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1. INTRODUCTION

In the last couple of years an adaptive nonlinear methodology has emerged which combines basic 

concepts of feedback linearization (Jakubczyk and Respondek, 1980, Hunt et al., 1983, Isidori, 

1985) with the Lyapunov design of adaptive linear control (Narendra and Annaswamy, 1989, Sas- 

try and Bodson, 1989). This methodology assumes, first, a linear parametrization (the unknown 

constant parameters appear linearly in the nonlinear model of the plant to be controlled), and, 

second, a form of feedback linearization (complete or partial) for all values of the unknown parame­

ters. The results obtained thus far make two types of additional assumptions under which specific 

control laws are designed. The first type of assumptions further restricts the form of the depen­

dence of plant models on unknown parameters: in Taylor et al. (1989) the model satisfies a strict 

matching condition, while in Nam and Arapostathis (1988) it appears in the so-called pure-feedback 

form. The second type of assumptions, made by Sastry and Isidori (1989) and Sastry and Kokoto- 

vic (1990), do not impose further restrictions on parameter dependence, but, instead, restrict the 

nonlinearities, assuming that they satisfy a “ linear growth” condition. The adaptive control laws 

designed under these assumptions differ in their applicability and complexity. The restrictiveness of 

the control laws based on the first type of assumptions is compensated for by their simplicity. The 

price paid for wider applicability of the control laws based on the second type of assumptions is an 

overparametrization, i.e., the need to use the estimates of not only the actual parameters, but also of 

fictitious parameters representing products and powers of the actual ones.

This report extends the results of Taylor et al. (1989) by introducing less restrictive matching condi­

tions. The new adaptive control law avoids any overparametrization and possesses the same robust­

ness properties with respect to unmodeled dynamics.

We consider the class of nonlinear plants

x = f l(x ,a)+Fl(x,a)z + G l(x,a)u , (1.1)

\iz = f 2(x,a)+F2(x ,a)z+G2(x,a)u , (1.2)

where x e R n , z <= R q arc the states of the modeled and unmodeled dynamics, respectively, 

u e R m is the control (m <n), a e R p is the vector of unknown constant parameters and |i is a
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small positive scalar determining the presence of the unmodeled dynamics. In the assumptions 

below, and throughout the paper, By denotes an open ball centered at y =0.

Assumption 1 (Equilibrium). The columns of F x, F 2, G lt G 2, and f  f 2, are real smooth vector 

fields on R n such that

/  i(0,a)
f 2(P,a) e Im {

G x(0,a)
G 2(0,a) for all a € Ba (1.3)

and hence, for every a e Ba there exists a control which places the equilibrium of the system 

(1.1M1.2) a tx  = 0 ,z  =0.

Assumption 2 (Unmodeled dynamics). The unmodeled dynamics are asymptotically stable for all 

fixed values of x e Bx and a g Ba, that is, there exists a constant o>  0 such that

ReX{F2(x,tf)} < - a < 0  . (1.4)

There may be several reasons for not including these dynamics in the design model : our inability 

to accurately model them; our intention to simplify the model and to reduce the controller complex­

ity; the fact that their states are not available for feedback. While the smallness of (i implies that 

the unmodeled dynamics are fast, a singular perturbation from jx> 0 to |i=0, that is,

0 = f 2(x,a)+F2(x ,a)z+G2(x,a)u , (1.5)
results in the reduced-order model

m
x -  f  (x,a)+G(x,a)u  = f ( x , a ) + ^  gi(x,a)Ui , (1.6)

i=i
where f and G are defined by

f ( x , a ) = f x( x , a ) - F x(x ,a)F2x( x , a ) f 2(x,a) , (1.7)

G(x,a)  = G i ( x ,a ) - F x(x,a)F21 (x ,a )G 2(x,a) . (1.8)

The columns of G(x,a ) are assumed to be linearly independent for all x  e Bx, a e Ba . Note that 

F2l (x ,a ) exists by (1.4) and that, by (1.3),
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f (0 ,a )  g Im {G(0,a)} for all a g Ba . (1.9)

Design tasks. Given that the x-part o f the state is available for feedback, our objective is to find a 

feedback control u that will regulate the state of the plant, i.e., that will result in

jc (r) ,  z (r) bounded, linu:(r) = 0 ,  limz(r) = 0 .  (1.10)
t—*oo t —»00

The three separate design tasks are:

(i) Ideal design. When the actual value of a is known and there are no unmodeled dynamics 

(jx=0), design a controller in order to achieve regulation of (1.6).

(ii) Parametric uncertainty. Find a method to cope with the fact that the parameter vector a is 

unknown.

(iii) Unmodeled dynamics. Establish that the designed controller is robust in the presence of

p>0.

The first task is solved in Section 2 by feedback linearization of the plant (1.6). The second task is 

the topic of Section 3, where we develop an adaptive control law. The third task is the topic of 

Section 4, where the full-order closed-loop system is analyzed and robustness bounds are computed.

2. FEEDBACK LINEARIZATION 

The following assumption is crucial for our ability to solve Task (i).

Assumption 3 (Feedback linearization). For all x e B x, a g Ba , there exist a state 

diffeomorphism 3c=<|)(x;a), with <J>(0;a) = 0, and a feedback control u = a(x\a)+B~l(x\a)v, with 

B(x;a) a nonsingular m x m  matrix, that transform (1.6) into a linear system in Brunovsky canoni-
m

cal form with controllability indices kt , i=l,...,m (^^ - =n)
i=i

x = Al x +Bl v . (2.1)
■

Necessary and sufficient conditions for the local validity of Assumption 3 are well known. They 

are also necessary (but not sufficient) for its global validity, which may be difficult to verify
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(Boothby, 1985). As shown in Jakubczyk and Respondek (1980) and Hunt et al. (1983), Assump­

tion 3 will hold locally, i.e., in a neighborhood U0 of the origin in R n, if and only if the distribu­

tions

G° = sp{gh . . . ,gm) , (2.2)

G l = s p { g i, . . . ,gm,adf g\, . . . ,adf gm--------ad\g \------ ,ad}gm) , i= l,...,/i-l , (2.3)

satisfy the following conditions for all x  e i /0, a e Ba \

G ’ - ' = R" , (2.4)

G ‘ is involutive and of constant dimension m,- , i=0,...,n-2 . (2.5)

Then there exist smooth functions (i=l,...,m) of x , dependent on the parameter a, that is, 

(^•Ocja), with <J)J(0;a)=0 and linearly independent differentials d§it such that for all 

x e U0, a e Ba

kt = card { fj >i , j  > 0 ) , , r 0=m 0, rj , j  > 1 , (2.6)

them xm  matrix with <dtyi tadf lgj> as its (i,j)-th element is nonsingular, (2.7)

<dtyi ,adjgi>=0 , , (2.8)

k —1
. . . , L /  (J),-, z=l,...,m } is a local diffeomorphism which preserves the origin. (2.9)

Note, in particular, that the controllability indices are required to be the same for all a e Ba , and 

that m 0=m by the linear independence of the columns of G. The new coordinates x are then 

defined as

x{ = Lf~l§i(x\a) , , i=l,...,/?!. (2.10)

The system (1.6) is transformed into (2.1) by using the diffeomorphism (2.10) and the feedback 

control

u = a (x\a)+B~x(x\a)v , (2.11)
where

a(x\a) = - [ L } % ,  . . . ,Lfm<j)m]T , (2. 12)
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B(x\a)  =

■ ■ ■ h j 4 rX*

LglLkf \ m . . . LSmLf - ~ \ m

(2.13)

The nonsingularity of the matrix B(x\a ) for all x  € t / 0, a e Ba, is a direct consequence of (2.7) 

and (2.8). The resulting linear system of the form (2.1) consists of m independent controllable 

subsystems in Brunovsky form, called “ the xt-subsystems.” For each of these subsystems we 

design a linear feedback control law

Vj = -  £  yfx/ , i=l,...^n,
y=i

(2.14)

so that the fc,-th degree polynomials 1+...+7^5+7/ are Hurwitz. This results in exponen-

tialty stable jq-subsystems

xi = AiXi =
0

Ô
- 1 !

k.. _y.‘
(2.15)

This design solves Task (i), that is, it achieves state regulation in the case where the parameter vec­

tor a is known and no unmodeled dynamics are present.

3. ADAPTIVE REGULATION

For the design under parametric uncertainty (Task (ii)) we now impose two restrictions on the class 

of reduced-order models (1.6).

Assumption 4 (Linear parametrization). For all x e Bx, a e Ba ,

f( .x,a)=f°(.x)+'ZJf J(.x)aj , (3.1)
7=1

gi(x,a) = gi°(x)+ 2  gj(x)aj , i=l,...,m ,
7=1

(3.2)
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where f* (x )  and g/(x) (j=0,...j), i - l , . . . /n )  are real smooth vector fields on R n, such that 

/°(0 )= 0 , f j (0)eG°(0,a),  (note that these are a special case of (1.9)), and

g\(x,a),...,gm(x,a) are linearly independent.

Assumption 5 (Extended matching). For all x e Bx , a e Ba ,

f j e G l , y=l,...,p , (3.3)

g /e  G° , y=l,...^ , . (3.4)
■

This extended matching condition is less restrictive than the following well-known condition (Barm- 

ish et al., 1983, Marino and Nicosia, 1984), which was used for adaptive control in Taylor et al. 

(1989):

Assumption 6 (Strict matching). For all x  e Bx, a e Ba ,

f j e G° , g /e  G° , . (3.5)
■

The meaning of the strict matching condition is that parametric uncertainty is allowed to enter both 

the /  -vector and the G -matrix of (1.6) only in equations that also include a control-driven term. 

Under the extended matching condition, the parametric uncertainty in the /  -vector of (1.6) can pre­

cede the next control term by one integrator, when the system is transformed in the form (2.1).

Example 3.1. To illustrate the difference between the two matching conditions, let us consider the 

following simple but realistic dimensionless second-order model of a DC-motor:

~ ~  = i +X(©,fl) , dt (3.6)

Te di .
= “ C° - Z +Ua •Tm dt

(3.7)

where, in normalized units, co is the motor speed, i is the armature current, ua is the armature vol­

tage (control input), and Te and Tm are the electrical and mechanical constants of the motor. The 

parametric uncertainty in this case is due to an unknown parameter a in the torque characteristic



7

X(co,£z) of the motor load. The system (3.6)-(3.7) does not satisfy the strict matching condition. 

However, the extended matching condition is satisfied, since the parametric uncertainty precedes the 

control input by only one integrator. The adaptive approach of Taylor et a l (1989) cannot be 

applied without first treating the ratio Te/Tm as a singular perturbation parameter and replacing 

(3.6)-(3.7) by the reduced-order model

da)
dt

= -(0+ ua +X(co,a) , (3.8)

which clearly satisfies Assumption 6. This order reduction is not necessary for the design approach 

of the present paper.

Coordinate transformation. As shown in Taylor et al. (1989), under the strict matching condition 

the diffeomorphism (2.10) is independent of the parameters in a , that is, ^¡(x\a) can be written 

simply as <j), (x). However, under the extended matching condition the diffeomorphism depends on 

a in the following way:

x{ -  Ljo1 <|), (x) , y=l,...,^—l, i=1 m , (3.9)

= LA  1 (x) + £  cljLfjLfO 2 <j>,• (x) , i=1,...,m . (3.10)

Since the parameter vector a is unknown, the variables defined by (3.9)-(3.10) are not available for 

feedback. To overcome this difficulty, we replace the unknown a by an estimate a(t). Then, 

instead of (3.9)-(3.10), we use the nonlinear time-varying change of coordinates

x /  = LJf ol $i(x) , 7=1 1, i= l  m , (3.11)

Xi! = LfLjo 2 (x,a) = Lkf o 1 §i(x)+ 2  dy(r)L/>L*,0 2<j)l(x) , z=l,...,m . (3.12)
7=1

If we augment this change of coordinates by the equations a = a,  we get a time-invariant mapping 

<j> that maps (x,a) to (x,d). Since (3.9)-(3.10) defines a diffeomorphism for every a <= Ba and 

(3.12) depends only linearly on d, the mapping <j> is one-to-one, onto and C°°. The Inverse Function 

Theorem (cf. Boothby, 1986) establishes that ^  is a diffeomoiphism on Bx x Ba. Finally, the fact 

that for every a e Ba the diffeomorphism (3.9)-(3.10) preserves the origin, guarantees that * =0 

implies x  =0 and vice versa.
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Because of the dependence of (3.12) on the parameter estimates, the new adaptive control law in 

this paper is more complex than the one proposed by Taylor et al. (1989). We now develop this 

new control law by incorporating not only the parameter estimate d , but also its rate of change a , 

into a “ certainty-equivalence” form of the feedback-linearizing control (2.11).

Certainty equivalence control. Using Assumption 5, (2.8), and (3.11), it can be shown that

L fx{  = Ljoxj  , ,

Lg x j  = 0 ,  , r=l,...,m .
(3.13)

Thus, in the new coordinates x , the plant (1.6) consists of m subsystems, each described by a set of 

equations of the form

x - ‘ 1 = Xi‘+w\(x)a  ,

x = a((x)+v.i{x)a-kx^ x)a+dT<x\(x)a +w\ (x)a

+  X  [ P i/  ) + P v  (*  + P v  (X )a  + d  T P v  (X ']Ur » 
r =1

(3.14)

where a - a - d  is the parameter error, and the expressions for w\  , a j , Py> , y=l,...,4, i,r=l,...,m 

are given in the Appendix. The design goal now is to find a control which will render the 

subsystems in (3.14) linear in the parameter error a and make them otherwise independent of the 

unknown parameter vector a . To achieve this goal, we calculate the control u from the equation

B(x,a)u  = v - a 1(x)-[(X2(x>KX3(x)+a4(x,a)]^- w ^ x ) a  , (3.15)

with the obvious definitions for a ; ,y=l,...,4, and B(x,d)  (consider (3.14) for z=l,...,m). Note 

that B(x,d)  can be expressed as

Lg Lf LfO (j>i . . . LgJLfLjo (j)j

k - 2 k_-2
LgLf Ls1 <J)m . . . Lg'LjLf  o 0/;

B(x,d) = (3.16)
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This form is directly obtained from (2.13) when the diffeomorphism (2.10) is replaced by the coor­

dinate transformation (3.11)-(3.12).

An important feature of the feedback control defined by (3.15) is that it depends not only on the 

parameter estimate d,  but also on its rate of change d , which appears in (3.14) and in (3.15) 

because of the dependence of (3.12) on d. The rate of change a is yet to be determined by our 

design of a parameter update law. This update law will assure that the parameter estimate a will 

remain in Ba. This, in turn, will guarantee the invertibility of the matrix B(x,a)  in (3.15) for the 

reason mentioned after (2.13). However, as a will in general be a function of the control u, our 

adaptive scheme will be implicit, and, hence, the invertibility of B(x,a ) will no longer be sufficient 

to guarantee the solvability of (3.15). In the case where a control u satisfying (3.15) does exist, its 

substitution in (3.14) gives

x - ‘ 1 = X i i +w[(x)d 

Xk' -  Vi +wl2(x ,d ,u)a ,

(3.17)

with w l2(x,d,u) as defined in the Appendix and v4- as in (2.14), but with x replaced by x. A 

further substitution of v4- into (3.17) shows that each of the x ¿-subsystems can be put in the form of 

an error system

x i — Atxi  + Wi(x,a ,u )a , (3.18)

with Ai as defined in (2.15). This form, familiar in the linear adaptive control literature (Narendra 

and Annaswamy, 1989, Sastry and Bodson, 1989), will be instrumental in the stability proof. The 

quantity multiplying the parameter error a , often referred to as “ the regressor’’, is

Wi(x,d,u) -

0 . . .  0

0 . . . 0 
w‘iCO

w2(x,a ,u)

(3.19)

Parameter update law. The familiar form of (3.18) suggests the parameter update law
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d = -<2 = r  £  Wj(x,a,u)PiXi , (3.20)
i'=i

where T>0 is the adaptation-gain matrix and P, =P[>0  is chosen to satisfy the Lyapunov equa­

tion

PiAi +AjPi = -Ik. , i= l.... m . (3.21)

Note that there exists a control that places the equilibrium of the system consisting of (1.6) and 

(3.20) at x  =0 and some a = const, e Ba . This follows from (1.9) and the fact that 

x - 0  o  x =0 => a =0.

Starting from (3.20) and with some algebraic manipulations, we can show that the parameter update 

law is affine in the control u , that is,

d = r K 0(x,d) + TKi(x ,a)u  , (3.22)

where ( p x l )  and K x {p x m )  are defined in the Appendix. The matrix K { has the property

K x(04) = 0 for ah a e B a . (3.23)

Substituting (3.22) into (3.15) we get

[ B (x 4 )+ L x(x,d)]u = v - L 0(x,fl) , (3.24)

with the obvious definitions for L0, L\. From (3.23) it follows that L 1(0,a) = 0 for all a e Ba , and, 

since B(x,d)  is invertible for all x  e Bx, d e Ba , we have the following result:

Proposition 1 (Local solvability). For every d e Ba there exists a ball BQ such that the matrix 

B(x ,d )+Lx(x,d) in (3.24) is invertible for all x  e B 0. Hence, in B 0 there exists a unique solution 

of (3.22) and (3.24) (with v as defined after (3.17)):

u = u{x,a) , 

d = y(x,d)  .

Use of this solution in (1.6) results in the adaptive closed-loop system

(3.25)

(3.26)
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x = f (x ,a )+ G (x ,a )û (x ,d ) ,  
à = \f(x,d) .

(3.27)

The difficulty is that the existence of such a solution cannot be guaranteed for all x e Bx, a e Ba , 

since in general there exist values of x and d for which the matrix B(x,a) + L\(x,a) is singular. 

One may be able to handle this singularity by a modification of the update law. For example, the 

parameter estimates can be kept constant at their most recent values while the state is on a manifold 

where B+Li is*singular. For such a modification to be effective, no complete trajectory of the 

closed-loop system (3.27) is to belong to such a singularity manifold, that is, no singularity mani­

fold is to contain an invariant set of (3.27). We stress that (3.24) is solvable in the whole region 

bounded by the singularity manifolds, and not in some infinitesimally small region, as the term 

“ local” may suggest. An illustration of this fact is given in Example 3.2 at the end of this section.

Special cases. There are two important special cases where the global solvability of (3.24) can be 

guaranteed. First, when the strict matching condition (Assumption 6) is satisfied. In this case, 

(3.15) does not contain the d -dependent term, and has a unique solution due to the invertibility of 

B (x ,a). The second special case is when the following assumption is satisfied:

Assumption 7 (Extended matching with parameter-independent G). For all x e Bx, a e Ba ,

In this case, the update law (3.20) is independent of the control u, i.e., K\(x,&)=0 in (3.22). 

Hence, L\{x ,d )~0 and (3.24) becomes uniquely solvable due to the invertibility of B (x,a).

Stability. The stability properties of the closed-loop system (3.27) are now established using the 

Lyapunov function

(3.28)

(3.29)
i=l

with P i , i=l,.../n  , and T as defined in (3.21). The time derivative of V along the solutions of 

(3.27) is
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V ( x £ )  = - ^ x J x i + 2 ^ x J P iWia + 'la Tr~la . (3.30)
»=i i=i

It is now clear that the update law (3.20) is chosen to guarantee that

V(x,a)  = -  X  P i  II2 = ~ \\x ||2^ 0  , (3.31)
i=i

and, hence, that x ( t ) , a(t) are bounded. Therefore, x ( t ) , a(t) are bounded, and u is also 

bounded, since the uit i=l,...,m, as defined by (3.25) and (2.14), are continuous functions of x and 

ci. By LaSalle’s invariance theorem (cf. Hale, 1980) the state of the system (3.27) will converge to 

the largest invariant set contained in the set on which V ( x , a ) - 0, that is, x =0. We conclude that 

as it(f)->0. Since <}>, defined after (3.12), is a diffeomorphism on Bx x Ba with

<j>(0,d) = (0,<2), the fact that it (r) -»0  as r— implies that x (t) -»0  as t -»

We have thus proved the following result:

Theorem 1 (Adaptive regulation). Under Assumptions 1, 3 and 4, the state-feedback control 

(3.25) and the update law (3.26) guarantee that the solution (*(0»u(i)) of the closed-loop system 

(3.27) has the properties

lim x(t)  = 0 , 

x ( t ) , a ( t ) - a  bounded,

for every initial condition (x 0,a0) that belongs to ft, where

(i) if Assumption 5 holds, ft is a sufficiently small neighborhood of the point (0,a) in R n+P, 

or,

(ii) if either Assumption 6 or 1 holds, ft is the set

ft = {(.x ,& ) \V (x4 )< c } , (3.32)

with V(x,a ) as defined in (3.29) and c the largest constant for which the set ft is contained in 

Bx x B a.
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We examine now two important special cases of Theorem 1.

Corollary 1 (Global adaptive regulation). When Assumptions 1, 3, 4 and either 6 or 7 hold for 

all (jt,a)e  R n+P, the adaptive regulation is global, that is, Q = R n+p.

u

Corollary 2 (Parameter convergence). When, in addition to the Assumptions of Theorem 1, the 

following conditions are valid

(i) g/=0, i=l,...,m (parameter-independent G),

(ii) p < m ,

(iii) the vectors are linearly independent,

the parameter estimates converge to their true values, that is, the point (0,a) is an asymptotically 

stable equilibrium of the closed-loop system (3.27), with a region of attraction Q as defined in 

Theorem 1.

Proof. It is sufficient to prove that the only invariant set contained in the set x =0 is the point 

x = 0, a = 0.

Using condition (i), it is readily shown that with x - x  =0 the error form (3.18) reduces to

W ,(0,a)a = 0 , (3.33)
where

Lf \ L f L j f 2<t>i(0,d) . . . LfPLf Lf l 2^ ( 0 ,a)

Ws(04) = (3.34)

This is to be compared with (3.16) evaluated at x =0:
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LgLfLjo \ ( P J )  . . . LgmL/L*o1 2<J>i(0,a)

B(0,a) = (3.35)

Condition (ii), combined with / ; (0)e G°(0) from Assumption 4 (with G° independent of a 

because of condition (i)), implies that the vectors / y(0) can be expressed as linear combinations of 

the vectors gt (0), i.e.,

F(0) = G(0)D>, F = [ f l • • • / ' ] , (3.36)

with D a constant m x p matrix. Since F(0) is of rank p by condition (iii) and G(0) is of rank 

m , D is of rank p . Comparing (3.34) with (3.35) and using (3.36) we obtain

Since B(0fd ) is nonsingular for all d e Ba by Assumption 3, and D is of rank p,  (3.33) and (3.37) 

imply that

and the proof of the Corollary is complete.

■

Remark 3.1. Under the conditions of Corollary 2, our adaptive scheme achieves exact feedback 

linearization of the nonlinear system (1.6) as and asymptotic stability of the equilibrium

x = 0 , d —a of the adaptive system (3.27).

Remark 3.2. In the special case where m -p - 1 and Assumption 6 (strict matching) is satisfied, 

condition (i) can be removed, that is, G can be allowed to depend on a .

Example 3.2. The system

Ws(fl,d) = B(p,d)D . (3.37)

a =0 , (3.38)

x x = (10+a)x2 , 

x 2 = —x \  +(10+a)u ,

(3.39)

(3.40)

demonstrates the problems that can arise with the solvability of (3.24). In this case, we have
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/(*) = (10fa)*2
_  y 3 

x 2
10*2
_ r 3 x2

, f \ x )  = X2 
0

[(10+ a ) ] '  [ io ] ' « ,(jc) [ l ]  *

* ' * — & * " ■
0 10ta f 0 1_ -(10r-a)2
0 - 3 * | L10+aJ “ 3(lCM-a)x|

G °= ^ { [ l ( L ] } • d im G ° = l ■

2 for la I <10.[ ° 1 ~{10+a)2
LlOt-aJ ’ 3 ( 1 0 ¥a

Thus, all the assumptions of Theorem 1 are satisfied for a e Ba = [a : I a I < 10} and for all x <= R 4 

Using

0] (10*f)*2
r 3~x2

= (10+a)^2 >

the new coordinates are

* i = * i .

x 2 = (10ffl)x2 .

(3.41)

(3.42)

When in the transformed system

x ! = x 2+ a x 2 ,

x 2 -  -(10+a)^2 + (10fa )(10+tf) w +a x 2 ,

the certainty-equivalence control is defined as

1u -
(io+ay

the system is reduced to the error form (3.18)

[ - ^ - ( l O f d ) x 2- d  x 2+(l(h-a)x2 ] , (3.43)

x i  = x 2+ a x 2 ,
x 2 -  - X \ - x 2+a(\&ra)u ,

which, for a =0, is exponentially stable. The Lyapunov function
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V(x 4 )  = x t

results in the update law

à -  1.5x 1̂ 2+ (1^+‘̂ )[0-5^i + (10+4)x2] u , (3.44)

which, combined with (3.43), implicitly defines the adaptive feedback control as

(10+-â)[(l(M-â)+^2(0.5jc1 + (10+â)x2)]M = —*! —(10f£)*2—1.5*1*2 +0.5(10+a)^2 • (3.45)

For (3.45) to be solvable, the term multiplying the control u must be nonzero, which cannot be 

achieved globally. Indeed, the system (3.39)-(3.40) satisfies neither Assumption 6 nor Assumption 

7 and thus does not fall under case (ii), when Theorem 1 provides a global result. However, Propo­

sition 1 is satisfied and (3.45) is solvable locally. Suppose it is known that a belongs to the inter­

val [-8,-2], and â0 is chosen inside that interval. Then, if x x, x 2 remain close to zero, the term 

(10+5) dominates the * -dependent term, thus guaranteeing the solvability of (3.45). Furthermore, 

(3.43) and (3.44) result in V(x ,â )=-  \\x ||2 , thus yielding x(t), â ( t) bounded and

On the other hand, if x i , x 2 are arbitrary, (3.45) may not have a solution. In particular, if 

â = - 5 , Xi = l 5 , x 2=-2, the term multiplying u is zero. Nevertheless, thé region of attraction Q. 

defined in case (i) of Theorem 1 is not some infinitesimally small neighborhood of the origin. For 

example, a subset of this region is

For case (i) of Theorem 1, such (conservative) estimates of the region of attraction can always be 

found.

lim x(t) = 0 , lim x(t)  = 0 .

{(jc1,*2>â): l* il<2, lx2l <2 , 15+â I <3 } . (3.46)

4. ROBUSTNESS OF ADAPTIVE REGULATION

We now return to the full-order system (1.1)-(1.2). The results of Section 2 apply to this system 

when |i=0. To deal with the case jx>0, we view the z-part of the state as consisting of two terms

z= $ (x ,a ,d )+rj . (4.1)
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Here ^(x ,a ,d) is the so-called “manifold function”

5(*,a,<2) = - F J 1 (* ,¿01/2& ) + » < * ) “ (* .<2)] , (4.2)

which is exactly equal to z when |x=0, as we can see by comparing (4.2) with (1.5). The new 

variable rj describes the "off-manifold"  behavior of z. Using (4.1), our plant (1.1)-(1.2), along 

with the adaptive controller defined by (3.25) and (3.26), can be expressed as

x = f (x ,a )+G (x ,a )û (x ,â )+ Fx(x,a)r\ , (4.3)

|xfj = F2(x ,a )t| - 14(* A A  ) , (4.4)

â = \\f(x ,â ) . (4.5)

Our robustness result is:

Theorem 2 (Robustness). Suppose Assumptions 1, 2, 3, 4 and either 6 or 7 are satisfied. Then 

there exists a scalar \i > 0 such that for all jx e [0, |i*) a Lyapunov function V (x ,a ,rj) can be found 

which guarantees that (0,0,a)  is a stable equilibrium of the full-order closed-loop system (4.3)-(4.5) 

and that the state regulation

lim x(t)  = 0 , lim ri(f) = 0 , (4.6)
/—»oo i—»oo

is achieved for all initial conditions (x0,Tlo»ûo) m set

Î2= {x,T\,â:V(x,â,r\)Zc) , (4.7)

where c is the largest constant for which the set Q is contained in Bx x B-^x Ba.

Proof (outline). The choice of the Lyapunov function V is made as in Taylor et al. (1989). The 

requirement that the time derivative of V for (4.3)-(4.5) be negative semidefinite in Bx x B ^ x  Ba 

is then satisfied by choice of positive bounding constants C\, c2 and c3. Once these constants are 

determined, it is shown that for Theorem 2 to hold, jx can be as large as

1
CiC2+c3 (4.8)

The exact form of V and the details of the proof are given in Kanellakopoulos (1989).
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Remark 4.1. In the presence of unmodeled dynamics global regulation cannot be achieved, that is, 

the results of Theorem 2 cannot be extended beyond Bx x B ^ x  Ba to R n+q+p even if its assump­

tions hold globally. Such an extension would render the constants Ci.C2.C3 infinitely large, thus 

reducing the allowed (i-interval in (4.8) to the point 0. The conflict is obvious: the larger we want 

to make the region of attraction, the more we have to restrict the allowed dynamic uncertainty. In 

the limiting case jll= 0 we return to the setting of Section 2 and Corollary 1 becomes valid again.

Remark 4.2. The nonadaptive-adaptive comparison in Taylor et al. (1989) applies mutatis 

mutandis to the adaptive control scheme proposed here.

Remark 4.3. All the assumptions of Theorem 2, except for Assumptions 1 and 2, are required to 

hold only for the reduced-order model (1.6) and not for the full order plant (1.1)-(1.2). The benefit 

of this is that the assumptions can be satisfied by a broader class of plants.

Example 4.1. The claim made in the last remark is now illustrated by the system consisting of the 

DC-motor of Example 3.1 driven by an amplifier:

= i +X(co,a) , 
dt (4.9)

Te di
(4.10)T - - r = - C0“ i+M* . Tm at

dua
(4.11)| i ——  = — ua +k u , 

dt

where ua ,k ,u , are the amplifier output, gain and input (control voltage), respectively. The full- 

order system (4.9)-(4.11) satisfies none of the Assumptions 5, 6, 7. However, observing that the 

time constant ji of the amplifier is very small, we can treat (©,/) as x  and ua as z . Performing the 

singular perturbation from p > 0  to |i= 0  we obtain the reduced-order model

= i+X(co,a) , (4.12)
dt

-—- —■= -co - i  +k u , (4.13)
Tm dt

which clearly satisfies Assumption 7. If the load torque X(co,a) is linear in a , the system (4.12)-
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(4.13) satisfies all the assumptions of Theorem 2, and can thus be regulated with our approach. In 

order to apply the approach of Taylor et al. (1989), one would have to treat co as x and (i ,ua) as z , 

neglecting the dynamics of both (4.10) and (4.11). This would, however, result in either more res­

trictive robustness bounds or a smaller region of attraction.

Let us now return to the exact setting of Example 3.1 by removing the amplifier (4.11). We see that 

the system (3.6)-(3.7) falls under case (ii) of Theorem 1, and thus can be globally regulated using 

the adaptive controller (3.25)-(3.26). In contrast, the approach of Taylor et al. (1989) provides only 

a restricted region of attraction due to the presence of unmodeled dynamics. Furthermore, this 

region reduces in size as the ratio Te/Tm increases.

5. CONCLUSIONS

In the direct adaptive regulation scheme proposed in this paper, the number of parameter estimates 

is equal to the number of unknown parameters., This is not the case with the general direct adaptive 

scheme of Sastry and Isidori (1989), which requires that the number of parameter estimates be aug­

mented. The price paid for the simplification achieved here is a restriction on the class of plants. 

This restriction (Assumption 5) is less severe than the strict matching condition (Assumption 6) 

used in Taylor et al. (1989). It has not yet been determined whether a further relaxation of the 

matching condition is possible without an increase in the parameter estimates.

Instead of broadening the class of plants by a more relaxed matching condition, a similar effect is 

achieved here by allowing the presence of unmodeled dynamics. The same restriction is imposed 

only on a reduced-order model, while the adaptive regulation is still guaranteed for the actual plant, 

provided that the unmodeled dynamics are sufficiently fast in the sense of singular perturbations. 

As illustrated by the DC-motor example, nonlinear plants with such unmodeled dynamics are com­

mon in practice.
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APPENDIX

The terms appearing in (3.14) and (3.17) are defined as follows:

diCt) = L*o<t>; , (A.l)

(A.2)

are scalars,

: k.-2
w i j  = Lf j v °  fo* (A.3)

k.-2
®2j(^) = LfQLf j Lf0 <j),' , (A.4)

k.-2
p2,rj(*) = Lg?LfiLfO » (A.5)

k.-\
a$j(x) = Lf j Lf ‘0 , (A.6)

M,j(.x)  >,• , (A.7)

all for ;= l,...,p , are the y-th elements of the 1 x p row vectors w\(x), a^(x), p»2,r , p3,r00>

r=l,...,m , respectively,

k.-2
&4,l = Lfi Lfj LfO (J)t- , (A.8)

k.-2
p4/ Jl J (x y — Lgl Lfj LfO <J>; , (A.9)

both for /J= l,...,p , are the (/J)-th elements of the p x p matrices <x\(x), \p4,r(*)> r= l,...,m ,

respectively, and

w l2(x,a,u) = ai(x) + dTa^ x )  + E[p3,r(*) + a r p4/00] wr
r=l (A. 10)

= A{T(x ,a) + u T A2 (x ,d) ,

A[(x,a) = [Zyix*\ . . . .LfpX-1]7 (A. 11)

A2(x,a) = [Gi r Vxx / \  . . . ,GpTVxxf ']T , (A. 12)

Gj = [g{ . . . .  ,g i t ] , ;=0,...,p . (A. 13)

Finally, the terms in (3.22) are defined as
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K 0(.x,a)
m
Ei=1

0 . . .0
0 . . . 0

, w f  (x), Aftx.a)

* i (* 4 )  = ^ { P i X i X b f c A ) .i=i
where (•)*. denotes the fc, -th element of the ikf x 1 vector.

(A. 14)

(A. 15)


