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Abstract

Given a set I< of n points on the unit sphere S in d-dimensional 

Euclidean space, a hemisphere of S^ is densest if it contains a largest 
subset of K. In this paper we consider the problem of determining a 

densest hemisphere and present the following complementary results:
(i) a discretized version of the original problem, restated as a 
feasibility question, is NP-complete when both n and d are arbitrary;

(ii) when the number d of dimensions is fixed, there exists a polynomial 
time algorithm which solves the problem with a number of operations
0(n^ Hog n) on the random access machine with unit cost arithmetic operations.
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THE DENSEST HEMISPHERE PROBLEM 
D. S. Johnson and F. P. Preparata

I. Introduction

This paper is motivated by the following simple geometric problem: let ]Rd 
be the d-dimensional space and let S be the sphere of unit radius with center 

at the origin of 1^. Let K be a set of n points on Sd. Find a hemisphere of 
Sd which contains a largest subset of K.

This geometric problem was posed to the authors by H. S. Witsenhausen for 
its relevance to applications of statistical analysis and operations research.
It was apparently originated by J. B. Kadane and R. Friedheim as a formalization 
of the following situation in political sciences. The coordinates of the points 

in K correspond to preferences of n voters on d relevant political issues; the 
axis of the maximizing hemisphere then corresponds to a position on these issues 
which is likely to be supported by a majority of the voters (I).

In thinking about such applications, it is more convenient to formulate 
the problem in terms of vectors and inner products. (This will also enable us 
to make the useful restriction that all co-ordinates are rational numbers, thus 

placing the problem in the standard discrete form to which computational 
complexity arguments can be applied.)

To be specific, let K = [p ,P2,...,P } be a finite subset of (Qd, where, as 
usual, is the set of rationals. There are actually two parallel problems to 
consider:

CLOSED HEMISPHERE: Find that x € ]Rd such that |x| > 0 and

| {P 6 K: x • P > 0] | is maximized.
OPEN HEMISPHERE: Find that x € lRd such that

| {P 6 K: x • P > 0} | is maximized.

(1) Private communication of J. B. Kadane, Dept, of Statistics, Carnegie-Mellon 
University.
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The correspondence with the geometric problem comes from the fact that each 

x € E.̂  determines a hyperplane through the origin [y € ]R̂ : y • x = 0} which 
partitions into the two open hemispheres {y € S^: y • x < 0] and 
[y 6 : y • x > 0] . However, observe that the vector problem is in a sense
more general as it allows more than one point along a single ray from the origin.

In this paper we present the following results. Both the CLOSED and OPEN
HEMISPHERE problems are NP-complete if the number of dimensions is not fixed in

advance (Section 2). This means that there can be no polynomial time algorithm
for the general problems unless many other famous intractable problems also
have polynomial time algorithms, an unlikely event [2,3]. Interestingly, however,
as we shall see in Sections 3 and 4, a densest hemisphere can be algorithmically
determined for fixed d with a number of operations 0(n^ ^log n), where the
adopted computation model is the random access machine of [2], with all arithmetic

( 2)operation having unit cost. ' The latter result not only shows that the problem 

can be solved in polynomial time for fixed d, but it also provides an attractive 
method for cases in which d is a small integer, say 4 or less.

It may be pointed out that the presented algorithm can be modified to solve 
interesting variants of the problem, such as the determination of a densest hemi­

sphere when each point in K has an assigned weight. Another variant of the problem, 
discussed by Reiss and Dobkin [l], is to determine if there is a hemisphere which 
contains the entire set K. This variant, however, has been shown to be equivalent 
to linear programming and may well be simpler than the general problem 

discussed in this paper.

( 2}v 'For models in which the unit of time is a bit operation and hence arithmetic 
operations have costs depending upon the lengths of the operands, the above 
running time bound would be multiplied by a factor depending on these lengths, 
but would still be a polynomial.
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2. NP-completeness of the HEMISPHERE problems

In this section we present a proof that CLOSED HEMISPHERE, stated as a 

feasibility question, is NP-complete. (The construction in addition shows that 

the OPEN problem is NP-complete.) The statement of the problem as a feasibility 

question goes as follows.
HEMISPHERE: Given positive integers d and M and a finite set R C  Qd, does there

exist a P* £ such that |P*j > 0 and j{P € K: P•P* ^ 0] ^ M?
To prove that this problem is NP-complete, we must (i) show that it can be 

solved non-deterministically in polynomial time, and (ii) reduce a known NP- 
complete problem to it [2,3]. For the former, we observe that if such a P* 
exists, another one could be found as the solution to a linear programming problem 

involving the set (p € K: P»P* ^ 0], and hence must have rational coordinates 
of polynomially bounded length. Thus, all we have to do is guess these coordinates.

To complete the NP-completeness proof for HEMISPHERE, we reduce the NP-complete 

MAXIMUM 2-SATISFIABILITY problem [4] to it.
MAXIMUM 2-SATISFIABILITY (MAX 2-SAT)
Given: positive integers m and N > 1

finite collection (3 of two-element subsets of

X = xp >xq >X2 ’X2 ’ * * * ’Xm ’Xm̂  suc^ that |3| — N.
Question: does there exist a subset X' c X with |x' fl {x^x^jl = 1 

for 1 ^ i ^ m such that |{ c £ 3:X' H c ^ 0}| ^ N?
We shall show how to transform any instance of MAX 2-SAT to a corresponding 

instance of HEMISPHERE in polynomial time, in such a way that the answer for 
the second instance is affirmative if and only if the answer for the first

instance is also affirmative.
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In what follows, we shall use a short-hand notation for sets of vectors. 
If a,n € Z and n 2: 0, we let (a)n stand for the set consisting of the 

single n-dimensional vector ("n-tuple") (a,a,...,a), all of whose components 
are a. If S c  Z is a finite set, Sn will represent the set of all possible 
n-tuples with components from the set S. (Observe that ¡Sn| = |s|n.)

Finally, if U is a set of n-tuples and V is a set of m-tuples, UV is a set 

of |U| * (V| (n-fm)-tuples of the form (a^ja^,... >an,b^»b2> • • • »b^) where 

(a^ja^, • • • >  ̂^ and ( b^ jb̂, j • • • ^ V.
We now describe our construction. Suppose m, N, and <3 provide an 

instance of MAX 2-SAT. Let |(3| = s and t = Tlog^Cmsfl)! . We construct 
three sets A, B, and C of d-dimensional vectors, with d = m+l+3t, specified 
as follows.

3t 3The set A will consist of 2m*2 ^ 2m(2ms+l) vectors, subdivided into

subsets A. and A., 1 ^ i ^ m, wherel i’ *
= (O)1"1 (lKO)"'1 (l){l,-l}3t, and

A. = (0)1"1 (-l)(0)m"i (l){l,-l}3t.
The set B will consist of 2m*2t ^ 2m(2ms+l) vectors, subdivided into 
subsets B. and B., 1 ^ i ^ m, whereL 1

= (0)1*1 (4)(0)m_i (-2)(0)2t[l,-l}t, and
B. = (0)i_1 (-4)(0)“'i (-2)(0)2t{l,-l}t.

Finally, the set C consists of one representative for each c € <3, constructed 
as follows. Denoting x^[ l] = x̂  and x^[-l] = x ̂ , the two-element subset 

c = fx^e^] , xj[ e^]} € Ĉ , with 1 £ i < j £ s and e^e^, € {1,-l} corresponds 
to the vector in C

P = (0)1‘1(4ei)(0)J"l(4ej)(0)m‘J(l)(0)3t 
The instance of HEMISPHERE corresponding to m, N, and (3 is then given by
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d = m+l+3t, K = A U B U C, and M = 2m«23t + m•2t + N.
Clearly, given m, N, and <3, this instance can be constructed in time 

polynomial in the parameters m and s (and, clearly, it is an instance of 

HEMISPHERE). Thus, all that remains is to show that the desired X' for 
the MAX 2-SAT problem exists if and only if the desired P* for the 

HEMISPHERE problem also exists.
Assume first that the desired X' exists; that is, there is an 

X' c {x1,x1,x2,x2,...,xm,xm} such that ¡X' fl {x^x^l =1, 1 £ i £ m, 

and |{ c € 3:X' fl c ^ 0] | ^ N. The desired P* = (pj,pj,..•,pj) is then 

given by

p?

1, if 1 £ j £ m and x.J
-1, if 1 £ j £ m and x.J
1.5, if j = m+1

€ X' 

€ X'

 ̂ 0, if m+2 £ j £ d.

The reader may readily verify that
|{p € A: P* • P^0)| = |A| = 2 m  • 23t,
| {P € B: P* • P ̂ 0} | = | B | /2 = m • 2fc, and
|{P € C: P* • P ̂ 0} | 2> N.

Hence, |(P 6 K = A U B U C: P* • P ^ 0}| ^ 2m • 23t + m • 2fc + N = M, and

so P* has the desired properties.
Now suppose P* = (p|,p|,...,pj) is a vector having the desired properties 

for d, K, and M. Then it must also obey the following claims, which will lead 
us to the desired X'. For convenience, let A+ = [p € A: P**P ^ 0} and let
B+ and C+ be analogously defined.
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Claim 1. |A+| > 2m-23t-22t.
By assumption, M ^ |A+| + | B+| + | C+| , whence 

|A+| 2> M - |B+| - |c+|. But |B+| ̂ |B| = 2m»2t and |c+| £ |c| = s,
whence |A+| ^ (2m*23t + m»2t + N) - 2m«2t - s > 2m«23t - m•2t - s.
Since s < ms+1 ^ 2t and m ^ ms ^ 2t-l, the claim follows. □

Claim 2. p*., > 0.------  m+1
First suppose p*  ̂< and consider the bijection (i.e., the pairing) 

f:A - A defined by f(<p1,p2»•••>Pd)) = (q1>q2,•••>qd)> where 
-p., 1 ^ j ^ m or m+2 ^ j ^ d

qj = 'I 1, j = m+1
m 31From the definition of f we have P + f(P) = (0) (2)(0) for all P € A. 

Thus, by our assumption that p*  ̂< 0> we have P* • (P + f(P)) < 0
for all P € A, and hence P* • p ^ 0 implies P* • f(P) < 0. This means

]{p € A: P* • P^0}| £ | {p € A: P* • P < 0} | ,

a contradiction to Claim 1. Thus we must have p*+  ̂^ 0« Suppose 
p*+  ̂= 0. By the requirements of the HEMISPHERE problem, P* must have 

at least one non-zero component, say p*. Let

A' = {P ë A: pk • pg < 0}.
31 21By the definition of A, we must have |Af| ^ 2  > 2 * 2  . Consider

the bijection g:A' - A' defined by g(<P l ,P2>* * *’pd>> = ^q1>q2>* * *>qd^» 
where

(

-p. : 1 ^ j ^ d and j £ {k,m+l}

1: j = m+1V
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From the definition we have P* • (P+g(P)) = 2p^ • p* + 2p*+  ̂= 2p^ • p* < 0, 
since we are assuming p*+1 = 0. Thus, at least half of the vectors in 

A' have negative dot products with P*, and hence

|[P € A: P* • P 2 0]| * |A| - |A'|/2 < 2m • 23t - 22t

in violation of Claim 1. Thus we must have > 0, as claimed. □

Claim 3. For all i, 1 £ i <; m , |{p G B. U B.: P* • P ^ 0)| £ 2t .

For each i, 1 £ i £ m, consider the bijection 

hrB.̂  U B. B, U B. defined by h(( p^ ,p2,... ,pd> ) = < ,q2,... ,qd) , where

<
\

1 £ j £ m or m+2 ^ j ^ d 

j = m+1.

From the definition, we must have P + h(P) = (0) (-4)(0)'^t for all
P € U iL. Thus Claim 2 implies that P* • (P + H(P)) < 0 for all
P € B. U B., and so |{P € B. U B.: P* • P ^ 0} I ^ |b . U B.I/2 = 2t, i i  1 i i  ' ' i i 1
proving the claim. □

For convenience, let T denote the set of integers [m+2+2t, m+3+2t,...,

m+l+3t}.

Claim 4. p*., ^ £ |p*|.
------- m+1 i 6 T 1
Define the set

A" = {p £ A: for all i € T, p. • p* *  0}1 1
2tand notice that I A" I = 2m • 2 . Consider the bijection k: A" -* A" defined by
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k (( P ̂ »P2 »• • • > P^) )  ̂*-1̂ »*̂ 2 * * * * 5 * ŵ ere

f p ., j = m+1 or j G T

qH -p , 1 ^ j ^ m or m+2 ^ j ^ m+l+2t

It is not difficult to see that for all P € A", P*• (P-fk(P)) = 2p* --2 S |p
m+i i € T

If o*,, < £ Ip*|, then we would have
'm+1 1 S T  1

|{P € A": P* • P < 0} I > = 2m • 22t/2,

whence, |A+| < |A| - |̂ s-| = 2m • 23t - 2m • 22t 2. This and Claim 3 would 

imply

¡A+l +  |B+ | +  |c+ | < (2m • 23t -  m • 22 t) +  m • 2* +  s = M -  m • 22t +  s -  N

£ M - m • 22t + 2t < M,

a contradiction. □

Claim 5. For each i, 1 £ i £ m, |p*| ^ P^+l^*

By Claim 2 and the definitions of Bi U B ± and of index set T, we have

for all P € B. U B. that 1 l

P* • P*4|pf| - +

By Claim 4, we have p* , ^ £ | p'H , whence p* • P £ 4jp*| - P*+1*m-t-i j ^ T -*

If 4lp*| < p* ,. we would have P* • P < 0 for all P € B. U B ., whence 1 r i1 m+1 1 1
|{P € B U B±: P* • P ^ 0} | = 0

and so by Claim 3
|A+| + |b+| + |C+|  ̂ |A+| + (m-1) 2t + |c+|

<. 2m • 2̂ *” + m • 2*" - 2*” + s < M - 2^ + s < M ,
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yet another contradiction. □

Claim 6. j C+| 2: N.

We must have | C+| ^ M - |A+| - |b+|. Using the inequalities 
¡A+| ^ | A j and |b+| ^ m • 2t (by Claim 3) we have 
|C+| £ (2m • 23c + m • 2t + N) - 2m • 23t - m2t = N. □

Claim 7. The set X' = fx Fe 1 :D*=e * I p*| , for 1 s. i m] is thei i i i 1
desired subset of X.

The set X' is well defined and obeys Jx’n{x^,x,}| =1, 1 ^ i ^ m, since by 
Claim 5, p* i  0, 1 ^ i ^ m. Furthermore, we claim that if P 6 C is such that 

P* • P ^ 0, then the two element set c € ¡3 corresponding to P has nonvoid inter­
section with X'. For suppose that c = (x.[s.],x.[s.]] for s ,s € fl.-l]l l j j i j
and 1 £ i < j ^ m. We then have that X* D c = 0 if and only i f s e  = s e  =-l

1 i j j
Now, recalling that c = { x ±[ s.] ,x [ s .] } ̂  P = (0) 1"1(4s . ) ( 0) j‘’1(4s . ) (0)m” j (1) (0)3tJ J * J
we have that X 1 D c = 0 implies, by Claim 5,

P*.p = 4s. p* + 4s. p* + p* = 4s.e. p* + 4s.e.|p*| + p* „ i l J ] m+1 l i'^i1 j j1 j1 m+1

= -4(|p*| + |p*|)+ P*+1 ^ ”^pm+l + pm+l < w^ence we conclude
that P*P ^ 0 implies X' D C ^ 0. Thus, by Claim 6,the set X 1 satisfies all 
the conditions of the solution to the MAX 2-SAT problem for given X,
(3, and N. □

From the above arguments we conclude that the desired X' exists if and only 
if the desired P* exists. Thus we have successfully reduced MAXIMUM 
2-SATISFIABILITY to HEMISPHERE, and completed the proof that the latter is 
NP-complete.

v
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Our proof also shows that the corresponding problem in which we require 
that P* • P strictly exceed 0 is NP-complete, as the reader may readily verify. 
In addition, we note that the set K we constructed had the following property:
for all P € K, |p| > 0  and [a |p| : a € ]R and Oi > 0} D K = {p}. Thus each

dpoint of K corresponded to a unique ray from the origin of K  and hence is 
a unique point on Sd. Therefore the geometric versions of our problems 
are also at least as hard as any NP-complete problem. One final note on our 
construction is the observation that the set K is contained in {-4,-2,-1,0,1,4}^ 

and hence the complexity of HEMISPHERE does not depend on having arbitrarily 
complicated coordinates for the members of K.
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3. Algorithms for finding densest hemispheres

In this section we shall present algorithms for the CLOSED and 

OPEN HEMISPHERE problems which run in time O(n^) when the dimension d is 
fixed. In the next section we present an 0(n log n) algorithm for the 

d = 2 case, which enables us to speed up the algorithm for d > 2 to
0(n log n).

The simpler of our two algorithms is the one for the CLOSED 
HEMISPHERE problem, and we shall present it first. The algorithm is defined 
recursively, and for this purpose it is convenient to distinguish the points 
in K from their coordinates and restate the problem in a slightly generalized 
form.

CLOSED HEMISPHERE (CH): Given integers d and D, with 1 < D < d, 
a finite set V < such that T = {y 6 H^: y • v = 0 for all v €v] is a 
D-dimensional subspace of H^, and a set K = [p^,P2,•••,Pn) with a map 
c: K"*T fl Find an x € T, with |x| > 0, which maximizes

A(x) = | [P € K: x • c(P) > 0l|

We say that [d, D; V; K, c] is the parameter set of the CH problem.
The closed hemisphere problem, as stated in Section 1, corresponds 

to CH with d = D, V = 0, c(P) = P for all P 6 K.
The CH problem is easily solved in two special cases:

(I) Suppose c: K -» T H (Q̂  is such that c(P) = 0 (the origin of IR^) 
for all P € K. Then choosing any x £ T will maximize A(x).
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The number of steps required to find such an x depends only on 
d, so the overall effort required on this case will be 0(nd) 
even if we have to verify that c(P) = 0 for all P £ K.

(II) Suppose D = 1 and case (I) does not hold. Then T is a straight
line, and we can find a rational basis vector v such that 

T = [o'v: o' £ IR } in time depending only on d. Given v, we can 
restrict our attention to just two candidates for x, v and -v, 
and choose the one with largest value of A(x). Again the 
amount of work will be 0(nd), most of the time here spent 
evaluating A(x).
Now suppose that neither (I) nor (II) applies. We shall show 

how to reduce the CH problem under consideration to a collection of n or 
fewer MH problems in D-l dimensions. Let U = (c(P): P £ k } - {o} and for 
each u £ U, let H(u) = [y € T: y • u = O). The hyperplanes H(u) partition

T into convex regions. On the interior of each region A(x) is constant,
although it may experience a discontinuous increase at region boundaries.
Let A * be the largest value of A(x) for x € T, and, for an extremizing x, let 
U' = fc(P): P € K, c(P) 0 and x * c(P) ^ Q} . Clearly, for some u £ U* there 
exists a y € H(u) with |y| > 0 such that A* « A(y); thus, for such a u, the 
D-dimensional CH problem can be replaced by a (D-l)-dimensional CH problem 

[d 1 ,D! ; V 1; K’,c'J, whose parameters are so defined

c’(P) is merely the projection of c(P) on H(u), and, for all x £ H(u), we

I u |

for all P € K. Observe that T1 = [y € IR^: y • v = 0 for all v 6 V'} = H(u),

have x * c’(P)= x»(c(P) - c(P)-u u) = x • c(P). Since the proper choice of
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u is not known a priori, we must try the described reduction for each 

c(P) € U. This reduces the given CH problem to a collection of at most 
n CH problems in one less dimensions. We thus obtain a recursive procedure 
for solving the C.H problem in D = d dimensions. The overall running time is 
at most CKdnS , as can be seen by standard recurrence relation arguments.

With this background, we are now prepared to consider the more 

complex OPEN HEMISPHERE problem. Here again we shall present a recursive 
algorithm, in which a given D-dimensional problem is reduced to a collec­
tion of several (D-l)-dimensional problems. In contrast to the CH case, 
however, the reduced problems of an open hemisphere problem are not 
necessarily of the same type as their parent problem. Therefore it is 
convenient to define the following composite MIXED HEMISPHERE problem.

MIXED HEMISPHERE (MH): Given integers d and D with 1 ^ D ^ d, a finite
set V ^ such that T = [y € y • v = 0 for all v € v] is a 
D-dimensional subspace of and a set K = [p ^jP^,...,Pn] with maps 
c:K -> T ft <Qd and s:K -» {0,l}. Find an x € T which maximizes 

A(x) = j{p G K: s(P) = 0 and x • c(P) 2: o}
U{p 6 K: s(P) = 1 and x • c(P) > 0} j 

We say that [d, D; V; K, c, s] is the parameter set of the MH problem.
The open hemisphere problem, as stated in Section 1, corresponds 

to MH with d = D, V = 0, c(P) = P, and s(P) = 1 for all P € K.
The crucial difference between the CLOSED and the MIXED HEMISPHERE 

problems lies in the function s: K -* [0,l] which dichotomizes the set K, 
and in the fact that the 0 vector is in the range of allowable solutions.
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In parallel with the previous discussion of the CH problem, the 
MH problem is easily solved in two special cases, both requiring compu­

tational work at most 0(nd):
(i) c :K -* T H (Qd is such that c(P) = 0  for all P £ K. Then any x € T 

maximizes A(x) (in particular x = 0_)#
(ii) D = 1 and (i) does not hold. Then T = [o' v: a € 3R }, and we can

restrict ourselves to the three candidates - v, v, and 0, choosing 
the one with largest value of A(x).

We now discuss the reduction when neither (i) nor (ii) apply.
Let U and H(u), for each u € U, be as previously defined, and let 

A* = max {a (x ): x € T].

Lemma 3.1. There exists a u € U and a y € H(u) such that either

(1) A* = A(y) , or
(2) A* = lim A(y + cm) and s(P) = 1 for some P £ K.

Qd 0

Proof: Suppose (1) does not hold. Then A* must be realized by some x on

the interior R of some closed region R. Since x  ̂R - R, we have Ix| > 0. 
Suppose s(P) = 0 for all P € K. Then A(x) = ([p € K: x • c(P) > o}|. 
However, note that x € R and u • x > 0 imply u • z > 0 for all z£R, by the 
definition of R and the continuity of the inner product. This means that 
for all points y £ R, A(y) > A(x) = A*, a contradiction of our assumption 
that (1) does not hold. Thus there must exist some P ( K with s(P) = 1,
as claimed.
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We must now show that, if the extremizing x is in the interior 
R of some region R in the partition of T produced by the hyperplanes 
H(u), then x is of the form y + a u, for some u € U, y € H(u), and oi > 0.
First of all, for any z € R, A(z) = A*. Let F be a face of R; obviously

F c H(u) for some u 6 U. There is a point x € R which can be expressed
as (y + a u), where y is a point of F (hence y € H(u)) and a is a conveniently
chosen real number. All that remains to be shown is that there is at least one

such u € U which yields Oi > 0. Let U = [u € U • F c H(u)} . For anyF
x £ R and u € U , u • x f 0. Suppose that for all u € U_, x • u < 0. r F
Let R' be a region of T that shares F as a boundary with R, and let x' 
be a point on the interior of R 1. For all P € K such that c(P) ^ U_,r
c(P) * x > 0 if and only if c(P) • x' > 0 and similarly c(P) • x = 0 if 
and only if c(P) • x' =0. However, by supposition, for all P with
c(P) 6 IT , c(P) * x' > 0 and c(P) • x < 0. Since U # 0, this means thatF J?
A(x') > A(x), a contradiction. Thus, there exists a u € U such thatr

2 2u • x > 0, that is, x * u = (y + a u) • u = y *u + onu| = O' I u I > 0, 
and hence a > 0. □

This lemma suggests a method for reducing a given D-dimensional 

MH problem. Since we do not know the vector u, nor whether (1) or (2) holds, 
for each u € U we generate two (D-l)-dimensional MH subproblems, corre­
sponding to (1) and (2) respectively. In this manner, a given D-dimensional 
MH problem is replaced by at most 2n (D-l)-dimensional MH problems, each 
of which produces a candidate for the solution of the original problem.

Specifically, in the hypothesis that (1) holds for u, the search 
for y corresponds to the following MH problem with parameters [d‘, D 1; V';

K* , c' , s'] :
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d' = d, D' = D-l, V' = VU fu}, K' = K,

1(P) = c(P) - U u for all P € K'
u z

s'(P) = s(P) for all P G K' .

In the assumption that (2) holds, the conversion to an MH problem 

is a bit more complicated. In the corresponding reduced MH problem 
[d*, D *; V'; K', c', s'] we set

d' = d, D' = D-l, V* = V U {u}, K' = K,
c(P) . uc'(P) = c(P)---7— -— u for all P € K' .

The construction of the function s'(P), for all P 6 K, is somewhat more

delicate. Suppose that in the original MH problem, P is such that c(P) • u < 0.
If s(P) = 0, then P contributes a unit to A(x) if and only if

0 ^ c(P) • x = c(P) • (y + am) = c'(P) • y + cm(P) • u. As long as c'(P) • y > 0
there will exist an ck > 0 such that this inequality holds. However, if
c'(p) • y ^ 0 we will have c(P) • x < 0 and the inequality will fail. Thus 
we can only let P contribute a unit to A'(x), the maximum in the reduced prob­

lem, if c’(P) • y > 0, and so we must set s'(P) =1. A similar analysis for 
the other cases leads to the following set of rules for determining the 
function s':

s' (P) = <

 ̂0 if s(P) = 0 and c(P) • u > 0
or if s(P) = 1 and c(P) u > 0 

1 if s(P) = 0 and c(P) • u < 0 
^ or if s(P) = 1 and c(P) * u < 0
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Let y^Cu) and y2(u) be the solutions to the MH problems corresponding 
to u € U for case (1) and for case (2), respectively. Then the candidates 

for x € T such that A(x) = A* corresponding to y^(u) anĉ  y2(u) are §iven as 

follows.
The case (1) candidate is simply x^(u) = y^(u). In case (2) the 

situation is somewhat more complicated. Here the candidate will be of the 
form y2(u) + cm, and we must choose ot carefully, so as to insure that 
y^(u) • c(P) > 0 implies (y2(u) + cm) • c(P) > 0 for all P € K. But this is 
fairly straightforward. Let V = {p G K: y2(u) • c(P) > 0 and u * c(P) < 0].
The desired implication will hold if y2(u) * c(P) > - cm • c(P) for all
P 6 V, so it will suffice to choose a = e/6, where e = min {y2(u) * c(P): P G v]

and 5 = 1 +  max { ! u • c(P)|: P G V} .
A solution to the original MH problem can thus, by Lemma 3.1,

be found among the set (x^u): u G u} U {x2(u): u G U and s(P) = 1 for some P G r ),
and hence involves solving at most 2n MH problems of one less dimension. We 
thus obtain a straightforward recursive procedure, whose running time can 

easily be determined to be at most

T(n,d) = 0(2d“1dnd)
where T(n,d) is the time required to solve an MH problem with |k | = n and 

of dimension D = d. For fixed d > 1, this is simply 0(nd).
We might point out that there is a wide range of possibilities 

for improvements by constant factors. In particular, there is much duplica­
tion of subproblems as it stands now, since all permutations of a set of d 
elements of K will yield distinct subproblems even though many of these
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subproblems are identical. Furthermore, one could save some effort by 
combining two points of K when their projections coincide or lie on the same 
ray from the origin of ]Rd. We leave the details of this fine tuning to 
those interested in actually implementing the algorithm.

We content ourselves with the presentation of a major improvement, 
which reduces the time to 0(n log n), as explained in the next section.

4. An improved densest hemisphere algorithm for two dimensions

In the preceding algorithms, we have for simplicity assumed that the 
deepest possible level of recursion occurs for dimension D = 1. This also 

establishes the base of induction 0(nd) for the estimate of the running time.
We now describe an O(nlogn) + 0(dn) algorithm for the MIXED HEMISPHERE 
problem with D = 2 which could be used at the deepest level of recursion, 
thereby speeding up the general algorithm for arbitrary dimension by a factor 

of at least n/logn. A similar improvement for the CLOSED HEMISPHERE problem 
can be obtained in much the same way.

Let [2,d; V; K, c, s] be an MH problem. Then T is a plane and 
{c(p): P € K] is a set of points in this plane: with a total work 0(nd) 
we can express these points in terms of two coordinates in T. The solution to
our problem is either 0 or a point y € T with |y| > 0. As before, set

U = [c(P): P (E K and c(P) £ > and for each u £ U let H(u) = [y € T: y • u = 0] .
We observe that in this case each H(u) is a straight line through the origin 
in the plane T. Let us think of each of these lines as two directed rays 

leaving the origin in opposite directions. Pick an orientation for the 
plane T, and label the two rays making up H(u) as R (u) and R+(u), where
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the three rays R (u), u , and R r(u) will be encountered in just, that order 

if we start at R (u) and proceed in a counterclockwise direction (see 
Figure 1).

Figure 1. The orientation of R (u) and R+(u) in T.

The rays in H = {r (u ), R+(u ): u € u] divide the plane T into wedge shaped 
regions. To find the boundaries of these regions, we need only sort and 

relabel the elements of H as rg»r2>•••>r2s 1’ w^ere s = 1̂ 1 > so that if we start 
at r and proceed in a counterclockwise direction, we would meet each r. in turn 
until we get back to r^ (see Figure 2). One way to accomplish this sorting 
would be to compute polar angles 9(r), 0 ^ 9(r) < 2tt, for each r £ H relative 
to some chosen r^ with 0(r set to 0, and then sort the values of 9(r). This 
has the apparent drawback that some of the 9(r)'s may be irrational numbers. 
Fortunately, it is possible to determine if 9(r) < 9(r') in constant time, 

without actually computing the values of 9, Let r^ = R ( u q ) f°r some u^ € U, 
and suppose that r, r* are distinct elements of H. Then the relationship 
between 9(r) and 9(r!) is specified as follows,
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Thus, using standard sorting algorithms we can determine our desired 

ordering r0»ri>•°•»r2s-l of H in time °(nl°gn)- Let W be the region bounded 
by and r^_^ (mod2c') * bef°re> we note that A(x) will be constant on each 
of the convex regions W^, with possible discontinuities on the boundaries. 
There are thus essentially 4s+l different candidates for an x which maximizes 
A(x), one for each ray r^, one for each region W^, and one for 0. To be 

specific, choose a non-zero point p̂  ̂ in each ray r , 0 ^ i ^ 2s-l. Then 

qi = Pi + Pi+x(mod2s) wil1 be a Point in 0 ^ i ^ 2s-l. The value of 
A(x) must be maximized by some point in {p^q^: 0 ^ i ^ 2s-l] U fo} = C.

We can evaluate A(j3) and A(p^) in time 0(nd). The remainder of the 
values can be computed in time 0(nd) overall, as follows. Suppose A(p^) 

has been computed for some i, 0 ^ i < 2s-l. Then

A(qt) = A(Pl) +|{P 6 K: c(P) ¡6 0, s(p) = 1, and R_(c(P)> = rj  |

- |[P € K: c(P) £ 0, s(p) = 0, and R+(c(P)) = r.) 1 .

If A(q^) has been computed for some i, 0 ^ i < 2s-l, then

A(pi+1 = A(q.) + |{P € K: c(P) t  0, s(P) = 0, and R_(c(P)) = r1+J} 
- |{P € K, c(P) 0, s(P) = 1, and R+(c(P)) = r.+1}

Since each P 6 K is encountered at most twice in this procedure, the overall 
time is 0(nd). Finding that x € C with maximum A(x) now requires only 0(n) 
time. The total time needed to solve the MH problem with D = 2 is thus 
dominated by the time for sorting H, and is 0(nlogn) + 0(nd) as claimed.
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Using this procedure as the final step in the recursion of Section 3 

thus gives an algorithm for the OPEN HEMISPHERE problem on n points and d 
dimensions with running time at most 0(d2d"2nd"1logn). The analogous 

algorithm for the CLOSED HEMISPHERE problem has running time bounded by 
0(dnd ^logn).

5. Closing remarks

In this paper we have shown that both the closed and open HEMISPHERE 
problems are NP-complete when the number of dimensions d is not fixed in 

advance. However, for fixed d ^ 2, we have described algorithms for determin­
ing a densest hemisphere which require a number of operations at most 0(nd_1log n) 

It is worth pointing out that the described techniques are directly 
applicable to an interesting generalization of the problem, in which each 
P G K is weighted through a function w: k -*<Q. For instance, in the 

WEIGHTED MIXED HEMISPHERE problem, we must seek an x G T which maximizes

A(x) = Z w(P)
P G W(x)

where W(x) = {p G K: s(P) = 0 and x*c(P) ^ 0] U [p G K: s(P) = 1

and x*c(P) > 0}.

It is easily recognized that the algorithms described in Sections 3 and 4 
can be modified to solve this problem, since here again the set 
U = {c(P): P G k] - [0] induces a partition of T into plane-bounded convex 
regions, in each of which the function A(x) assumes a constant value.

We raise as an open question whether our techniques can be modified 

to solve the problem of finding a P* whose induced hemispheres partition

the set K most equally.
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