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ABSTRACT

It is well-known that the Nash equilibrium solution of a two- 

person nonzero-sum linear differential game with a quadratic cost function 

can be expressed in terms of the solution of coupled generalized Riccati- 

type matrix differential equations. For high order games the numerical 

determination of the solution of the nonlinear coupled equations may be 

difficult or even not possible when the application dictates the use of 

small memory computers. In this paper a series solution is suggested by 

means of a parameter imbedding method. Instead of solving a high order 

Riccati matrix equation, a lower order matrix Riccati equation corresponding 

to a zero-sum game is solved. In addition, lower order linear equations 

have to be solved. These solutions to lower order equations are the 

coefficients of the series solution for the nonzero-sum game. Cost 

functions corresponding to truncated solutions are compared with those 

for exact Nash equilibrium solutions.
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1, Introduction

Consider a two-person linear differential game described by

x = A x + + B2~2 s

5 (to) = &>*

( 1 )

( 2 )

where the n-vector x is the state of the game, the m^-vector is the

strategy of player 1, the m2~vector u2 is the strategy of player 2, A, B ^

and B2 are nxn, nxm^, and nxn^ matrices whose elements are piecewise

continuous in time t, and t is a fixed instant of time. The cost functiono
for player i is

Ji(ülî̂ 2) = ^ * f ’5if 2f> + ^i»£üüi^ +
(3)

for i = 1,2, where j = 2 when i = 1, and j - 1 when i - 2. The terminal

time t is fixed, and Q., R.. and R.. are symmetric matrices whose elements f ~i ~ n  ~ij
are piece-wise continuous in t. Furthermore R ^  > 0, R22 > 0, R 2̂ < 0,

R21 < ° 5 Slf - ° »  S2f — ° s 2i - °» and ?2 - °° A11 °f the above matrices
are assumed to be known to both players.

Whereas minmax strategies are natural choices for zero-sum games,

the latitude for "reasonable" strategies for nonzero-sum games is much wider.

For example, depending on the nature of the information available to each

player and the possibility of cooperation or noncooperation, different

attributes for the strategies may be desirable. Minmax noninferior, and Nash

equilibrium solutions have been investigated before [1,2]. Furthermore,
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open-loop and feedback Nash strategies generally lead to different values 

for the cost functions [2],

For nonzero sum linear games with quadratic cost functions the 

minmax strategies and noninferior strategies are obtained by solving decoupled 

Riccati-type matrix equations. However, the Nash strategies are obtained 

from coupled Riccati-type matrix equations.

A strategy set (u^, u^) i-s called a Nash equilibrium strategy set 

if

Ji (Hi ’-2> > V sÎ.ïïÎ). (4)

J2 ^-l’-2') > J2 (UpU*). (5)

If = 0, the game is zero-sum. It has been shown [1] that if u^ and

U2 are required to be feedback functions of x, the Nash equilibrium strategies 

are

51 S. x~i ~ (6 )

where satisfies the generalized matrix Riccati equations

S. ■ -A* S. - S. A - Q. + S.B.r 7}b !S. + S. B .RTtB'.S .~i -- 1 ~i-

+ s .b .r T^b '.s . - s .b .r TIr : .r T V . s .. , s . ( 0  = s.£ (7)

for i - 1,2, where j = 2 when i 1 and j = 1 when i = 2. Sufficient 

conditions which guarantee the existence of solutions S, and S0 for 

t < t < t^ are given by Rhodes [3].
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Equation (7) for i - 1,2 represents coupled nonlinear matrix 

differential equations. and S2 are nxn matrices but since they are

symmetric, there are n(n+l) different:'-variables ;a If n is large, the 

numerical determination of the solution of these n(n+l) coupled nonlinear 

differential equations could be quite formidable. Furthermore, in 

applications where the solutions have ta be obtained "on-line" using 

limited computational capability, the solution of these n(n+l) nonlinear 

differential equations may not be feasible.

In this paper, a parameter imbedding method is employed to 

obtain series solutions for and S2 » Instead of n(n+l) nonlinear 

equations, only n(n+l)/2 nonlinear equations have to be solved. Higher 

order terms in the series require the solution of n(n+l)/2 linear equations 

for each term. However, the set of linear equations for each term has 

the same homogeneous part and only the forcing terms are different. The 

cost functions using the truncated strategies will be compared with the 

exact cost functions. As in all imbedding methods a bonus of the calcu­

lation is that a wider class of problems is solved. The imbedding 

parameter introduced in the paper allows an examination of a two-person 

game which is zero sum when the parameter is zero and when the parameter 

has a value of unity, the solution is an approximation for the original 

problem. However, since the solution is obtained as a power series in 

the parameter, a range of nonzero-sum games with varying degrees of 

asymmetry from the zero-sum condition is automatically studied.
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Thus the sensitivity of the solution to a change in the asymmetry from 

the zero-sum condition is available.

The use of parameter imbedding for obtaining series solutions 

for almost zero-sum games has been investigated before [4]. The method 

in [4] when applied to the linear-quadratic differential game considered 

in this paper will yield the same zeroth order term in the series as the 

imbedding method below. The remaining terms in the series are different 

for the two imbeddings but the two series will yield the same solution 

for unity value of the imbedding parameter. The method discussed below 

leads to simpler calculation of the series.

In optimal control, parameter imbedding has been used to achieve 

computation reduction for the design of large scale systems [5]. The 

method is particularly useful for "weakly coupled" systems because a few 

terms in the series yield a performance index which is close to the optimal 

one [5].

2. Series Solution by Parameter Imbedding 

Consider the equations

. = 1 , -1 -1
S. = -A'S -S.A-Q + S.B.R..B.S. + S.B.R. .B'.S . + S .B .R. .B'.S.- l  ~ ~ i  ~i~ ~i  - i - j - j j - j - j  - J - J - J J - J - i

- 1_  -1
S.B.R. .R. .R. .B'.S. , S. (e t ) = S. _ 
- J - J - J J - i J - J J - J - J  - i f  - i f (8 )

i ~ Ij2 , where j - 2 when i — 1 and j — 1 when i = 2 , where
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(9)

( 10) 

( I D  

(12)

and e is a scalar parameter. Clearly (8) reduces to (7) when e = l.

Assume the existence and uniqueness of the solution of (8) for all t in

[tQ,t^] and for all e in an interval I which includes [0,1], Since the

right hand side of (8) is a polynomial in , S0, and s, it follows that~l
and are infinitely differentiable with respect to e for all t in 

[tQ,t^] and all e in I [6], Hence and S£ are analytic with respect 

to e in I.

Let the solutions be expanded about e = 0,

S, (e,t) = £~1 i=0

S2 (e >t} = 1=0

— —
b1 S1 (e,t) ie
be1 i!

e=0 _

S1 S2 (e1t) ie
be1 i'.

e=0 —

(13)

(14)

In this section, the equations that must be satisfied by the coefficients 

in (13) and (14) are presented. The convergence of these series in I is
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guaranteed by the analyticity of and S^. When (13) and (14) are 

evaluated at e = l, the solution for the original nonzero-sum game is 

obtained.

Calculation of S^(0,t) and 8^(0,t)

The zeroth order terms are the solutions of (8) for i-1,2, with 

e set equal to zero:

li " -*’Si - h è - f ^ T 1) + S t i f T ^ X  + +

+ s i M ^ S ,  + s i ^ F ^ S ,  , S, ( 0 , 0  = S i (15)2 /~i 2 /~j

where
E. = B.r TÎb !

F. = b .r 7}r ..r T1b !,~1

(16)

(17)

j = 2 when i = 1 and j =1 when i = 2. The dependence on t has been left out 

for convenience in writing. Although (15) for i = 1,2 are coupled equations, 

S1 (0,t) and 8^(0,t) can be obtained by solving only the lower order matrix 

equation given below. Sufficient conditions which guarantee the existence 

and uniqueness of the solution of the reduced are discussed in Section 3.

Consider the equation

a , „  - /2 i ~%2\ * f ~ l  "  El ~  £2 + ~2V  v  ~lf ~  ?2fS = -A'S - S A -  M -2--) + § 1 2------ js, S(tf) = --------- , (18)

where E*v and F. are, defined in (16) and (17). It is easily verified that

S, (0,t) = s (19)
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and
s2 (o,t) = -S (20)

satisfy (15) for i - 1,2. Thus S^(0,t) and S^iOjt) can be obtained by 

solving (18), and since S is symmetric, this entails solving n(n+l)/2 

coupled nonlinear scalar equations.

Equation (18) is the matrix Riccati equation corresponding to 

the zero-sum differential game (1) with cost functions

(21)

(22)

when and J are given in (3). This is identical to the zeroth order 

term that would be obtained if the imbedding in [4] is applied.

Calculation of First Order Coefficients

Differentiating (8) with respect to e, setting e=0, and 

substituting S^iOjt) = -S^(0,t):

as.~ i A 1 . < s l - E l - 5 2 + *2>
as.

~L as.~L . (E i - E i - E 2 + E2 > .
ae

tx ' h ae ae *  ■ 2 y

(Qt +Q0) (E. +F. - 3E. - 3F.) 3S.
2 ~1 2 Si ’ 3e

§!f + S2f (23)

S^(0,t) can be obtained from the solution of (18), and then substituted in

(23). Thus ds^/be can be obtained by solving the linear equation (23). 

a^/ae is symmetric so that the solution of (23) involves n(n+l)/2 linear
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scalar equations. Notice that for i = 1,2, the homogeneous portion of 

(23) remains the same. Only the forcing terms change.

The coefficients ds^/de and ôs^/ôe described above are different 

from those that would be obtained if the imbedding in [4] were to be 

applied. The equations resulting from (23) for i = 3,2* are much simpler 

because e enters linearly in the coefficients of the matrix equations in 

(8) whereas in the corresponding matrix equations using Starr's imbedding, 

e would enter nonlinearly.

Calculation of kth Order Coefficients

By repeated differentiation of (8) and setting e=0,

dks.~i
3e1

.. „ <Si-Si-52+l2> 3kS.~L •H
CO{ [7 <£i - Si ' 52 +e2> /£ ‘Si 2 J 3ek 3ek S- 2 2i

k -1
+ i  2 -

p=1 p.
kl

P=1 p ' - (k -p )!

3PS,
(E, -F. )

3k' pS.

1 + — :~  (E . - F . ) . , k - p
3k_pS. âPS

3ep 1 - 1 3ek " p 3<=p

3k ' pS.3PS. 3k"PS. 3PS,
+ — “ L(E . - F . ) — ^  ^  (E. -F.) ,ôeP ~J 3ek-p 3ep ~J ~J âek-p

k -1
+ i S ki 3PS.~i

pi(k-p-1 )I 3ep
(E. +F. ) ■■■. - - (E. + F.) — :-- -7*

i  ~ i '  3ek - p - l  SeP ~J ~J 3ek - p - l

¡k_p" 1S. 3PS. ~1 . ~1
^k-p-1.

dpS. 3k- p_1S. 3PS .
(E . +F.)

ak-p-ig.

bep ~~y ôek " p_1 3ep
1 (E . +F . ) — :--- 7 1

~J Ôek - P-1
3kS.

dek
= 0

(24)
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Equation (24), for i = 1,2, j = 2 if i = 1, j = 1 if i=2, provides 

an algorithm for solving for the kth order partial derivatives of and S^, 

based on prior calculations of the partial derivatives of and up to 

order k-1. Notice that (24), for i = 1,2 are not coupled, so far as the 

calculation of the kth order partial derivatives is concerned« Furthermore, 

the homogeneous part of (24) does not change with i nor k« In fact the 

homogeneous part is the same for all k > 1. Only the forcing terms change 

for the calculation of the various partial derivatives«

Approximate Nash feedback strategies for players 1 and 2 are 

obtained by truncating the series in (13) and (14), setting e = l, and 

substituting these approximate values of and in (16). The zeroth 

order terms of and are the exact solutions when the game is zero-sum,

i.e., - -C^, E^=F^, ^2 = ”^2 anc* ^lf = ”^2f9 ^  t îe £ame :*-s not; zero“sum

but.if the norms of E.^+F^, E^ +F2 3 Q ^ + 2 2 3 anc* ^lf + ~2f are muc^ smaH er 

than the corresponding norms of E^-F^, £2 ^ 2 , ^ l " ^ 2 J anc* ^lf~^2f’ t îe 

game is called an almost zero-sum game« One would intuitively expect that 

for almost zero-sum games, an approximation for S, and S0 using only a 

small number of terms would yield cost functions close to the exact Nash 

equilibrium cost functions» The degree of approximation of the Nash 

equilibrium cost functions is discussed in Section 4.

3« Dependence of Nash Cost Functions on Imbedding Parameter

In Section 2, parameter imbedding was introduced in the generalized 

matrix Riccati equations in such a way that when e = l, the imbedded 

generalized matrix Riccati equation (8) reduces to the original generalized
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matrix Riccati equation (7). Hence the series in (13) and (14) when e = l 

are the Nash solutions for the cost functions in (3). One might ask if 

the series in (13) and (14) for any e ^ 1 could correspond to Nash 

solutions for some other cost functions* It is readily verified that 

indeed (13) and (14) are Nash solutions for the differential game (1) and 

cost functions

J.l
_ JL ~ 2 xl S . x £ +'i f (x'Q.x +u!R. „u . ~f ~if ~f v ~ + u*. R. .u.)dt (25)

o

where S^, Q^, iL ̂ , and are defined in (9), (10), (11), and (12), 

for i = 1,2, j = 2 when i = 1 and j =1 when i = 2 , One way of verifying 

that (13) and (14) are the Nash solutions for (25) for the differential 

game (1) is to apply the result in [1 ] for obtaining the generalized 

matrix Riccati equations. Furthermore the cost functions Jj and 

reduce to and of (3) when e = l, and satisfy the zero-sum condition 

+ J2 = 0 when e = 0.

Although e enters linearly in Slf5 52fs 2l’ and , the dependence 

on e of R^, ^225 R12s anc* R21 are muc^ more complicated. However, the 

matrices in the imbedded generalized, matrix Riccati equation are linear in 

e. This linearity simplifies not only the calculation of the power series 

for and S^, but also the calculation of and J^. If the imbedding 

in [4] were to be applied, the imbedded weighting matrices in and 

would be linear in e but the matrices in the imbedded generalized matrix 

Riccati equations would have complex dependence on e.

The Nash strategies for players 1. and 2 for the cost function in

(25) are



11

--1 ,
u. - - R i . b ! s „(e , t ) x- 1 ~11 ~x ~i. 5 ~ (26)

where S^(e,t) and S2 (e,t) are solutions of (8) for i = 1,2. The solutions 

cover a class of games ranging from a zero-sum game when e = 0 to the 

original nonzero-sum game when e = l.

In Section 2, it has been assumed that there exists a unique 

solution for the imbedded generalized matrix Riccati equations, for all t 

in [tQ,t^] and for all e in an interval that includes [0,1], This insures 

the existence and uniqueness of a Nash solution for the imbedded nonzero-sum 

game with cost functions in (25). Sufficient conditions which guarantee 

existence of the generalized matrix Riccati equations for the nonzero-sum 

game were derived by Rhodes [3]. In terms of the notation of this paper, 

these conditions are: S ^  + $2f — Qf + Q2 > 0?

S22 ~12 — ^or a^  [to5tf] anĉ  e in I ; and the existence and

uniqueness of the solutions of the matrix Riccati equations for two zero-sum 

games, one with cost and another with cost -j . Furthermore a sufficient 

condition for the existence and uniqueness of the solution of the matrix 

Riccati equation for a zero sum game with a cost function is that the 

relative controllability matrix

^11 + £21 — and

J 0( t f S s)[B.
. - 1
5n 21 + B, 5 12 5^3j08 (tf ,s)ds > 0 (27)

is positive semi-definite for all t in [tQ,tf] and for all e in I,[3]. 

Similarly, for a zero-sum game with cost function -J2 a sufficient condition 

is that the relative controllability matrix

f . - 1  . - 1
"J 0(tf,s)[B1 R21 B| + B 2 R22 Bj]0*(tf,s)ds > 0 (28)
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is positive semi-definite for all t in [tQ,t^] and for all e in I . The 

matrix 0(t,T) is the transition matrix for the system in (1). From the 

results in [3] a sufficient condition for the existence and uniqueness of 

the solution for the resulting zero-sum game when e is set to zero in

(25) is that

0(tf,s) [Bx 5ii^ll”5 2 1)Sll Si B2 S22(S22"Sl2)S22 ~2] $' (tf5s)ds > 0 (29)

is positive semi-definite for all t in [t ,t^]. But if (27) and (28) are 

satisfied for all e in I (including e=0), it follows that (29) is also 

satisfied» Hence (27) and (28) guarantee the existence and uniqueness of 

the solution of (18) (and hence of S^(03t) and ¡^(Ojt). The higher order 

terms in the series of (13) and (14) are solutions of (23) and (24) which 

are linear differential equations with continuous coefficients and continuous 

forcing functions. Hence there exist unique solutions to these equations.

4. Degree of Approximation of Cost Functions

In this section the effects of truncation of the strategies of 

the players on the cost functions are examined. The power series of and 

in e define the functions for all es and when these are evaluated at 

e =1 the values are the Nash cost functions for the original nonzero-sum 

game. The cost functions for truncated strategies will be investigated 

by comparing the coefficients of their McLaurin’s series with those for 

Nash cost functions.

Case a . Both players use the Nash strategies of (26) for i = 192. 

Denoting the Nash cost function for player 1 by J^a and that for player 2
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by J0 j the cost functions are [1]:Za

J = i x' S. x , i = 1,2, (30)la ~ '»X ~

where is given by (8). The next three cases are compared with this 

exact Nash equilibrium situation«

Case b . Player 1 uses the strategy

_ - l
u. = "R-- B’ x (31)~I ~11 ~l ~l ~

where .
m-1 i 9 S.

Mi - 2 h- <32)i=0 l .  oe

but player 2 uses the exact Nash strategy in (26). Denote the cost function 

for player 1 by J ^ and that for player 2 by ^ b ”

Since the cost functions for linear-quadratic differential games 

with linear feedback strategies are always quadratic in x, an<3- ^ b  are 

of the form

Jib  =
_ JL I P.X

~ 1 ~
(33)

where P^ satisfies [1 ]

Si -  - (a- I A - k & ' h .  - ! 252) -S i-g J iS i  -SjEjSj» !i< e* V

(34)
where

E. - F. E. + F. E. - F. E. + F.- ~i ~i , ~i ~i - ~i ~i , _ ~i ~iE. = — o---  + e -— ; F. = - -— o—  + e — o---~i 2 2 5 ~i (35)

Si  "  i? i ’ ~2 ~ ~23 (36)
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and as before j =2 when i = 1 and j =1 when i = 2 „ E. and F. are definedJ J ~1 ~L
in (16) and (17), and is defined in (9).

It can be shown that

lb
as-

d*jla

e=0 de1
, i = 0,1 ,...,2m-l

e=0

and
aij2b
de1

3 J2a

s=0
de1

, i = 0,1 ,... ,m.
e=0

(37)

(38)

The approximation property in (37) is the same as for optimal control [7,8]. 

Thus if the first m terms of the McLaurin's series for u^ are equal to the 

first m terms of the Nash solution (26) with i =1 for player 1, and if 

player 2 uses the Nash strategy in (26) with i = 2, then the first 2m terms 

of the McLaurin's series of will be equal to the first 2m terms of the 

McLaurin's series of the exact Nash cost function J^a » Player 2 will not 

achieve the exact Nash pay-off function J^a but (38) will be satisfied. 

Relation (37) is proved using the same arguments as in [8]. That is,

P^ - = r is formed. Using the differential equations for P^ and S^, it

is straightforward to show that d^Th/ds^ = 0 at s = 0, for k - 0,...,2m-l 

when i = 1 and for k = 0,..,,m when i = 2 .

Case c. Player 1 uses the strategy in (31) and (32) and player 2 

uses the strategy

(39)

k-l ei
M, = £ 7 7 — Ti-0 x* de

(40)
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Denoting the cost functions for players 1 and 2 by and ,

then

Jic = ^ ~'~i ~ » i - 1,2 (41)

where L. satisfies

L. = -(A-E-M- - eL h , )  'L. - L. (A-E1M - ELM.) - 6. -M.E.M. -M.F.M.~1~1 ~2~2 ~i ~i ~ ~ 1~1 ~2~z ~i
L . ( e 3t _) = S. . .i v 3 f ~if (42)

It can be shown that

aijlc
Be1

S1j la

e=0 Be

• - n i • f 2m-l*)l = 0,1 3... ,mint ^ j (43)
e=0

and

d1J2c
Be1

dLJ2a

e=0
Be1

3 i = 0j1 3..o,minif2k-lj
m (44)

e=0

The derivations of (43) and (44) are analogous to those of (37) and (38)» 

Thus if both players use first order corrections on nominally zero-sum 

strategies, the resulting cost functions match the exact Nash cost 

functions to second order.

Case d. Player 1 uses the truncated strategy in (31) and (32) 

and player 2 uses the optimal strategy which minimizes knowing that 

player 1 is using the strategy in (31) and (32).

The optimal strategy for player 2 is

(45)
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where

£2 = - ( A - E ^ ) ’̂  +^2 E2K2 -Q2 ^(e.tj) =S2f. (46)

The cost functions are

Jid = i  Z ’ Z± 5 > 1 = 1>2 j (47)

where satisfies

£1 = -I2& )  - -I2£2>’S i -i?ili£r2i - £2!2£2 > 5i <•»**> = Iif
(48)

The cost functions and J have the property that

d1J
I d

d e 1
e=0

j

de"

la 5 1 "" ^ y (49)
e=0

and

2d a1j 2a
de" e=0 de1

0 j 1 j o • • ,m< (50)
e=0

Cases b, c, and d are for player 1 using a truncated strategy and 

player 2 using either Nash, truncated, or optimal strategy knowing that 

player 1 uses a truncated strategy. By symmetry the roles of players 

1 and 2 may be interchanged to investigate two other possible strategies 

for player 1 when player 2 uses truncated strategy. The comparisons in 

the above cases are with respect to the exact Nash strategy of case a.

Cost functions for cases b, c, and d may be compared among themselves 

instead of the one for case a by deriving differential equations for
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P. -L., P. - K. , and L. - K. , for i = 1,2, and investigating to what order '■»'i ~i ~i '*'1 ~1

their partial derivatives with respect to e are zero identically. The 

results are

and

sijlb hlj lc
de1 e=0

de1
3

e=0

Sij2b dij2c
de1 e=0 Se1

3
e=0

sljib 3ijid
de*- e=0 de1 e=0

3lj2b *lj2d
cie1 e=0

de1
3

e=0

dijilc 3ijid

e=0
de1

3
e=0

3ij2c 3lj2d
de1 e=0 de^-

3
s=0

i “ Ojljoo.jk

1 "" 0,1 ,0003k

i  —  0 j 13» o o jin

l  ■“ Ocjltjoo.*)2m 1

i = 0,l5,o.3mini™}

i = 0,13..»gmin̂™,̂  °

(51)

(52)

(53)

(54)

(55)

(56)

For a given initial state, the functions may be plotted against the scalar

parameter e. Jla(e) and J2a ^  are the exact Nastl cost functions for a 

class of almost zero sum games, including a zero-sum game when. e = 0,  and 

the original nonzero-sum game when e = l0 Equations (37), (38) 3 (43), (44) s 

(49), and (50) indicate the closeness of the curves for Jlc9 anc* Jld

to J^a , and the closeness of the curves for ^ b 9 J2c5 anc* J 2d tC> J2a*
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Equations (51) to (56) show that the different truncated strategies

compared among themselves yield cost functions which are close to each

other. For example, in (51) and (52), it is seen that the truncation

order for player 1 has no effect on the comparison of the cost functions

between Cases b and c. In fact when k “*00, Case c becomes Case b so that

J. becomes identical to and J0 becomes identical to . Similarly, lc lb 2c 2b
from (53) and (54), it is seen that when m “*00, Cases b, d, and a become the 

same. For a comparison of Cases c and d, (55) and (56) show that the cost 

function differences depend on m and k because the strategy of player 2 in 

Case d depends on the truncation m of player 1 and the strategies are both 

truncated for Case c and these depend on both m and k.

From the above four cases, it is seen that if player 1 uses a 

truncated strategy, and if player 2 uses a Nash strategy, the cost 

function of player 2 is not. as close to the exact Nash value as that of 

player 1, in the sense of (37) and (38). Player 2 will achieve the same 

degree of approximation to mth order in the sense of (44) by truncating 

his strategy to kth order where k is more than half as large as i. If 

player 2 uses the optimal strategy which minimizes knowing that player 1 

uses a truncated strategy his cost function would not be too different 

from what he would obtain had he used a truncated Nash strategy, in the 

sense of (44) and (50).

In solving for the cost functions in MeLaurin's series form, 

various partial derivatives with respect to e of S^, P^, L^, Kb are needed. 

However, the homogeneous parts of the differential equations for these 

partial derivatives evaluated at e =0 are all the same. The forcing
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terms are easily formed because of the simple manner in which e appears in 

the weighting matrices of the equations.

5« Examples

\  Example 1: A velocity-controlled pursuit-evasion same as in [1 ]

is considered here to illustrate the procedure

r = v - v P e

J_ - i  & r'rf  + i  \ (v’v /c + v ’v /c )dt p p f f c ^ N p p p  e e  pe

Je " CTerfrf + v l y J c a J d t .

2 2

e f f  ̂ o ' e e e P P eP

(57)

(58)

(59)

Consider the case cr =cr = c c = 1, a = c /e = 0. b = c / c =0,P e p e p pe e ep *
2

^ ~ Cp/ce ~ 4 3 and t^ — 0.5. The 0th order term is found from (18)

S = 0.75 S , S(0.5) = 1, (60)

Thus

sx(09t) = S(t) , S2(0,t) = -S(t) (61)

The first order terms are found from (23)

as as 3s
= 1-5 S1 (0,t) ¿ f -  + 0.25(Sx(0,t))Z , ^ = 0 (62)

t=0.5

as2 as, , as,
= 1-5 S1 (0,t) - 2.75(S1 (0,t))^ , ^ = 0. (63)

t=0.5

The 2nd order terms are found from (24)
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Similarly 3rd and higher order terms can be found by solving (24) 

for that order.

Approximate strategies are then found from truncated series of (13)

and (14) with e=l. The costs to pursuer and evader when 4th order
2 2

it (Q) it (0 )truncations are used are found to be 0.591 ( 2 ' ) and -0.241 while.
2 Z 2 fO ) r  ft) )the exact Nash strategies*yields = 0.593 (— ^-^) and = - 0.241 ( — ̂ '*-) .

Example 2; An acceleration controlled pursuit-evasion game 

closely related to that given in [1] is considered

r = V r (0) = 1 (66)

v = a - a p e v(0) = 0 (67)

Jp = rfrf + i  t
0.5

(r’r + a ’a )dt 
) P P

(68)

J = -0.6 r’r,. e f f
0.5

+  è  J (“1.2r’r+0.4 a^a^)dt . (69)
0

*
In the two examples of this section, R ̂  = 0 so that the sufficient
conditions for the existence of solutions for and in [3] are not 
satisfied. However in these examples, it can be shown that the solutions 
for and exist.
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Presence of quadratic terms of the states in the integral has 

the following meaning: evader (pursuer) wants to maximize (minimize) the

distance not only at the final instant but also during the. course of 

pursuit. In general this problem may not be transformed into one of 

velocity-controlled pursuit-evasion game. Thus to obtain exact Nash 

strategies, it will be necessary to solve coupled Riceati-type matrix 

equations. Using Oth order truncations, one obtains = 1.615, J2 = -0.884. 

Using first order truncations, one obtains = 1.490, = -0.856. When

2nd order truncations are used, = 1.476, =”0.860 are obtained. The

exact Nash strategies yield = 1.478, =”0.862.

At t = 0.25 S1 (ll) S1 (12) S1 (22) s2(ii) 1 S2 (12) S2 (22)

Exact Nash Strategy 2.30 0.543 0.133 -1.49 -0.336 -0.081

0th Order truncation 1.89 0.437 0.106 -1.89 -0.437 -0.106

1st Order truncation 2.32 0.548 0.134 -1.50 -0.338 -0.081

2nd Order truncation 2.30 0.543 0.133 -1.49 -0.335 -0.081 j

> rt rt II O S1 (ll) S1 (12) Sx(22) S2 (ll) s2 (12) S2 (22)

Exact Nash Strategy 2.96 1.34 0.647 -1.72 -0.712 -0.331

0th Order truncation 2.26 0.990 0.471 -2.26 -0.990 -0.471

1st Order truncation 3.15 1.44 0.694 -1.82 -0.760 -0.355

2nd Order truncation 3.00 1.37 0.658 -1.70 -0.700 -0.325

Table 1. Comparison of S for Example 2.
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6. Concluding Remarks

By a simple linear parameter imbedding of the generalized matrix 

Riccati equations, strategies for two-person linear quadratic nonzero-sum 

differential games are obtained in series form. For almost zero-sum games 

approximate Nash cost functions may be obtained with much less computation 

using lower order equations in contrast to the exact solution which 

involves solving higher order equations. The method requires solving a 

matrix Riccati equation for a zero-sum game with half as many variables 

as the original problem, and a set of linear equations with the same 

homogeneous part. The linear equations are also of lower dimensionality. 

Finally, the effect of truncating the series on the cost functions are 

discussed.

The numerical examples show that low order truncations yield 

reasonably accurate results. In general the method would be most useful 

when the cost functionscorrespond to almost zero-sum games, and when the 

dimensionality is high. Although realistic games are usually not linear 

with quadratic cost functions, one possible method of obtaining an 

approximation to Nash strategies is to expand the cost function and 

differential equations in Taylor series and consider strategies which are 

also Taylor's series. The first order approximations in the control 

strategies are based on a linearized game with quadratic cost functions. 

This approach is analogous to that of Albrekht and Lukes as applied to 

control problems [9,10].
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Yes

Form approximate 
strategies from ( 32 )

FP—2305

Solve Ki* order terms from
( 2 4 )  using 0 ^  . . . . (  K - l ) iti
order terms obtained above 
----------------------- -----------------------

K=K+ I

Figure 1. Flow chart summarizing the sequence of calculations for 
determining truncated Nash equilibrium strategies.
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----------- Exact Nash solution
---------- Oth order truncation
----------  |st o r c j e r  truncation

---------- 2 ^  order truncation
---------- 4th order truncation

F P -2306

Figure 2. S^(t) and S^Ct) for various degrees of truncation for Example 1.
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