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Abstract

In this work, the problem o f  electrom agnetic scattering o f  a plane w ave incident on a 

conducting body o f  revolution is considered. The body is assumed to be situated in infinite 

hom ogeneous space. The problem is solved using the method o f  moments. U se o f  two 

different types o f  expansion and testing functions, namely, sub-domain type and entire- 

domain type is considered. Results obtained using sub-domain pulse functions and entire- 

domain Gaussian functions are presented. The relative advantages and disadvantages o f  

each type o f  basis functions is discussed.
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INTRODUCTION

The problem of electromagnetic scattering by a 
conducting body of revolution, illuminated by a plane wave 
incident from some arbitrary direction is considered. The 
geometry of the problem is shown in Fig.l. The body is 
generated by the arc C revolving around the z-axis.

The objective is to compute the scattered far fields and 
radar cross-section of the body of revolution. In this paper, 
the electric field integral equation which enforces the total 
tangential electric fields on the surface of the body to be 
zero is used to solve the problem. First, equivalent electric 
currents are postulated on the surface of the body. The 
scattered field is expressed in terms of these equivalent 
currents. The electric field integral equation is then solved 
numerically to obtain the surface currents. The surface 
currents are then used to obtain the radar cross-section and 
far-fields.

The numerical solution of the integral equation is 
obtained using the method of moments. First, the surface 
currents are expanded in a set of appropriate basis 
functions. The resulting equation is then tested with a set 
of weighting functions to obtain a matrix equation with the 
coefficients of the currents as unknowns.

The currents are expanded in a Fourier series in the 
azimuthal (<))) direction and tested with the conjugates of these
expansion functions. This results in the decoupling of the 
equations of various azimuthal modes. The advantage of this 
is that one can solve several smaller matrices corresponding



to a two dimensional problem and combine these solutions to 
obtain the solution for the body of revolution problem.

There are several possible choices of the 
expansion/testing functions in the t-direction(the axial 
direction - see Fig. 1) for the current. In this paper, two 
classes of expansion functions namely, sub-domain and entire- 
domain functions are considered. Two programs, PBOR and GBOR 
have been developed. PBOR uses sub-domain pulse basis 
functions and testing functions. GBOR uses entire-domain 
Gaussian basis and testing functions. The advantages and 
disadvantages of each of these approaches as well as some 
numerical examples are presented.



3

FORMULATION

Consider a conducting body of revolution situated in 
homogeneous space as shown in Fig. 1. The body is illuminated 
by a plane wave incident from some arbitrary angle. The 
total electric field at any point in space is the sum of the 
incident field and the field scattered by the body. The 
total field tangential to the surface of the conducting body 
is zero. That is,

electric field, Escat is the scattered field, and n is the 
outward pointing normal unit vector on the surface of the 
scatterer (see Fig. 1) . Using equivalence principle, the 
scatterer can be replaced with a surface electric current J 
radiating in homogeneous space. The scattered field of (1) 
can then be expressed in terms of these equivalent currents 
as

— total Aw r_inc,_scatinxE = nx|E +E J = 0 (1)

on the surface of the body. In (1), Einc is the incident

Escat(r) = — jûJA(r)—VO(r) (2)

with the potentials of (2) given by

(3)
S

and

S
(4)



In (3) and (4), |i and £ are the parameters of the
homogeneous space and S denotes the surface of the scatterer. 
The charge density p(r') of (4) can be expressed in terms of
the surface current J as

p(r') = ¿[V.-J(r')] (5)

The subscript s on the divergence operator denotes surface 
divergence. The homogeneous space Greens function G used in 
(3) and (4) is defined as

—jkR
G(r, r') = 6 - (6)K

with R being the distance between an observation point 
r= (p,(j),z) and a source point r 1 = (p 1, <J> ’, z ') . In cylindrical
coordinates it is computed as

R = |r-r'| = p2+p'2-2pp'cos(<j)-<j>')+(z-z')2 (7)

Now we can combine (1) through (7) to get an integral 
equation as shown below.

n x E inc = n x | - ^ J J j ( r ' ) G ( r , r ' ) d S ' + - ^ v J j ( V , - . j ( r ' ) ) G ( r , r ' ) d s j
s s

Our objective now is to solve this integral equation for 
the equivalent surface current J. This current can be used to 
obtain other quantities of interest such as scattered far- 
fields or radar cross-section. To obtain a solution, first 
we express the vector surface current of (8) as the sum of 
two orthogonal components on the surface

J = (9)



5

Here <j) is the unit vector on the surface of the body, in
the cylindrical coordinate system of Fig. 1, and t is a unit 
vector on the surface of the body such that (n,<j>,t) form a
right hand triad. The incident field Einc of (8) also can be 
expressed as the sum of its <J) and t components. Thus (8) can
be written in component operator form as

Pll Pl2 "Jt“
.P2I P22.

--1
__1 (10)

The pij's are integro-differential operators operating
on the appropriate components of current. These are obtained
by computing the dot product- of (8) with appropriate unit 
vectors and separating out the part and part. The

explicit expressions for these operators are shown below.

Pn(jt) = - ^ “ J J j t{siny sin/ cos(<|)'-<|)) + cosy cosY)GdS'

+ 47K06 d t
(ila

Pi2CJ<i>) J^siny sin(<J>'-<|))GdS' + - L J L f f
47CC06 d t J J

S

a
pW

(jjpGdS7 (lib

M Jt) = JJts m r  sin(«H>)GdS' + J (11
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1̂ 22 ~~
M l
471 JJj,cos(OH)GdS' + - i - ^ J J - ^ ^ G d S ' (lid

In these equations, the primed coordinates refer to the 
source points on the surface of the scatterer and the 
unprimed coordinates refer to the observation points. The 
angle y is the angle the tangent vector t makes with the axis
of the body. This angle is taken to be positive if the 
tangent vector points away from the axis of the body and 
negative if it points towards the axis.The surface divergence 
in surface coordinates given by

s' , J  =  +

has been used to obtain (11).

To obtain a solution for the unknown currents J-j- and J<j)

of (11) , the method of moments is used. The first step in 
the solution procedure is to express the current using a set 
of suitable basis functions as shown below.

(12a 

(12b

(12c

j(t,<}>) = ^J^t,^) + tJt(t,<|))

y  w  l

= + t X I « ( t O e i4
m=—<»n=l

co oo

jm<t>
m=—oo n=l

Here the J ’s are the unknown coefficients of current yet 
to be determined. and N-j- are the number of basis
functions used to expand and respectively. Itmn of

(12c) is defined as



7

nr ^   ̂—ItllIt = 27CP Jt (l2d

The reason for solving for Î -1*111 rather than Jt11111 will be 
discussed later.

In (12), the azimuthal variation of the currents has 
been expanded in a Fourier series. The basis functions used 
for expansion in the orthogonal (t) direction are denoted by 
the U's. These basis functions can either be sub-domain or 
entire-domain basis functions. In this paper, one of each 
kind is considered. Sub-domain pulse basis functions with 
the necessary derivatives approximated using finite 
differencing and entire-domain Gaussian basis functions are 
considered.

Next step in the solution process is to test the 
equations with a set of suitable weighting functions to 
obtain a matrix equation. Following Galerkin's method, we 
test with the conjugates of the expansion functions. That 
is,

,pqt = T^e"3̂  = a?(t)e-jpi, q=l,“ *,Nt (13a)
,pq
<D = Tje-Jp* = Uj(t)e-Jp*, q=i, *•*, Nÿ (13b)

(12a) is used to test the first row of (10) and (12b) is used 
to test the second row.

To obtain the expressions for the matrix elements, the 
Greens function G appearing in (11) is expanded in a Fourier 
series as shown below.

— jkR = ^ I G me
jm(<]>—<J>0

R
1

2n
(14a)



where
/Ol — jkR

G m = ~ —  cos(m^) d£ (14b)
J-n R

with R defined in (7) with ((j)-̂ ') replaced with

Testing (10) with (13) now decouples the equations for 
various azimuthal modes m. The integrations in (J) and (j)' can
be carried out analytically. The integrations in t and t' 
must be done numerically. Also, the Greens function Gm is
an integral. Thus a three dimensional numerical integration 
is required to obtain the matrix elements corresponding to p.

The generating arc C in Fig.l over which the t and t' 
integrations are to be performed are in general arbitrarily 
shaped. For computational purposes, this curve is 
approximated as linear segments connected end to end as shown 
in Fig. 2. Then, the integrations in t and t' must be
carried out over each of these segments. To reduce the 
computational effort, we can approximate the t integral by 
evaluating the integrand only on one point per linear segment 
of the generating arc. This is equivalent to doing point 
matching when the testing function spans only one linear 
segment, such as is the case when pulse basis functions are 
used. Since this integration is carried out over the 
incident field which is a smoothly varying quantity, this 
approximation does not introduce significant error if the 
scatterer is modeled with sufficient number of linear 
segments. The resulting expressions for the various p's for
azimuthal mode m are given below. The first summation is 
over the field segments and the second summation is over the
source segments. The total number of linear segments is F and 
the s'th linear segment extends from ts-i to ts .
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P S
jCûjl

Sn X Atf T?(tf_1/2) sin Yf
f=l

F

4TC

471036

Y  sin YS'J [ S dt'ü"(ts0 Gm+1(tf_1/2)+[ S dt'üj(ts0 Gm_x(tf_
s=i Jts-i

F F t

X  AtfTt(t f-i/2)cos Yf X  cos YsJ dt'u"(ts') Gm(tf_1/2
f=l S=1 ts“1

F F t
f_i/2)] J d t -¡p-[ut ( t s )] Gm( t f_1/2

f=l s=l fcs-l

<4=i / 2 , * ' * , 

n=l r 2, ’ * *, Nt (15a)

ßl2 =  - f ^ X  A t f T ?(tf-l/2) S i n Yf
f=l

F

m
2006

X |Jt’ d t 'p '0 $ (t/ )  Gm+1( t f_1/2) -  d t 'p 'u ^ t / )  G„j—2( t £—1/2)

F F

X Atf T?(tf_1/2) ] X J S dt' °î(ts') Gm(tf-l/2)
f=l s=l ts-l

cj — 1,2, f Nt 

n = l,2,— ,Nà (15b)
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PS
- com.

871 Atf Pf-i/2T J(t f-l/2^
f=l
F

m

¿ s i n  Ys- jj^' dt'u"(ts0 G^Ct(_1/2) dt'u"(ts0 Gri(tH/!)

F F t

■ X  Atf x  r dt' ^  u"(t° G»(tf-i/2)' f=l S—1 ts-l

*3 “  1 r 2 r ’ ” / N([)

n = 1,2,— ,Nt (15c)

pqn =  £  A t f  pf_i/2 T ^ (t f_1/2)

H - i ( t f —1/2) +  J t  S d t ' p ' u ; ( t s0 Gm_1( t f _ 1/2) 

f s dt' u;(ts') cn(t£_1/2)
J t S-l

<3 = 1 f 2 ,  ***,  Njjj

n =  1 , 2 , — , N* ( l5 d )

The integrals of (15) have a singularity in the 
integrand when the source point coincides with the field 
point. For a discussion of the handling of the singular 
terms, see [2].

As discussed earlier, the basis functions U<j) and can

be either sub-domain or entire-domain functions. In the next 
section, pulse basis functions which are of the sub-domain 
type is considered.



Sub-domain pulse basis functions

Fig. 3 shows the arrangement of pulse basis functions 
used in this paper. P^'s are used for the <J) component of
current and P̂ - 1 s are used for the t component. They are
defined as follows

ts-i < t < ts

otherwise

(16a)

ts-l/2 ^ t S ts_1/2

otherwise
(16b)

Observe that the U(j)S is confined to the s'th linear

segment. Thus there are a total of F of these basis
functions. That is, = F . On the other hand, we have
chosen the Uts to straddle over two linear segments. There
are a total of F-l of these, which implies that Nt = F-l.
The first half of the first sub-section and the last half of 
the last sub-section is assumed to have zero t-directed 
current. This is not a correct assumption if we are
considering the current densities for a scatterer such as the 
one in Fig. 1. However, we can solve for It = 2ftpJt , rather
than J-J- itself. In this case, I-j- will be close to zero near
the points where the generating approaches the axis, by 
virtue of p approaching zero. This is the reason for



expanding the currents using I-j- rather than using Jt in 
(12c).

As mentioned previously, the testing functions used are 
conjugates of the expansion functions. Since the pulse basis 
and testing functions are confined to a small region of the 
generating arc of Fig. 2, most of the terms of the double 
summation of (14) will drop out. The resulting expressions 
can be simplified as shown in (18) . In obtaining these 
expressions, the derivative of has been computed using
finite differencing as

_ L (a n( t ,) )  =
9tAUtU ”  0.5*(Atn+1+Atn) (17)

As mentioned earlier, the t integration is performed by 
doing one function evaluation per linear segment. This turns 
out to be one function evaluation per testing function. 
These function evaluations are done at the center of each 
testing function. The expressions for the elements of the 
moment matrix for azimuthal mode m using pulse basis 
functions are given on the following pages.
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Piî = - ^ X s ( Atq,Yq)sinyn' {y(tn_1/2,tn,tq,m+l)+\|rttn_1/2,tn,tq,m-l)}

+ (At q ' Yq)s i  nV„+i/ W(t„/tn+1/2, tq,m+l)+\|/(t„, t n+1/2, t q,m-l)}

+ -^^Xc^tq'Tq) {cOSYnV(tn_1/2, t n, t q,m) + COSYn+1> (tn, t  n+l/2^qf

“ "ijítoát tn+l' tq+l/2' n+1 ' tq-l/2 '

+ 47l0¿ At'.W V i r t n r  tq+1/2 f m ) - ^ ^  , tn , tq_1/2 , m)}

n=l r ' "  , F-l 
q=l,— ,F-1

Pi2 = -^ ■ X s(Atq/YqK V 5(tn_i,tn,tq,m+l)-y,(t„_1,tn,tq,m-l)} 

+ 2 C ú e ^ t n _ 1 ' t n '  t c í“ 1 / 2 '  t n '  ^ q + i/ 2 '

n=lf ***, F

m)}

(18a)

(18b)

q=l,*” ,F-l



14
,qn _ MHAtqSiny/

8 tc
p f i  = i'Kt„-i/2ftn,tq_1/2,m+l) - V(tn_1/2,tn,tq_1/2,m-l)}

co[iAtqs in y n+1'
+ ------ ------- {V(tn,tn+1/2,tq_1/2,m+l) - V(tn, tn+1/2, tq_1/2,m-l)}

Q n  

m Atq

47icoepq_1/2A t n+1 tn+if tq~l/2'
m Atq

47lCOepq_1/2Atn¥ ( t n_ x , t n , t  1 / 2 , m )

n=l, ***, F—1 (18c)
q=l,"-,F

jCO|jAtg
P22 = — :— - { x jr C t n .x ^ t n ,t  ,m+i)+\|r(tn_lftn,t q_1/2/m-i)}

n4

jm2Atq
2 ^Pq-l/2

'Y ( t n_ i , t n, t  1/2,m)

n = l f ***, F  

q=l, - , F

(l8d)

The various quantities used in (18) are defined in (19) 
and (20) below, and in Figs. 2 and 3.

j*t 2
\ l/(ti, t 2, t q , m) =  Gm( t q, t ' ) d t ' (19)

with Gm defined in (14) and (7). The % ’s of (18) are defined
as



X S(At qfYq) =
At q+1 s inyq+1+At qs inyq 

2
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(20a)

Xc(Atq,yq) =
Atq+1cosYq+1+AtqcosYq

2
(20b)

Entire-domain Gaussian basis functions

Each function of an entire-domain basis set, unlike the 
sub-domain basis functions, span the entire structure. The 
example used here is Gaussian functions as shown in Fig. 4. 
The n'th basis function is centered at |ln (the mean) . The
"thickness" of the basis function is determined by its 
variance Gn. The mathematical expressions that describe the
functions of Fig. 4 are given below.

In these expressions, the quantity R is the length of 
the generating arc. tg and tg are points on the generating
arc. tg is near t=0 (the beginning of the generating arc) 
and tg is near t=R (end of the generating arc) . The basis 
functions are forced to go to zero linearly between tg and 0, 
and between tg and R.

The basis functions used for both Jt and are the same 
and are given in (20) . However, for the number of basis 
functions used is two more than that used for J-j-. These two

0 < t < tL



extra basis functions are also Gaussian basis functions 
described by (20) and are centered at t=0 and t=R.

The derivatives of basis 
respect t required in (15) are 
are given below.

and testing functions with 
easily computed from (20) and

tL < t < t0 

0 < t < tL

tD < t < R

Unlike the sub-domain basis set where the number of 
basis functions was linked to the number of linear segments 
used to model the scatterer, the number of entire-domain 
basis functions used have no relationship to the number of 
segments on the generating arc. However, since the t 
integrations in (15) have been performed by evaluating the 
integrand at one point per linear segment, the accuracy of 
computations are dependent on the number of linear segments.

Since each function of the basis set extends over the 
entire span of the scattering structure, the integrations 
required to obtain the expressions for p's must be carried
out over the entire structure. This causes the computation 
time required to obtain a solution using the entire-domain 
basis set to be considerably larger than that using sub- 
domain basis set. However, using the entire-domain basis set 
one can obtain about the same degree of accuracy in solution



1 7

by solving a smaller matrix than would be required if sub- 
domain basis set were used.

Incident field

An arbitrarily polarized incident plane wave field Einc 
is expressed as the sum of two linearly polarized plane waves 
as

Einc /— incline . — inclines — jkn«r(E0 e + <t> ) e (22)

where

0inc = cos0inccos(j):Lncx + cos0incsin(j):Lncy - sin0incz (23a)
^inc = —sin<t>incx + cos<j>incy (23b)
n = - s m o  cosq) x - sin0 sinq) y - cos0 z {23c)

r = pcosij) x + psin<{> y + zz (23c)

The elements of the forcing function vector in (10) are 
found by finding the component of the incident field of (22) 
tangential to the surface of the scatterer and testing with
the functions of (13) . The resulting expressions for the 
azimuthal mode m are shown below. In these expressions, Bm
refers to Bessel function of the first kind of order m.
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inc /\inc , .incXT’* nine
mq = E 9 * T * *  X p ^ i / 2T ?(t£- 1/ 2) e ’kV 1/ 2= - 9 .

f=l

[ c o s 0 incs in y f {  j m+1Bm+1(k p f_1/2s i n 0 inc) + j m 1Bm_1(k p f_1/2s i n 0 inc)}. r»inc\ . . m— 1,

- s i n 6 lncc o s Y f { 2 jmBm(k p f_1/2s i n 0 lnc) }  ]

q = 1, . .,Nt

(24 a)

.inc 
Jt mq

.inc , .incV ' nine
-E* w T 3*  X p f.1/2T?(tM / 2 )eIk̂ - cose ♦

f=l

s i n Y f - i /2 j m{B m+1(k p £_ i/2s i n 8 lnc)+Bm_1(k p £_ i/2s i n e lnc) }

q = 1, ..,Nt

(24 b)

rtinc nine . .inc
E9 m q = E 9 * e - « £ > * . 1/2T$(t f-1/2)ejk2« ^ ° - ei"C.

f=l

c o s 0 in c j m{B m+1(k p f_1/2s i n 0 lnG)+Bm_1(k p f_1/2s i n 0 inc)}

q = 1, . . ,N<

(24 c)

.inc .inc . . incX.""' nine
F 0 _  -ir̂ “ 3rn<t> > n  W kzf-i/2cos0 ,

f=l

{ j m+1Bm+1(k p f_1/2s i n 0 inc) + j m ^ ^ ( k p ^ ^ s i n © 100)}inc\ , , m—1,

q  — 1 ,  = . ,  N,jj

( 2 4 d )

In the case of sub-domain expansion/testing scheme, we 
can simplify the summations of (24) because the testing 
functions are confined to a small part of the scatterer.
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Summation over the modes

The expressions for the matrix elements and forcing 
functions given in (15) and (24) are for a single azimuthal 
mode m. To obtain a solution to the scattering problem, one 
needs to sum over a finite number of modes from -M to M. The 
value of M is determined by several factors such as the size 
of the scatterer and the angle of incidence of the 
excitation. Usually the fatter (large p) a scatterer, the
larger the number of modes required. When the excitation is 
axially incident, the only modes excited are 1 and -1. The 
farther the excitation is away from the axial direction, the 
more the number of modes required to obtain a solution. A 
rule of thumb given by [3] is

M = kPmaxsinel"C+6

where pmax the maximum radial dimension of the scatterer. 
This rule is valid only if kpmaxsin0^nc is greater than about
3.

The expressions for the matrix elements and the forcing 
functions depend on the mode number m. This dependence is 
such that the following relationships between the moment 
matrix of the positive modes and those of the corresponding 
negative modes are valid.

f t » ' ' pit -P7Ì
_PSi P"2. .-PIT PI".

Similarly, the forcing functions are related as follows.



20
alnc" " ine 

“ t—m
flinc ftinc

_E<|)m . _ E <)>—m _

. Inc" .ine"
•“tm _F  ̂“ t—m
.ine .ine

_ _ _ m _

In the above, the superscripts denote the component of 
incident field and the subscripts denote local coordinates on 
the scatterer. This relationship between the forcing 
functions and matrix elements of positive and negative modes 
lead to the following relationship between the coefficients 
of equivalent current.

' 0ine" " 0ine
J tm J t-m
«ine ine

_ J (?m _

. ine" .ine”

.ine .ine
L J 0m _ T*1*L J

Again, the superscripts denote to the component of 
incident field that is producing the currents. Because of 
this relationship between coefficients of current for the 
positive and negative modes, we need to calculate the 
currents of the positive modes.

Computation of Radar Cross-section

The scattered fields can be computed as the radiation 
field field from the equivalent surface currents. Using 
reciprocity [1], the expressions for this field can be 
written as
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E*u e JkR f f
47C R J JEr*J dS (25)

where Er is the field due to a test source located at the 
observation point with its amplitude adjusted to produce a 
unit plane wave at the origin, and polarized in the direction 
of u. Thus,

E r *ue jk*r (26)

For the moment solution where current is given as a 
summation of the product of the basis functions Bn and
corresponding coefficients In , (25) can be written as

E*u = — jco[i e jkR 
471 R [r][i]

where

[R] = [JJlVE'ds]

(27 a)

(27b)

the integration being carried out over the surface of the 
scatterer. In the above, (27b) has exactly the same form as
that used for the forcing function vector discussed earlier, 
the only difference being the basis functions Bn replacing
the testing functions Tq. Since we are using Galerkin's
procedure, the basis and testing functions are conjugates of 
one another. Hence the expressions for the vector [R] are 
obtained from the expressions for the forcing function given 
in (24) by replacing the angles 0inc and § i -n c  with the
corresponding observation angles and changing the mode number 
m to -m to account for the conjugation.
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Observe that in (24) we have broken up an arbitrarily 
polarized incident plane wave into two linearly polarized 
plane waves. In terms of these components the scattered 
field components can be written as

Ee — jCOJLL e  jkR
f ee

S
s e$-

1-------
■H ®w

1____

- E ? .

l

& <]>eL s Y - E 0-

(28)

The elements of the scattering matrix are obtained by 
summing the contributions due to the various azimuthal modes 
as

oo

SUV = X s 7  (2 9)
m=—oo

uv being 00, 0<J), (j)0, or <})<j). The terms under the summation are 
obtained as shown below.

suvm [fc? J  k* J1

= UK J  [Rj J] Pii K
_P21 P22.

m -1 _v
12 Et m
m _v
22. -E <1) m_

(30a)

(30b)

The elements of the various R's used here are obtained 
from the expressions for the E's of (24) by replacing 0^nc 
and (j)1110 with the corresponding observation angles and 
changing the mode number m to -m. Once the scattered field 
has been computed, the radar cross-section defined as
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auv 4TCr2
Escatu
Einev

2

(31a)

is easily computed. Using (28), this can be written in terms 
of the elements of the scattering matrix as

auv = 47l|suv|2 (3ib)

This can easily be extended ([4]) to arbitrarily polarized 
transmitters and receivers.
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NUMERICAL RESULTS

In this section, sample results obtained using the sub- 
domain basis set is compared with those obtained using 
entire-domain basis set.

First, a conducting sphere illuminated by a plane wave 
polarized in the x direction and travelling in the -z 
direction as shown in Fig. 5a is considered. The radius of 
the sphere is 1 wavelength. The pulse basis set solution is 
obtained by modeling the generating arc using 31 linear 
segments. This results in approximately 10 sub-sections per 
wavelength. (This is the recommended density for sub
sectional basis functions) . This results in a 61 by 61 
matrix equation. For the entire domain basis set, the 
scatterer is modeled using the same number of linear segments
as in the pulse basis set, but the number of basis functions 
used is 11 for (and 13 for J(j)) . This is approximately 4

basis functions per wavelength and is the recommended density 
of basis functions for most scatterers when using entire 
domain basis functions.'

Since the excitation in this case is axial, the only 
modes excited are 1 and -1. As discussed earlier, only the 
positive numbered modes are computed, since the solution for 
the corresponding negative numbered modes can be 
algebraically derived from the positive mode solutions.

Fig. 6 shows the comparison of bistatic scattering 
cross-section for this sphere computed using the two methods. 
The two solutions are very close to each other. Table 1 
compares the computation times required for each method. The 
time used by the entire-domain program is about twice that 
required for the sub-domain program.



Fig. 7 shows the comparison of bistatic scattering 
cross-section of the open-ended cylinder problem shown in 
Fig. 5b. The cylinder is 4 wavelengths long and the matrix 
sizes used follow the rule of thumb of 10 basis functions per 
wavelength for sub-domain case and 4 basis functions for the 
entire domain case. Again, as illustrated by the numbers in 
Table 1, the entire domain program results achieves a savings 
in the matrix size, but at the expense of more computer time.
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DESCRIPTION OF PROGRAMS

Two programs, referred to here as PBOR and GBOR have 
been developed to solve the conducting body of revolution 
scattering problem. PBOR uses the pulse basis set and GBOR 
uses the entire domain basis set. Both program require the 
LINPACK library routines CGECO,CGESL and CGEDI. The input 
data is read from a file. The file name is requested by the 
program during execution. The output is written to two files 
whose names also are requested by the program. Notice that 
the input data required by the two programs are different.

The format of input data for PBOR is shown below.

NFLDS, WVL
THETA, PHI, ETHETA, ETH-PHASE, EPHI, EPH-PHASE, NOBS
OBST,OBSP

THETA, PHI, ETHETA, ETH-PHASE, EPHI, EPH-PHASE, NOBS 
OBST,OBSP

RHO, Z

The first line of input data should have the number of 
different excitations (NFLDS) and the wavelength of the 
incident excitation (s) . Following this, there should be 
NFLDS lines of incident field data with each line having the 
spherical coordinate angles (in degrees) of incidence THETA 
and PHI, the magnitude (ETHETA) and phase (ETH-PHASE) in 
degrees, of the theta component of this excitation, the 
magnitude (EPHI) and phase (EPH-PHASE) in degrees, of the phi



component of the excitation, and number of observation points 
(NOBS) at which the far-fields and scattering cross-section 
are to be computed for this excitation. After this, there 
should be NOBS lines of observation point data with each line 
containing the observation angles theta (OBST) and phi 
(OBSP) . Repeat this set of incident field data and 
observation point data as many times as there are incident 
excitations. Finally, there should be as many lines of RHO 
and Z coordinate points as required to describe the 
scatterer. These points are connected end to end using 
straight lines to obtain an approximation to the generating 
arc.

The format of the input data set for GBOR is shown 
below.

NFLDS, NOBS, N, WVL
THETA, PHI, ETHETA, ETH-PHASE, EPHI, EPH-PHASE

OBST,OBSP

RHO, Z

This format of input data for GBOR is somewhat different 
from that of PBOR. The number N indicates the number of basis 
functions that should be used. It should be such that there 
are approximately 4 basis functions per wavelength. The 
number of observation points are taken to be the same for all 
the excitations. Thus, starting at the second line, there 
should be NFLDS lines of incident field data and following 
this NOBS lines of observation point data.
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Fig. 1 Geometry of the body of revolution problem.
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Fig. 2 Discretization of the body of revolution problem.
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Fig. 3 Positioning of Pt' s and P^'s on a generating arc 
modeled by three linear segments. There are 3 
P^'s and 2 Pt' s .
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Generating arc

Fig. 4 Positioning of Gaussian basis functions on a generating arc 
modeled using 3 linear segments. Three basis functions 
are shown. The half-gaussian functions are used only for 
the phi component of current. Note that there is no 
relation between the number of linear segments and the 
number of basis functions.
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Fig -5a. Conducting sphere used as" a test case for results 
presented in Fig. 6.

a = 1 wavelength 
L = 4 wavelengths

Fig. 5b. Conducting cylinder used to compute results 
presented in Fig. 7.
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Fig. 6: Bistatic scattering cross-section of the conducting 
sphere illustrated in Fig. 5a.
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Fig. 7: Bistatic scattering cross-section of conducting 
cylinder of Fig. 5b.



Scatterer
Length of 
generat ing 
arc in 
wavelengths

Matrix size
Computation 
time in cpu 
seconds on 
cray xmp-48

S u b
domain

Ent ire 
domain

S u b
domain

Entire
domain

Sphere 3.14159 61 24 7.834 15.385

Cylinder 4.0 81 34 8.061 17.181

Table 1. Comparison of computation times and matrix sizes for
scattering problems using entire domain basis functions 
and sub-domain basis functions.


