state variables {si, S2, ■. ., sn} that take values in N.

• E is a finite set of events {ei, e2, . . .  ,e m} that may occur in the model.

• $  : E  x 25xN —♦ {0 ,1 } is the event-enabling function specification. For each event e £ E, and any 

set of state variables and their assignments q, event e is enabled and may occur for this set of state 

variable assignments iff <&(e, q) =  1.

• A : E  x 26xN —* (0,oo) is the transition rate function specification. For each event e, and set of 

state variables and their assignments q, event e occurs with rate A(e, q) when the state variables of 

the model have the values given in q.

• A : E x 2s *N —► 2‘9xN is the state variable transition function specification. For each event e £ E, 

and each set of state variables and their assignments q £ 26’xN, A (e,q) —* q' defines the values 

assigned to all state variables of the model when e occurs.

Definition 2. The state of a model M is obtained from the mapping if : S —i► N, where for all s £ S, ip(s) 

is the value of the state variable s. $  =  {ip\ip : S —* N} is the set of all such mappings.

Given definition 2 we define a set of functions 0, A, and 5, analogous to 4>, A, and A, which form the 

part of the model underlying the specification from definition 3.

Definition 3. A model, M , is a 5-tuple (S, E, 0, A, ¿) in which

• S is a set of state variables {si, S2, . . . ,  s „ }  that take values in N.

• E is the set of events {ei, e2, . . . ,  em} that may occur in the model.

• 0 : E  x —> {0 ,1 } is the event-enabling function. For each e G E and ip G 0 (e,0 ) =  1 if event 

ei may occur when the state of the model is ipi, and (p{ei, ipf) =  0 if the event e j may not occur when 

the model is in state ipi.

• A : E x '1/ —► (0, oo) is the transition rate function. For each event e E E, and each state ip such 

that <p(e,ip) =  1, the event e occurs with rate \{e,ip) while in state ip.

• 6 : E  x ^ is the state transition function. For each event e £ E, and each state ip E $ , the 

transition function can be used to compute the new state resulting from the occurrence of e while 

the model is in ip as 5(e,ip) —> ip'.
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3 ANALYZING MODEL DEPENDENCE

A trajectory, or behavior of a model, is described as a finite sequence of states and events. The model 

is assumed to be in some initial state, with events occurring with a rate determined by A. When an 

event fires, the model transitions in accordance with the state transition function S. The probability of 

transitioning from some arbitrary state, to a particular next state, xpj, is the probability that an event 

e is the next event such that 6(ipi, e ) =  ipj. We calculate this probability as:

p » *  -  * j)  =  (i)

In addition to specifying a model of a system, one must specify the performability, availability, or 

dependability measures for a model. For the formalism given in definition 1, these measures are specified 

in terms of reward variables [23]. Reward variables are specified as a reward structure [24] and a variable 

type.

D efinition 4. Given a high-level model specification M  =  (S, E, <F, A, A), we define two reward struc

tures: rate rewards and impulse rewards.

• A rate reward is defined as a function 7Z : 2SxN —> R, where for q G 2SxN, 7Z(q) is the reward 

accumulated when for all (s,n) 6 q the marking of s is n.

• An impulse reward is defined as a function X : E —> 1R, where for e G E,T(e) is the reward earned 

upon completion of e.

Definition 5. Let © a/ =  {0q,0 i , . . . }  be a set of reward variables, each with reward structure 7Z or X 

associated with a model M .

The type of a reward variable determines how the reward structure is evaluated, and can be defined 

over an interval of time, an instant of time, or in steady state, as shown in [25, 23].

3 Analyzing Model Dependence

In order to decompose a given model M , we first analyze the dependence relationships present in the 

specification. Our goal is to identify and exploit structural properties as they relate to rare events that 

form dependence relationships with otherwise independent submodels.

In the ideal case, we would be able to identify fully independent submodels, which we could trivially 

decompose. Most systems, however, are more complex and feature some level of dependence between
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3 ANALYZING MODEL DEPENDENCE

Figure 1: Two examples of near-independent submodels. The initial values of all state variables in both 
models are given by so =  S2 =  1, and .sq =  .s3 =  0.

potential submodels. In these cases, it is sometimes possible to utilize the idea of near-independence 

[26]. Characterizing the dependence of two portions of a model is complex, and involves developing a 

measure of how far the model is from an ideal set of truly independent models. For that reason, using 

the terminology discussed in [26], we will simply present a qualitative discussion of structures that can 

arise in models that feature near-independence.

3.1 Nearly Decomposable Models

When rare events form the point of common connection between two near-independent submodels, we 

wish to exploit the model structure to decompose it into a set of smaller, more tractable submodels, 

H =  {£o>£ii. •.}. Given that the rate of firing of rare events is much lower than that of other events 

in our model, these near-independent relationships can be assumed during much of a trajectory of a 

model to be equivalent to independence. In between subsequent rare events, submodels cannot interact, 

potentially simplifying the solution process.

We present a Petri net, in Figure la, to aid in our discussion. A Petri net representation is used 

simply because it may be familiar to the reader and because the simple nature of the example model
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3 ANALYZING MODEL DEPENDENCE

permits it. We do not mean to imply that all models that can be specified by definition 1 can be written 

in this form. In Figure la we have a model with state variables .so, Si, .s'2, and S3 and events c0, ci, C2, 

and e3. An arc connecting a state variable to an event indicates that the event is enabled only when the 

indicated state variable has a value greater than zero, and that upon firing of the event, the state variable 

is decremented. An arc connecting an event to a state variable indicates that the state variable should 

be incremented when the event is fired. While the state of the submodel constructed of state variables 

so and Si and events eo and e\ does not depend directly on events fired by the second submodel that is 

constructed of state variables so and si and events eo and e\, it can still depend on the state of the other 

submodel in two key ways.

• Rate dependence: The two submodels can be said to have rate dependence if the transition rate 

function specification A of an event in one submodel is defined in terms of the state variables in the 

other submodel.

• External dependence: When an event in one submodel has an event-enabling function specification,

defined in terms of the state or state variables of another submodel, we say the submodels feature 

external dependence.

A third type of structure, synchronization dependence, is discussed in [26]. It corresponds to simul

taneous changes in the values of two or more state variables in two or more submodels. We expand upon 

this notion in light of our concern with rare events to describe a new structural feature, illustrated in 

Figure lb.

• A -dependence: When the firing of an event changes the value of state variables in two or more 

otherwise independent submodels, we say that they feature A -dependence.

While the submodel shown in Figure lb  would not normally be considered near-independent, if e\ 

and es represent rare events, the states of the two submodels depend on each other only rarely, when 

those events fire.

For our technique, we propose to exploit these dependence relationships when the event that is the 

root cause of the dependence is rare.
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3 ANALYZING MODEL DEPENDENCE

3.2 Model Dependency Graph

To exploit the structural properties described in the previous subsection, we must first analyze the model 

in terms of our defined dependence relationships. To do so, we construct a model dependency graph.

Definition 6. The model dependency graph of a model M  is defined as an undirected labeled graph, 

G m =  (V, A, L), where V is a set of vertices composed of two subsets V  =  Vs U Ve , A is a set of arcs 

connecting two vertices such that one vertex is always an element of the subset Vs and one vertex is always 

an element of the subset Ve , and L is a set of labels applied to elements of A from the set {<£, A, A, R}. 

Let Vs denote the subset of vertices representing the state variables S £ M , and Ve denote the subset of 

vertices representing the events E £ M.

Algorithm 1 Compute the model dependency graph, G\j 
Vs 0

Vs* e S, Vs  <— P's u vSi 
Vej £ E ,V e <— Ve U vei 
V <- Vs  U VE 
A *- 0

A, A, ft}
for all $(ej, q), e* € E,q £ 2s’xN do

for all Sj £ q such that Sj is not defined in q for all possible assignments do 
A <— vSj vei with label $ 

end for 
end for
for all A(ei,q),ei £ E,q £ 2SxN do

for all Sj £ q such that Sj is not defined in q for all possible assignments do 
A <r- vs .vei with label A 

end for 
end for
for all A(ej, q), e* £ E,q £ 2SxN do

for all Sj £ q such that Sj is not defined in q for all possible assignments do 
A <— vs .vei with label A 

end for 
end for
return Gm <— (V,A,L)

By performing algorithm 1, we construct using the model specification from definition 1. This 

results in Gm having a node for every state variable in S and event in E, and arcs connecting an arbitrary 

state variable Sj to an arbitrary event ej, iff

• The enabling condition of e .j depends on the value of s*. This indicates an external dependence and 

is marked with the label <3>.
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3 ANALYZING MODEL DEPENDENCE

• The rate of the event ej depends on the value of s4. This represents a rate dependence and is marked 

with the label A.

• The firing of ej changes the value of s*. This represents a A dependence and is marked with the 

label A.

Proposition 1. For a given model M , the graph Gm constructed by algorithm 1 represents all possible 

dependencies between all events and state variables in a model.

Proof. Proof by contradiction. Suppose there exist some state s* and some event e3 that are directly 

dependent and not captured by Gm - All direct dependencies due to <3>, A, and A are encoded in Gm as 

labeled edges by algorithm 1; thus, the dependence must be one outside of the definition of 4>, A, and A. 

Since M  is defined using definition 1, no such direct dependencies can exist. Thus our graph represents 

all possible direct dependencies.

Suppose there exist two elements a, (3 e  SU E  that are indirectly dependent and not captured by the 

graph Gm - They are indirectly dependent if they are both state variables and the value of a can affect 

the value of (3 or vice versa. If a is a state variable and (3 is an event, they are indirectly dependent if the 

firing of (3 can affect the value of a, or if the value of a can affect the value of <&(/?, q), A((3, q), or A ((3, q) 

for q e  2sxN. If a and (3 are both events, they are indirectly dependent if the firing of a can affect the 

value of 4>(/?, q), A(/?, q), or A(/?, q) for q £ 25xN and vice versa.

In the model this indirect dependency will take the form of a series of event firings and state variable 

changes, each of which is either enabled by, or has its rates set by, a state variable upon which it depends, 

and which changes the value of subsequent state variables upon which future events depend. For such 

a sequence {sj, ej,Sk, e j,. . . }  to exist, every consecutive pair in the sequence (s4, e^), (ej, s*), (s*, e /) ,. . .  

must be directly dependent. If this is true, then from algorithm 1, there must exist a path defined 

by a series of vertices in V and arcs in A from the vertex representing the starting state or event in 

the sequence, to the vertex representing the final state or event in the sequence, such that path visits 

each vertex that corresponds to intermediate states and events in the sequence. Therefore the indirect 

dependence of a and (3 must be represented by the path va, vaVi, Vi, . . . ,  Vj,VjVp, vp. □

In addition to analyzing the dependencies in M, we also wish to study the dependencies implied by 

the pair (M, © m )- Recall from definition 4 that a reward variable may have one of two reward structures, 

rate reward or impulse reward. In the case of rate rewards, the reward structures are defined in terms
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4 IDENTIFYING RARE EVENTS

of a mapping between 2sxN and M; for impulse rewards, the reward structures are defined in terms of a 

mapping between E  and M. These relations imply a new category of dependence.

• Reward dependence: When a reward variable 9i G ©m exists such that its reward structure is 

defined in terms of the state variables of two submodels, or in terms of the events of two submodels, 

we say they feature reward dependence.

Unlike the other forms of dependence we have defined, reward dependence is more likely to inhibit 

decomposition of our model into submodels, for reasons that will become apparent in Section 5. We add 

these dependencies to Gm using algorithm 2.

A lgorithm  2 Add reward dependencies to the model dependency graph 
Given Gm as generated from algorithm 1 
V© 4 -0
V8t e  e ,  v© u v0i 
for all Oi G 0  do

if 6i is a rate reward defined over q G 2s xN then
for all Sj G q such that Sj is not defined in q for all possible assignments do 

A 4— vSj VQi with label R 
end for 

end if
if Qi is a rate reward defined over E' C E  then 

for all ej G E f do
A 4— vejv0i with label R 

end for 
end if 

end for
return G m <— (V  A, L )

We add reward dependencies to the model dependency graph by first creating a new subset of vertices, 

V©, which represent our reward variables. Arcs in A can now additionally connect a vertex vL G V© to 

a vertex v3 G Vs if v* represents a rate reward and can connect a vertex e* G V© to a vertex vj G Ve if 

Vi represents an impulse reward. Our previously unused arc label R is used to label all arcs in A that 

contain at least one vertex in V©, indicating that they represent reward dependencies.

4 Identifying Rare Events

Having constructed our model dependency graph Gm , we wish to attempt decomposition of our model 

using the encoded dependence relationships, when Gm indicates that they involve rare events. To perform
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4 IDENTIFYING RARE EVENTS

this decomposition we also need E r C E ,  the set of rare events in M. In this section we will discuss rare 

events and methods for identifying them in our model.

4.1 Rare Events

Identification of rare events in a model M  is not as simple as examining the supplied definition of A(e, q) 

for all events. In addition to their locally defined rates, events may be considered rare for reasons such 

as competition and enabling conditions. Before examining these in detail, we first present a definition 

of a rare event in terms of a trajectory of model behavior. Recall from Section 2 that a trajectory 

is characterized by a sequence of states and events, beginning with the initial state and transitioning 

probabilistically as defined by equation 1. We present our definition of a rare event in terms of trajectories 

of model behavior. We use T* to denote the set of all possible trajectories of model behavior, T  G T* to 

represent an individual trajectory, P(T\M) to be the probability of witnessing a trajectory T for model 

M, obs(cft, T) to be the number of times event e«  was observed in the multi-set T, tq̂t to be the starting 

time of trajectory T, and to be the time of the last event firing of the finite trajectory T.

Definition 7. An event er G E in a model M  — (S, E, 4>, A, A) is rare if per < some pmax where 

Per =  Pt ■ P(T), ht =  ’ an(  ̂^ ™  ^ e se* ° f  m°del trajectories.

Definition 7 allows us to capture a broad set of rare events discussed in the following subsections. 

We call the parameter /imax the partition parameter, which forms the bounds between rare and non-rare 

events. Its selection is model-dependent and is discussed at the end of this section.

For a given event e*, A(e», q) may be given such that it represents a rate that is several orders of 

magnitude less than that of other events in the model, partitioned by the parameter pmax- In these cases 

we can classify the local rate of e* to be rare. In the case of an event with a state-dependent rate (i.e., 

where A (et,q) varies for different q G 25xN), it may be useful to create two virtual events, e^i and 

with the first virtual event replacing e t for values of A(e,, q) that constitute non-rare events, and e i 2 

replacing e* for values that qualify as representing rare events.

Figure 2 illustrates an example in which the local rates defined by the transition rate function do 

not necessarily differentiate rare events from non-rare events. Assume that the rate of the event labeled 

eo is defined as A(eo,g) =  G 2SxN, and that the events labeled e i,e2,e3 have rates defined as

A(cj, q) =  //, W/ G 2SxN as well. Considering the case when the enabling function is defined for all events 

except eo as
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• ••

Figure 2: Models exhibiting rare events due to competition.

Figure 3: Models exhibiting rare events due to rare enabling conditions.
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$(e»,s0)
1, if So > 1

<
0, otherwise

and the state transition function is defined in part by A(ei, (so =  1)) =  (so =  0).

If we imagine a similar case in which n such events are in competition, their effective rates might be 

much lower than t he local rates defined in A would imply. The effective rate of each event can be easily 

determined using uniformization.

The final, and most difficult to identify, fashion in which events may be rare is when their enabling 

conditions defined by $  are rare. Consider the model presented in Figure 3. Assume that all events 

labeled either e or r have the same transition rate function, and that the model begins with state 

variables ,s0 and .S4 equal to one, with all other state variables equal to zero. Assume that an event is 

enabled when all state variables with outgoing arcs pointing to the event have values greater than zero, 

and is disabled otherwise. Additionally, assume that when an event fires, it decrements by one all state 

variables with outgoing arcs pointed at the event, and increments by one all state variables with incoming 

arcs originating in the event.

Although the rates of all events are similar, the enabling conditions of the events labeled r are true 

far less often than those of the events labeled e. The enabling conditions require that the submodels be 

“synchronized,” i.e., that S2 =  S7 =  1 in order to fire. The enabling condition for the second r requires 

that s$ =  1, a condition that can only be true after the firing of a rare event, and before any other events 

have been fired. We call these events rare because their enabling conditions depend on a model state 

that is rare.

We combine these notions of how an event might qualify as rare by calculating the effective global rate 

of an event. For an event ej we solve for the global rate ¡iCi, given a specification of the form presented 

in definition 3, and solve for n*, the steady-state occupancy probability vector, as follows:

/» . .=  E  Xie' ’ * j)----- W f e ]  (2)

While A and 0 in equation 2 are given by the model definition, 7r* is not, and can be difficult to 

calculate. In fact, the ability to solve n* would likely negate the need for our methods. In models we
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have examined that represented real storage and high-performance computing systems, we have not yet 

encountered a need to find rare events that are rare due to enabling conditions, but in the interest of 

making our approach broad, we propose a method for approximating n* that may yield enough accuracy 

to identify rare events.

4.2 Algorithm for Estimating Enabling Conditions

We propose the use of a bounded state-space exploration algorithm to approximate 7r*, exploiting the 

fact that it is not necessarily important to derive a precise estimate of 7r*. Since the events we are looking 

for are rarer than ot her events in the model, as defined by the parameter fxmax, our estimate need only 

be good enough to differentiate events with rate less than ¡¿max from other events in our model.

Given a model M  whose state variables S are in some initial marking q € 26xN, we utilize uniformiza- 

tion to transform the continuous time Markov chain (CTMC) describing M  (as given in definition 3) and 

transform it into a discrete time Markov chain (DTMC) using equation 1. We then step through the 

state space, using Welford’s algorithm [27] to form an estimate for 7T* that we will call n*.

A lgorithm  3 Estimate n* 
n <— 0
7T(0)[^o] « -  1 
W>i|t #  0,7r(0)[V>t] « -  0 
W 'i.t# »] 0
Vej e  E, (p[ei\ <— 0 
7T* <— 7r(0)
Vej e  E, ip[ei] <— 0
while Stopping criteria not met do

Let ar[] be the next state probability vector, given 0, A, and 6, and the current state occupancy 
probability vector 7r(n). 
n *— n +  1 
d <— x — it* 
v <— v -t- (dTd)11̂ L
7T* *— 7T* d—n
7T(n) *— X
Vej € E, ip[ej] =  E * fc(E* 7T(n)[il>k\ • <Kej,1>k)
V>d *-
Vv *-

<Ps *- \ J v v e <n\ipvVi)i] # 0

c Vs 
end while 
return 7T *,<P,C
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The algorithm builds an estimate -ft* of n* through bounded exploration of the state space of the 

model M. Beginning with the initial state, we use equation 1 to explore all possible next states, and the 

probability of being in those next states during the next time step. We build a running estimate of n* 

as well as the variance of the estimates of the state occupancy probability for each state using Welford’s 

one-pass algorithm, and store it in the vector v.

We propose stopping criteria based on two measures. First, a certain number of steps must have 

been taken in the state-space exploration. At a minimum, we should take enough steps so as to form an 

estimate of the value of (¿>[e4], the probability of the event et being enabled for all et € E. More formally,

0 N ~  $ 2  (3)

Algorithm 3 calculates this estimate using a version of Welford’s one-pass algorithm modified for 

use with vectors, and also calculates confidence bounds using t*, the critical values for an n — 1 sample 

student-t distribution for a 1 — a • 100% confidence interval, providing us with the bounds

-  C < ^ 2  ■ 0 (et> tpj) <  (p[et] -I- c (4)

It should be noted that our estimates need not be what might be traditionally considered “good” 

estimates. Provided that we can distinguish between rough classes of enabling conditions, expecting 

many orders of magnitude difference between rare and non-rare states, and given a reasonable estimate, 

if*, and non-overlapping values of </?[ej], Ve*, a rough estimate may suffice to identify those events in our 

model that are rare due to rare enabling conditions.

If for some reason we cannot identify events that are rare due to rare enabling conditions, we can still 

identify those with locally rare rates, or rare rates due to competition, approximating fiei as p.ei,

K -  E A fa .fr )  f r  )  (5)
V V > j | V  ̂ VeeE|^(c,V>j)=l /

Given either fiei based on an estimation of if*, or fiei based on the assumption that Vc4, e3 g E, cp[e*] ~  

<p[ej], we can now identify a certain subset Er c  E  as rare events, given some partitioning scheme. 

Choice of a static parameter with which to partition has been well-studied for hybrid simulation [28]. 

Some algorithms even propose methods for dynamic partitioning while simulating a given system [29].
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The exact choice of partitioning method is unimportant for the correctness of the general application of 

our technique, but some approaches may have advantages when applied to certain specific models. For 

the rest of our discussion we will assume a static partitioning parameter pmax that defines the maximum 

estimated rate that results in classification of an event as a rare event.

5 Decomposing Models with Rare Events

In Section 2 we discussed the definition of a model M  and a set of reward variables 0 ^  associated with 

the model. In Section 3 we presented an algorithm for constructing a model dependency graph Gm that 

accounts for all possible direct and indirect dependencies inherent in M  and the reward variables ©m 

associated with it. In Section 4 we discussed methods for identifying a subset of events Er C E in M  

that can be considered rare. In this section we present an algorithm for decomposing M, based on the 

graph Gm , into a set of n submodels E =  {¿¡o- £i, • ■ •, fy } that can be considered independent in the 

absence of the firing of a rare event. Additionally, we discuss how to repartition M  using Gm after a rare 

event has fired to produce a new set of independent submodels.

5.1 Decomposing the Model Dependency Graph

Given the model dependency graph G m  and the set of rare events E r  we produce a decomposed model 

dependency graph.

Definition 8. Let G'M denote the model dependency graph for M  in which all A-dependencies that 

involve events in E r  have been removed. For every vertex associated with a state variable whose only A - 

dependencies involve events in E r , we replace those vertices with new vertices from a set Vc, representing 

constant state variables whose values are equal to their initial conditions. All vertices that represent events 

with rates dependent on state variables that are now represented by constant vertices are examined. If 

such events have transition rate function specifications such that A(e, q) =  0 for all valid q G 2SxN given 

Vc or have enabling function specifications such that $(e, <7) =  0 for all valid q G 2sxN given Vc, they 

are removed. All dependencies of removed events are also removed. The process is repeated, examining 

all Vr and Vr iteratively until no new vertices are removed.

We present a method for generating G'M using Gm and E r  in algorithm 4.
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A lgorithm  4 Compute G'M by removing rare-event-based dependencies.

p ^ -E r 
while P ^  0 do

Remove all edges in A! in which one member of the edge is a vertex representing an event in P. If 
the edge is labeled 4* or A and the event vertex corresponds to an event in Er , do not remove it.
P -> 0
for all Vi E V' that represent state variables do 

if \3viVj E A' such that Viiu has label A then 
V' *- V' \ Vi
Create a new constant vertex vCi E Vc 
V ' <— V' U vCi
Associate a value equal to the initial marking of Si E S associated with Vi with vCi 

end if 
end for
for all Vj E V  representing Events do

if 3vi\viVj E A! labeled $  such that Vi E Vc then
if !3q E 2s xN such that q is consistent with the constant markings associated with vertices in 
Vc and $ (ej,q )  =  1 then 

P 4- P  U Vj 
end if 

end if
if 3vi\viVj E A' labeled A such that Vi E Vc then

if !3q E 25xN such that q is consistent with the constant markings associated with vertices in 
Vc and A(e7, q) ^  0 then 

P <— P  U Vj 
end if 

end if 
end for 
V' <- V' \ P  

end while
return G'K[ =  (V', A', L')
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5 DECOMPOSING MODELS WITH RARE EVENTS

Figure 4: Example decomposition of a model dependency graph Gm to G'M.

The graph G'M that results from the application of algorithm 4 to G m and Eft is then used to determine 

if a valid partition of the model M  exists for our technique. If G'M defines multiple unconnected sub

graphs, G'm =  {g '0 \Jg[ U . . . } ,  a valid partition exists. If it does not, our technique is not applicable. The 

sub-graphs of G'M correspond to the submodels in our partition E. For a given sub-graph, g[ — (V/, A '), 

for each v'j £ V/ such that v'j £ Vs, we add the corresponding state variable to For each v'j £ V/ 

such that v'j £ Ve , we add the corresponding event to In addition, for each & £ E we restrict the 

definitions of $ (e j, q), A(ej, q) and A (ej,q ) to e.j £ & and q £ 2Sii xN such that S^

To further explain our decomposition algorithm, we present an example model dependency graph 

and its decomposition in Figure 4. The dependency graph Gm is generated from a high-level model 

specification using algorithm 1, as shown in Figure 4a. We assume that the event represented by the 

vertex e2 is a rare event in the model. Applying algorithm 4, we begin with a set P  =  e2, remove those 

edges labeled A that involve e2, and clear P. We note that the state variable represented by s2 remains 

constant in the absence of e2’s A  edge, and replace it with a constant vertex c2 with value equal to its 

initial conditions. We then find that events e3 and have dependencies that are marked by $  labeled as 

arcs, indicating an external dependency. Assume that the enabling conditions of e3 are not met by the 

constant value of c2, but the enabling conditions of e4 are met. We add e3 to the now-empty P  and iterate 

again, this time removing e3. We do not remove s3, despite the A-dependency, as s3 has an additional 

A-dependency on e\. At this point, P  is empty, and we exit the algorithm, yielding G'M =  G'0 U G[ as
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shown in Figure 4.

5.2 Analyzing Reward Variable Dependencies

In Section 3 we used algorithm 2 to add reward variables and their dependence relationships to G\f. They 

were subsequently preserved in G'M by algorithm 4. These dependencies prevent decomposition of oth

erwise independent sub-graphs by maintaining connectivity based on reward dependence. Additionally, 

they help us choose solution methods for submodels in E.

P roposition  2. In the absence of the firing of a rare event, the reward variable &i is independent from 

a submodel if no direct dependence exists in G'M from 0, to a vertex in g'3.

Proof. If a direct dependence existed between a reward variable 0* and a state or event in then algorithm 

2 would add an edge to G'M connecting 0* to a vertex in g'3, and thus a path would exist. If there were 

an indirect dependency between 9t and a vertex in g'3, then a path would exist between a vertex Vk that 

has a direct dependency with 0t and a vertex in </'. If such a path existed, then Vk would be a vertex in 

g'3, and thus 0j would have an edge connecting directly to a vertex in g'j. □

Given G'm, we divide all submodels in E defined by the independent sub-graphs of G"M into two sets: 

those upon which reward variables do and do not depend in the absence of rare events. These sets of 

submodels are called E« and E ^, respectively.

6 Solving the Decomposed Model

The primary contributions of our research are the methods proposed in Sections 3, 4, and 5, which 

provide a potential means to decompose a model M  into a set of submodels Eß,Em e  E based on 

structural features in the model M  that involve dependence relationships with rare events. While we 

believe our methods are useful for a variety of solution techniques, we present in this section an additional 

contribution in the form of an algorithm for hybrid simulation of decomposed models, and a discussion 

of complementary solution methods from the literature. Our hybrid simulation algorithm was designed 

to help study the dependability characteristics of deduplicated data storage systems (in joint work with 

IBM Almaden Research Center). A simplified example model based on our joint work is presented in 

Section 7 to illustrate potential improvements provided by our decomposition methods.
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6.1 Hybrid Simulation of Rare-Event Decomposed Systems

Our study of rare-event-based decomposition methods was motivated by a desire to study the dependabil

ity characteristics of storage systems that utilize data deduplication, in a fault environment characterized 

by rare events. In order to estimate the value of reward variables defined for models of these systems, we 

have employed our decomposition methods and a hybrid simulation algorithm.

When solving our model, we view trajectories of model execution as a time series

r0 — * 7i — > r2 — » r3 — > ... (6)

where To represents our start time, and each subsequent t* represents the firing of a rare event. Given a 

model of our system, M, and the set of reward variables, Qm , we produce the model dependency graph 

G m , set of rare events E r : decomposed model dependency graph C'M , and set of submodels E r , E\r  £  E. 

Using these submodel classifications and the subset E e r E E  of submodels containing rare events, we 

produce two new sets of submodels,

-Sim — U (E\r f l E e r ) (7)

—Num =  E i r \  (E i r D E e r ). (8)

A lgorithm  5 Hybrid Simulation of M
Given a model M, reward variables @ m , and initial values qo £ 2SxN for M. 
while Stopping criteria for our reward variables 0 m have not been met do 

Set S for model M  using qo.
Generate Gm from M  using Algorithms 1 and 2.
Generate G'M and E from Gm using Algorithm 4.
Derive Esim and E^m using equations 7 and 8.
Solve Esim using Discrete Event Simulation until the next event is in the set E r .
Generate 7r|. for each submodel in ENum-
Generate a random variate for each submodel & £ ENum using 7r£. to define the probability mass 
function of a random variable.
Recompose E to M. Use Discrete Event Simulation to solve M  for the next event.
Store the current state of the model in qo. 

end while

The set Esim has all submodels that contain either a rare event or a reward dependency. The set 

ENum has all submodels that contain neither rare events nor reward dependencies. Prom proposition 2
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we know that the evaluation of reward variables does not depend on ENum. Thus we need only solve 

the state occupancy probability for all submodels in ENUm at the time of the next rare event firing. We 

do so by making the assumption that the submodels enter steady state between firings of rare events. 

Simulation of the model M  is performed using algorithm 5.

The general improvement offered by this algorithm comes from the reduction of events that must be 

simulated in order to estimate the effect of rare events in the system. Bucklew and Radeke [30] give 

a general rule of thumb that in order to estimate the impact of an event with probability p, we must 

process approximately 100/p simulations. Our method seeks to reduce the number of events that must be 

processed for each computed trajectory of the simulation by eliminating those events that cannot impact 

our reward variables without the firing of a rare event.

The actual performance improvement offered by this algorithm varies with the model, and with the 

degree of dependence of the state variables and events in the model. For models whose resulting H does 

not have the proper structure, our proposed hybrid simulator may provide no improvement, suggesting 

that other methods from the literature should be used for solving a set of related submodels. In general, 

between firings of a rare event, our method will produce a speed-up proportional to the rate at which we 

remove events from explicit simulation. Thus, given E' as the set of all events e* € Enuhi U ej € M  such 

that ej ^ S, our improvement is proportional to

X^ej€E' ^ (ei> 

YheitE "0i)
6 (9)

6.2 Limitations

Our methods work best in situations where the underlying submodel is loosely coupled, with the points of 

loose connection being dependent on rare events. We believe this class represents a subset of interesting 

models used to study dependability characteristics of high-performance computing resources [31] and 

large-scale storage systems [3, 15, 32]. Additional models for which our techniques are appropriate may 

also exist, provided they bear structural resemblance to our primary models of interest.

A limitation imposed by our hybrid simulation algorithm is our assumption that submodels in the 

set HNum reach steady state. While we believe this assumption holds for the systems we have studied, 

we could relax it by using approximate methods for generating the transient state occupancy probability 

vector instead of n* [33].
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6.3 Related Solution Methods

The methods of [26] provide an attractive application of our decomposition techniques. While the authors 

do not provide a means for automatic decomposition, they provide a way to approximate a decomposed 

system by describing the interaction of a set of submodels with an import graph that solves the resulting 

system via fixed-point iteration.

Provided that some of the submodels identified by our method represent highly similar sub-systems, 

our methods might be used with Simultaneous Simulation methods, such as those proposed by [34]. By 

combining a single-clock, multi-system simulation with adaptive uniformization, these methods simulate 

all alternative configurations of independent systems simultaneously, reducing the overhead involved in 

event list management.

Model solution using analytic methods can also benefit from our approach. The state spaces for our 

submodels are guaranteed to be smaller than that of the model as a whole, potentially decreasing the 

solution time by solving the submodels and appropriately combining the solutions to form a solution of 

the overall model. That approach is similar to the methods described in [20].

7 Case Study: Simplified Data Deduplication Storage System

In this section, we present an example based on a simplified deduplicated storage system [35] and demon

strate our technique for models that use rare events and a model dependency graph. Figure 5 provides 

a high-level diagram of our system. The system consists of a set of n simplified storage systems, each 

of which can store two objects and suffer from disk failures and fail-silent errors [15] as well as parity 

pollution [3]. Each storage system can suffer a maximum of two failures before losing data.

Two processes attempt to mitigate faults before they can manifest as data loss: disk rebuilds and 

a scrubbing process that evaluates disks in the system weekly, checking for silent failures and parity 

pollution. An I/O  workload is used to measure the reads of corrupt data and to evaluate the impact of 

parity pollution.

Each subsystem can store two objects from a finite set, representing a subset of a file system. When 

an object appears more than once in the entire system, the first storage system with a copy stores the 

object instance and the rest of the storage systems store deduplicated objects as references to the original. 

Correlated failures occur for references when an instance is lost.
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Read
Scrubbing

Write

Figure 5: Simplified deduplication system modeling full disk failures, undetected disk errors, and parity 
pollution.

D efinition 9. Summarized System Model 

State Variables

• f i l e o o , . . . ,  f i l e o,n- i -  First, fde on each of n storage subsystems.

• f i l e  ito, • • •, f i l e  iin- i -  Second file on each of n storage subsystems.

• workingo, . . . ,  uiorkingn-\: Number of working drives on each of n storage subsystems.

• fa iled o , . . . ,  fa iled ,t_i :  Number of whole disk failures on each of n storage subsystems.

• s ilen to , . . . ,  s i le n tn-\: Number of silent disk failures on each of n storage subsystems.

• p ollu ted o , . . . ,  p ollu ted n -i: Number of parity pollutions on each of n storage subsystems.

• scrubLocation: Current progress of the scrub.

• corruptedReads: Number of corrupted reads.

Events
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•  d i s k F a i l o , . . . ,  d i s k F a i l n- \ :  Failure of a disk on each of n storage subsystems. Enabled when 

workingi >  0. A =  10- lo ,V</ G 2lS:xN.

A =  working^ =  working^ -  1, 

f  a iled j =  fa iled j +  1.

•  s i l e n t F a i l o , . . . ,  s i l e n t F a i l n- \ :  Silent failure of a disk on each of n storage subsystems. Enabled 

when workingi > 0. Rate is given as 10-12 for all states.

A =  working^ =  working^ -  1, 

s ilen ti =  s ilen ti +  1.

•  r e b u i ld ^ , . . . , r e b u i l d ^ - Rebuilds a failed disk on each of n storage subsystems. Enabled when 

f a i le d ^  >  0. A =  0.004,Vq G 25xN.

A =  workingi =  workingi +  1, 

fa ile d i =  fa iled i — 1.

advanceScrub: Finishes scrubbing a storage subsystem, and advances to the next in order. Always 

enabled. A =  ^ . Transition function is defined as

A =
scrubLocation +  1, if scrub Location >  1 

0, otherwise

scrubo,... ,  scrv.bndisks- i :  Set of events, one per disk subsystem. Scrubs and repairs parity and 

silent failures. The event scrubi is enabled when

s ilen ti +  polluted^ > 0 and scrubLocation =  i
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A =  100, Vç G 2SxN.

A =  working^ =  polluted^ +  silent*, 

polluted^ =  0, silent* =  0

• w riteo , . . u/ri£endisks_i :  Set of write events, one per storage subsystem. Enabled while workingi > 

0 A =  l,V9 e 2 SxN.

A =  polluted^ =  silent*, s ile n t i =  0,

f i l e 0,* =  DiscreteUniform(0, n fiie objects), 

f  ilei,* =  DiscreteUniform(0, rime objects).

• reado,. . r e a d ^ ^ - i ;  Set of read events, one per storage subsystem. Enabled while workingi > 0. 

A =  99, V<7 € 2SxN.

A =  corruptedReads =  silent*

Reward variables defined for the model include a rate reward defined when working* =  0, which 

checks the state of each file on the subsystem, including whether it is a reference. A reward variable is 

also defined for corruptedReads over the lifetime of the system.

Decomposition produced a submodel that accounted for the scrubbing process, each storage subsys

tem, and the I/O  workload, all falling into the category HNum. A separate submodel was generated for 

the fault process and disk repair state, falling into the category Hsim. The state occupancy probabilities 

were calculated for each submodel prior to a rare event firing, and upon firing G'M was recalculated, with 

the scrubbing process, I/O workload, and all storage subsystems that dependent on the error (i.e., that 

have references to object instances on the faulty storage subsystem) composed in a single submodel. This 

submodel was simulated until the failure was mitigated by scrub* or rebuild*, which are both identified 

by our method as rare events due to rare state, allowing us to recalculate G'M and decompose the failed 

components on successful repair.
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M odel States
3 Storage Subsystems

Complete Model 12,288,000
Submodels £o, £i, £2 16
Submodels £3, £4, £5 1
Submodels £6 3

10 Storage Subsystems
Complete Model ~  1 0 "
Submodels £0, • • •, £9 16
Submodels £10, . . . ,  £19 1
Submodels £n 10

100 Storage Subsystems
Complete Model ~  10J"
Submodels £0, • • •, £99 16
Submodels £100, • • •, £199 1
Submodels £200 100

Figure 6: Comparison of the state space of the complete model and decomposed submodels.

Figure 6 presents the state spaces of the submodels, and of the composed model, with the state vari

able corruptedReads removed. Although corruptedReads has potentially infinite values, producing an 

infinite state space, its constant nature between rare events for models in Hnuhi allowed us to numerically 

solve large portions of the model provided we simulated those in Hsim- As can be seen, our methods 

produced a drastic improvement in the state spaces of the submodels to be solved, when compared with 

the complete model.

Direct comparisons for model solution performance between Discrete Event Simulation and Hybrid 

Simulation were not possible, since our Discrete Event Simulator did not process all planned simulated 

failures within the time allotted. Our decomposition-based solution was able to deliver results promptly, 

processing an average of around 105 events per rare event. To provide a better comparison between 

the approaches, the I/O  workload model was removed, and we solved the resulting model using both 

methods.

Figure 7 demonstrates the increased performance our simulator provides, for various ratios of slowest 

events (s ilen t) to fastest events (rebuild) in the model. At a ratio of 10~4, we cannot choose an 

appropriate /imax, as the scrubbing process and all faults are of the same order. Our method fails to find 

a valid decomposition, resulting in a performance that is slightly worse than that of the Discrete Event 

Simulator, reflecting our increased overhead. At a ratio of 10-5 , though we can set nmax to identify 

s ile n t  as rare, our algorithm fails to find a useful decomposition, owing to the indirect dependence
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Per Rare Event Averaged Performance

Ratio of Rarest Event to Least Rare in the Model

Figure 7: Comparison of performance of a Discrete Event Simulator and Hybrid Simulator with Decom
position.

between the two events which arises because of the external dependencies of each s ile n t  and f a i l  

event, when the external dependencies relate to the same state variable. The result is a slightly worse 

performance for our algorithm, due to overhead.

For ratios of 10-6 and above, we show constant performance, as our decomposition does not change. 

For all of the parameter values, we are able to obtain an ideal decomposition, simulating only when a 

rare event occurs, and before it has been mitigated.

While our example seems ideal for our algorithm, it is based on a real system that we are currently 

studying with our industry partners. Additionally, it is likely that our methods will provide reasonable 

improvements in performance for other similar systems made up of smaller subsystems, such as high 

performance clusters [31] and networks.

8 Conclusion

We have presented a new approach for decomposing models that contain rare events. This approach is 

based on the degree of independence of potential subsystems of the model with respect to rare events and 

the reward variables to be calculated. When portions of the model exhibit near-independence relating 

to rare events in the system, we can exploit these relationships to solve large, complex models efficiently 

and exactly. We provide an algorithm for our technique that automatically builds and examines a 

model dependency graph that characterizes all dependence relationships using a high-level specification 

of the model. All model state variables and events are converted into nodes in the graph, which are
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connected based on the definition of the model event-enabling function specification, transition rate 

function specification, and state transition function specification. Our presented techniques can be used 

as the input for many solution techniques, including those discussed in Section 6. Using the Mobius 

simulator and state-space generator, we obtained a large reduction in the size of the state space for our 

example model.
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