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Abstract

One of the methods used to reduce the time spent simulating VHDL designs is by parallelizing the simulation. 
In this paper, we describe the implementation of an object-oriented Time Warp simulator for VHDL on an 
actor based environment. The actor model of computation allows the exploitation of fine grained parallelism 
in a truly asynchronous manner and allows for the overlap of computation with communication. Some 
preliminary results obtained by simulating a set of multipliers and some ISCAS benchmark circuits are 
provided. In addition, the importance of placing processes based on circuit partitioning techniques for 
improving runtimes and scalability is demonstrated. Results are reported on a Sun SPARCServer 1000 and 
an Intel Paragon.

Keywords: VHDL, Parallel Discrete Event Simulation, Time Warp systems.



1 Introduction
The design of a digital VLSI system commonly begins with a description of the system being written in a 
Hardware Description Language, an example of which is VHDL [12]. Subsequent to verifying the functionality 
of the description, it is given to a system to perform synthesis at varying levels of abstraction, beginningi
with architectural synthesis and ending with layout synthesis.

Verification of the functionality of the description can either be done by formal techniques, or by simu­
lation. The latter method is more widely in use. Large amounts of time are spent simulating modern HDL 
descriptions and parallel processing is an attractive approach to reduce the runtimes. Parallel simulation of 
digital systems is appropriate due to the increased parallelism available in modern pipelined designs.

VHDL has been designed for documentation and simulation of digital systems. Digital systems may 
either be described behaviorally or structurally in terms of components and their connectivity. Hierarchical 
descriptions may be flattened out to a set of equivalent processes which may execute in parallel. Execution 
within a process is serial.

This report describes the design and implementation of properVHDL, a parallel discrete event simulation 
system for VHDL, The simulator has been implemented on top of the ProperCAD H libraries [18] for pro­
viding an actor based [1] model for concurrent object oriented programming. The level of granularity of 
parallelism in properVHDL is the VHDL process statement. Equivalently, there is a separate actor corre­
sponding to each process statement in the user’s VHDL source code. The synchronization mechanism chosen 
for the parallel discrete event simulator is Jefferson’s [14] Time Warp system for optimistic synchronization. 
Each actor is a Logical Process or LP as defined by Jefferson in his paper.

The actor model of computation allows the exploitation of fine grained parallelism in a truly asynchronous 
manner and allows for the overlap of computation with communication. It is appropriate to implement a 
VHDL simulator in the context of an environment which provides support for fine grained parallelism because 
the amount of computation typically carried out in a VHDL process is typically small.

The entire properVHDL system comprises a VHDL front end analyzer which parses the user’s source
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VHDL into an abstract syntax tree form. This is used as an input to a code generator which produces a 
translation of the VHDL into C++. Each process is translated into a separate class, for which both .H and 
.C files are generated. The constructor of each such process contains data structures defining the signals 
and variables visible to the process statement. The translation of the process statement part is found in 
the executeProcess method of each of the generated classes. See Figure 1 for a .pictorial depiction of the 
translation process. Wait statements, signal assignments and variable assignments are performed by making 
calls to methods in the VHDL Actor class which is the base class for each of the generated classes. The 
derivation structure will be defined in greater detail in forthcoming sections.

As has been alluded to in the preceding paragraph, there exists a simulation kernel, which provides 
methods for performing actions such as signal assignments, wait statements, and variable assignments. This 
also provides the base class for each of the generated classes. In addition, all actions required for performing 
the parallel discrete event simulation are carried out by the kernel. These include extraction of events from 
the event list, state saving, handling of rollback, and performance of GVT calculations upon arrival of such 
a request.

This report is organized as follows. Section 2 briefly mentions some related work. A description of the 
simulation kernel appears in Section 3. The User Interface class is described in Section 4, followed by the 
VHDLActor class in Section 5. The implementation of the GVT algorithm used in the simulator is discussed 
in Section 6. Some issues regarding File I/O appear in Section 7. Section 8 deals with compilation and code 
generation. Finally, we report experimental results and provide our observations on these in Section 9.

2 R elated Work
In this section, we mention some work in the area of parallel VHDL simulation, and environments for parallel 
simulation. Jade Simulations International Corporation [13] have described a Time Warp based VHDL 
simulator. It is implemented on top of the Sim++ simulation system that is a C++ runtime environment for 
distributed simulation using Time Warp. However, no experimental results have been reported. Wilsey and
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User VHDL

a : process

b : process

c: process

VHDL front end parser and code generator

class a : public VHDLActor{ 
a();
-a ( ) ;
void executeProcess() ;} ;

class b : public VHDLActor{
b<> ;
-b ( ) ;
void executeProcess();) ;

class c : public VHDLActor{
c l ) ;
-c ( ) ;
void executeProcess();>;

Figure 1: Processes in User VHDL are translated into classes derived from the kernel VHDLActor class.

3



McBrayer use the QUEST VHDL simulator based on Time Warp to investigate combination of processes 
to increase the computation grainsize [17]. Willis and Siewiorek mention the Auriga system in [25], which 
is mostly concerned with techniques for optimizing VHDL compilation for parallel simulation. While they 
report numbers reflecting their compilation techniques, actual simulation runtimes are not provided. Kapp 
et. al. [15] have built a conservatively synchronized VHDL simulator based on the Chandy-Misra [7] 
algorithm. Vellandi and Lightner [22] describe a SIMD algorithm for parallel VHDL simulation and use 
compilation techniques for extracting parallelism from the source VHDL description. Wen and Yelick [23] 
use a library based runtime system to construct a parallel circuit simulator. Bagrodia et. al. have written 
the Maisie language for describing parallel simulations [3] and this has been used to implement a gate level 
logic simulator described by Cong et. al. in [9]. There has been a great deal of related work in parallel logic 
simulation, which has been surveyed by Bailey, Briner and Chamberlain in [4]. Much of the preliminary 
work in parallel logic simulation and its parallelization using asynchronous algorithms was first reported by 
Soule [21].

3 Sim ulation Kernel
The simulation kernel provides the means for the execution of the simulation cycle as defined by the VHDL 
LRM [12]. Hence, the methods for extraction of events from the event queue, advancement of simulation 
time, insertion of events in the queue, and maintenance of the sensitivity lists are members of the kernel. In 
addition, data structures and methods for performing Time Warp activities, such as state saving, rollback 
and GVT computation are also members of the kernel.

3.1 VHDL Time Warp simulation in the context of Actor Model
In this section, the mapping of the VHDL Time Warp simulation onto the Actor Model of concurrent 
computation [1] is described. The kernel methods and data structures referred to above are provided within 
the VHDLActor class. The VHDLActor actor class is itself derived from the pcActor class. There is, therefore,
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one VHDLActor class for each process in the source VHDL. In other words, each process in the source 
VHDL is represented by an actor.

The VHDLActor class has a virtual method called executeProcess. Each process in the source VHDL is 
translated into a class derived from VHDLActor. The executeProcess method in each of the derived classes 
is a translation of the actions comprising the corresponding process. The invocation of executeProcess is 
dependent upon whether or not a change has occurred in the sensitivity list of the process.

Logical Processes in Time Warp communicate by means of exchanging messages. The pure actor model 
does not support the simple transfer of messages between communicating LP’s. It is therefore necessary 
to communicate by calling continuations on the destination LP’s. A continuation may be looked upon 
as a function pointer. Communication between the actors, which are the LP’s, is performed by calling 
continuations upon one another. Continuations are called with arguments, and messages are exchanged 
between actors in this way.

Since continuations are similar to function pointers in a global namespace, it is necessary to know the 
names of the actors in order to ensure that the continuation is called on the correct actor. The code which 
involves sending of messages is in the methods of VHDLActor which is the base class for all the actors. 
The actual actors which are started up are the classes generated by the VHDL front end. It is therefore, 
impossible for the VHDLActor class to know the names of all the actors to which continuations are sent. 
This problem is tackled by generating a file which is essentially a table of all continuations, which can be 
indexed by a unique integer identifier given to each actor upon start up. Furthermore, this table is visible 
to each actor, and appropriate continuations are called by looking up the table. The actual implementation 
is described in a later section.

As of now, a centralized GVT management algorithm, Samadi’s algorithm [20] is being used. This 
algorithm presumes the existence of a central GVT manager which is responsible for broadcasting GVT 
computation requests, receiving responses, computing and broadcasting GVT periodically. This functionality 
has been encoded in the U serlnterf ace class. Figure 2 shows some of the interactions which occur between 
LP’s in terms of the continuations invoked upon one another.
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4 The U serlnterface
The main program creates the U serlnterf ace actor. The first task incumbent upon the U serln terf ace 
actor is to start up the simulation by creating actors of the types of each of the derived classes. It must then 
build the continuation table ( see above ) and make this visible to all actors. After the simulation is started 
up, the U serln terf ace maintains the GVT, in the case of centralized GVT algorithms.

4.1 Starting up the Simulation
The first action undertaken by the Userlnterface is the invocation of the ForkSimActors method. Since the 
names and types of the actors are dependent upon the source VHDL, this method is generated automatically 
by the VHDL front end in a separate file. Figure 3 shows an example of this method.

The execution of the initial lines results in the creation of each of the actors in the simulation. Upon 
creation, each actor invokes a method in the Userlnterface to signify its successful creation. The following 
lines are the building of the continuation table.

4.2 The Continuation Table
The exact nature of the continuation table, in terms of the size of the array is only known at compile time. 
Hence, this information is also generated automatically by the front end, in the form of the CTableData 
class. This forms the base class for the CTable class which contains methods for accessing the continuations. 
An example of the CTableData class is show in Figure 4.

An instantiation of the CTable class is a member of the Userlnterface actor. This is the object which 
is shown being initialized in Figure 3. As soon as this initialization is completed, an aggregate [8, 18] is 
created, with the continuation table as a data member. As soon as the Userlnterface knows that all actors 
have been successfully created, it creates the Continuation Table aggregate, with a representative on each 
processor. Once this has been created, the initSim actor on each of the VHDLActors is invoked with the 
name of the Continuation Table aggregate. This makes the continuation table visible to each of the actors
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void
UserInterface::forkSimActors()
{

ackActors:: Customer report( *this );

pcActorName<LOAD> Al = pcActorName<LOAD>::newName();
LOAD::New Actor1( report );
Actorl( Al );
pcActorName<STORE> A2 = pcActorName<STORE>::newName();
STORE::New Actor2( report );
Actor2( A2 );

numberProcesses = 2;

Continuât ionTable. niimberOf Rows = numberProcesses;

ContinuâtionTable.initSimCustomer[0] =
LOAD::initActor:¡Customer( ( pcActorName<VHDLActor>& )A1 );

ContinuâtionTable.acceptTransCustomer[0] =
LOAD::acceptTransaction:¡Customer( ( pcActorName<VHDLActor>& )A1 );

ContinuâtionTable.SimCycleCustomer[0] =
LOAD::SimCycle:¡Customer ( ( pcActorName<VHDLActor>& )A1 );

ContinuâtionTable.acceptNegCustomer[0] =
LOAD::acceptNegMsg:¡Customer ( ( pcActorName<VHDLActor>& )A1 );

ContinuationTable.computeGVTCustomer[0] =
LOAD::computeGVT:¡Customer ( ( pcActorName<VHDLActor>& )Al ) ;

ContinuationTable.acceptNGVTCustomer[0] =
LOAD::acceptNewGVT:¡Customer( ( pcActorName<VHDLActor>& )A1 );

ContinuâtionTable.initSimCustomer[1] =
STORE::initActor::Customer ( ( pcActorName<VHDLActor>& )A2 ) ;

ContinuationTable.acceptTransCustomer[1] =
STORE: : acceptTransaction:¡Customer ( ( pcActorName<VHDLActor>& )A2 );

ContinuationTable.SimCycleCustomer[1] =
STORE::SimCycle:¡Customer ( ( pcActorName<VHDLActor>& )A2 );

ContinuationTable.acceptNegCustomer[1] =
STORE::acceptNegMsg:¡Customer ( ( pcActorName<VHDLActor>& )A2 );

ContinuationTable.computeGVTCustomer[1] =
STORE::computeGVT:¡Customer ( ( pcActorName<VHDLActor>& )A2 );

ContinuationTable.acceptNGVTCustomer[1] =
STORE:¡acceptNewGVT:¡Customer( ( pcActorName<VHDLActor>& )A2 ) ;

Figure 3: The ForkSimActors method.
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class CTableData{ 
public:

pcCustomer<pcAggregateName<CTableAggregate» initSimCustomer [2]; 
pcCustomer<TransMsg> acceptTransCustomer[2] ; 
pcCustomerVoid SimCycleCustomer[2]; 
pcCustomer<TransMsg> acceptNegCustomer[2]; 
pcCustomer<StartGVT> computeGVTCustomer [2]; 
pcCustomer<Hntegral<int>> acceptNGVTCustomer [2] ;
CTableDataOO
~CTableData(){}

Figure 4: The CTableData c lass - the array limits are determined only at compile time

in the simulation.

4.3 GVT computation methods
The User In terface  class is provided with methods for computation of GVT. Currently Samadi’s algorithm 
for GVT computation is used. The i n i t i â t eGVT method invokes the computeGVT method on each of the 
VHDLActors. These respond by invoking the computeGVT actor method in the Userlnterface, which actually 
computes and broadcasts the new GVT.

5 VH DLActor and its M ethods
VHDLActor is derived from pcActor and is the base class for all the generated classes. It contains methods 
and data structures for executing the VHDL simulation cycle, as well as carrying out the actions necessary 
for Time Warp simulation such as state saving and rollback recovery.

Figure 5 shows the Time Warp related data structures required by a Logical Process. Each VHDLAc­
tor has a QMgr class, whose responsibility it is to handle the input and output queues. There is also a 
currentS tate data structure, a stateQueue, the current LVT, Now, and the current GVT. The data type of 
the last two are Time which is a dual comprising the time in femtoseconds and an integer sequence number, 
to distinguish events occurring at the same time epoch, but different simulation cycles.
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State Queue

Figure 5: Data Structures internal to a Logical Process.

The initial sections of this section describe in detail, the TimeWarp related data structures and their 
implementation as members of the VHDLActor class. Later sections briefly describe some of the VHDL 
related activities, and the implementation of the simulation cycle.

5.1 The QMgr class
The QMgr class deals with the creation and maintenance of the input and output queues. Since both input 
and output queues contain transactions, or time stamped event messages, the Transaction class is the base 
class for all the queues. The functionality of timestamp order insertion and maintenance of transaction is 
handled within the TransactionQ class.

The input queue contains input transactions to the LP which have yet to be executed. The output 
queue contains executed transactions from the input queue which resulted in messages being sent to other 
processes, to enable sending antimessages in case of rollback.

10



Q M gr

T ran saction Q  internallnputQ ;

T ran saction Q  externalln putQ ;

T ran saction Q  outputQ ;

Figure 6: Data Structures in the QMgr class.

In our case, there are two sources of input transactions. The first possibility is the arrival of transactions 
from other LP’s in the simulation. The second source is the execution of signal assignment statements in 
the process itself.1

To preserve the causal semantics of discrete event simulation, and to provide a means for in e r t ia l  
and transpo rt delays on signal assignments, it is necessary to carry out forward and backward preemption 
on events created by the execution of signal assignments [2]. In order to easily implement this, the QMgr 
has two TransactionQ objects, internallnputQ  and externallnputQ. As the names indicate, the former 
deals with internally generated transactions while the latter accepts transactions from other LP’s. The third 
TransactionQ is the outputQ. Figure 6 shows a pictorial depiction of the QMgr class.

*Wait statem ents are also implemented as the insertion of events in the input queue, but these do not result in the sending  
of m essages to other processes as wait statem ents, unlike signal assignments are local, and do not fanout.
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Insertion of transactions into the in te rn a l Input Q is followed by marking, which is the VHDL LRM 
terminology for forward and backward preemption. Insertion of transactions into the external Input Q 
must take the sign2 into account. It should be noted that an antimessage can never be inserted into the 
in t ernalInput Q.

The outputQ has been implemented such that both a message and its antimessage can simultaneously 
exist. This is an artifact of the current implementation of Samadi’s algorithm. This done, so that it is 
possible to correctly account for acknowledgements from the message and its antimessage, if it becomes 
necessary to send out the antimessage. When a decision is taken to rollback, and antimessages to a message 
are sent, a transaction of opposite sign is created and inserted in the outputQ. In this way, it is possible to 
account for arriving acknowledgements easily. When a GVT algorithm which utilizes sequence numbers is 
implemented, it will be possible to do away with this creation of extra transactions.

5.2 The stateQueue
This is a simple doubly linked list of the state data structure. In the current implementation, state is saved 
with the occurrence of each event. However, as soon as a coastForward method is written, it will be easy 
to incorporate periodic state saving. The arrival of a new GVT causes fossil collection of the stateQueue 
whereas the arrival of a straggler results in rollback, and the restoration of an older state from the stateQueue 
as the current state.

5.3 ActorM ethods dealing with receiving messages
This section describes some methods written for receiving messages from other LP’s in the simulation.

5.3.1 acceptTransaction

This Actor Method is called by other LP’s when they require to send a transaction. The transaction is a 
member of the arguments to acceptTransaction. The transaction is inserted into the externallnternalQ

2whether a positive or antimessage
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member of the QMgr object. In addition, the acknowledgement to the Transaction is sent by invoking the 
continuation sent as an argument to the method. The acceptTransaction method also detects whether the 
arriving transaction is a straggler, and calls a rollbackHandler method, if such should be the case.

5.3.2 acceptNegMsg

This is exactly identical to acceptTransaction, except that it handles the receipt of antimessages. Again, 
insertion is into the external Input Q , and rollback detection and recovery management is performed as 
before.

5.3.3 computeGVT

This ActorMethod is called by the central GVT manager, (in this case, the User Interface. Methods are 
invoked to calculate the minimum message in transit. The GVT is then calculated as explained in a later 
section, and the continuation in the User Interface is called with the locally determined minimum.

The ActorMethods acceptNewGVT and acceptAckMsg are used for receiving newly calculated values of 
GVT and acknowledgement messages respectively. They are simple in their functionality and implementation 
and are not further described in this document.

5.3.4 Implementation of Wait Statement

A wait statement could come with any combination of none or all of a sensitivity clause, a condition clause 
and a timeout clause. A Wait data structure has been defined, to implement each of the wait statements 
appearing in a process statement. The fields in this data structure include an integer id to distinguish waits 
in a given process and an integer type field. The types of waits are enumerated as shown in Figure 7.

A wait statement which looks like wait; is recognized to be of type 0 since there is no accompanying 
sensitivity clause, condition clause or timeout clause. According to the LRM the timeout clause, simply 
specifies the latest time at which the process must resume. In other words if a change occurs in a member of 
an accompanying sensitivity clause or a specified condition evaluates to TRUE before the timeout expires,

13



sens .list cond.clause timeout
0 0 0
0 0 1
0 1 0
0 1 1
1 0 0
1 0 1
1 1 0
1 1 1

Figure 7: Enumeration of possible types of wait statements.

the process is resumed. However, a wait statement containing a condition clause cannot resume until the 
condition evaluates to TRUE. Finally, a process statement with a sensitivity list is translated as a process 
with a wait on the same sensitivity list as the last statement in the process.

A timeout clause is implemented as the insertion of a transaction into the event queue. The wait statement 
times out when the transaction is executed. To deal with condition clauses the wait data structure contains 
a pointer to a method ( generated by the code generator ) which evaluates the condition. Finally sensitivity 
clauses are checked by looking at whether or not an event has occurred on a signal.

5.4 Implementation of the Simulation Cycle
The VHDL LRM stipulates the existence of an initialization step, during which signal and variable values 
are initialized. This is carried out by the initSim actormethod which is invoked by the User In terface  
with the name of the Continuation Table aggregate.

The Simulation Cycle is defined by the VHDL LRM to be as follows.

• The current time Tc is set equal to Tn. Simulation is complete when Tn = TIME’HIGH and there are 
no active drivers or process resumptions at Tn.

• Each active explicit signal in the model is updated. ( Events may occur on the signals as a result. )

• Each implicit signal in the model is updated. ( Events may occur on the signal as a result. )

14



• For each process P, if P is currently sensitive to a signal S, and an event has occurred on S in this 
simulation cycle, then P resumes.

• Each non-postponed process that has resumed in the current simulation cycle is executed until it 
suspends.

• The time of the next simulation cycle, Tn, is determined by setting it to the earliest of :

-  TIME’HIGH

-  the next time at which a driver becomes active, or

-  the next time at which a process resumes.

If Tn = Tc then the next simulation cycle ( if any ) will be a delta cycle.

The implementation of the above is found in the VHDLActor: :SimCycle method. Figure 8 shows a 
flowchart of the activities occurring within the method.

At the beginning of the simulation cycle, the QMgr is queried for outstanding transactions awaiting 
execution. This is done by searching both in te rn a l Input Q as well as external Input Q. The transaction 
scheduled most immediately in the future is chosen. In case of a tie, the in te rn a l Input Q is chosen.

If a transaction exists, it is “executed”. In other words, its value is copied into the signal for which it 
is intended, and the LVT is made equal to the scheduled time of the transaction. If the transaction has a 
fanout, the acceptTransaction methods on all LP’s listed in the fanout list of the signal are invoked with 
the transaction as an argument. If there is no transaction, LVT is made equal to p_inf in ity . This process 
is repeated for all further transactions scheduled to occur at the same time.

At this point, it is worth mentioning how changes in the sensitivity list are kept track of. The S tate data 
structure has a sensitive flag which is initialized to ‘off’ at the beginning of each simulation cycle. As signals 
are assigned, events occurring on them are detected. If the signal is on the sensitivity list of the process, 
the sensitive flag is turned on. The sensitive flag can be overriden by a higher priority flag which is set at 
compile time, if the process has no sensitivity list (i.e. is always active ).

15



Start

Figure 8: The VHDLActor: :SimCycle method.
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If the process is determined to have resumed by inspection of the sensitive flag, the executeProcess 3 
method is invoked.

Finally, SimCycle is reinvoked as an ActorMethod. This is done in order to allow the properCAD runtime 
to schedule other actors assigned to the same processors. This prevents any one LP from advancing its virtual 
time too far, thus minimizing wasted lookahead in case of a rollback.

6 Im plem entation of G VT using Sam adi’s algorithm
GVT is defined as the lowest time to which any LP in the simulation may rollback. It is therefore defined 
as the minimum of all messages in transit, and the minimum LVT of executing LP’s. There are two notable 
difficulties in calculating GVT [10], namely tracking messages in transit, and tackling the simultaneous 
reporting problem.

Samadi’s algorithm tackles the first problem by introducing acknowledgements for every message and 
antimessage in the system. It then becomes trivial to find the minimum unacknowledged message simply 
by searching the output queue. The manner of implementation ( placing sent messages as well as negative 
messages in the output queue ) restricts the search to only the outputQ. The second problem is tackled in 
the following way. Whenever an LP receives a StartGVT message, it enters the find mode, and it remains in 
this mode until the GVT is reported to it. Any acknowledgements sent during this time are tagged with the 
fact that the LP is in find mode. The local minimum reported by each process is the minimum of

• current LVT

• minimum unacknowledged message

• minimum time of all acknowledgements tagged find

Notice that the last quantity decreases monotonically during any given GVT cycle for a particular LP. 
Hence it is sufficient to maintain a running minimum which is updated by the acceptAckMsg method. The

3recall that ex ecu teP ro cess() is virtual in the VHDLActor ( base ) class, but is redefined in each of the derived classes.
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running minimum is updated to p_inf in i ty  when the new GVT is reported.

7 File I /O
File I/O in a Time Warp system presents some unique problems. In the case of output, rollbacks may 
necessitate invalidation of previously written values. On the other hand, a line of a file may have to be read 
on several occasions since rollbacks may destroy the work done with the value read on a previous occasion. 
The same problems present themselves when handling exceptions in the form of the VHDL asse rt statement. 
In this section, we describe how we handle File I/O in our simulator. We have used the C++ strstream  
facilities in our data structures for input and output.

7.1 Input
Each VHDLActor class has data structures for handling file input. The data structures created for this purpose 
are InputLine and InputLineQ. When READ or READLINE commands are detected in the source VHDL, calls 
are made to the readLine and read members of VHDLActor. The former creates an inputLine if that line 
has not already been read. The inputLine data structure is timestamped with the time of reading. It is 
thus possible to ascertain whether a line has been read from the file into the InputLineQ or not. The read 
uses the appropriate line to obtain the desired value. When the VHDLActor receives new values of GVT, the 
inputLineQ is garbage collected. The code generator is responsible for generating information on whether 
an object is a file reader or a file writer. It also generates code to open the appropriate input or output file.

7.2 Output
Data structures for file output are defined in a manner similar to that of file input. In this case they are 
named OuputLine and OutputLineQ respectively. WRITE and WRITELINE statements in the user VHDL are 
translated into calls to the write and w rite line  methods of VHDLActor. These calls result in creation and 
updation of OutputLine data structures. These OutputLines are enqueued, but are not committed until
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GVT rolls past the creation time of the OutputLine. When this occurs, the lines are written out into the 
files, and are then garbage collected.

8 Code Generation
In this section, we describe how we generate C++ code given a user’s source VHDL. The entire code 
generation process is divided into two parts -  analysis or parsing and conversion into an intermediate form, 
and elaboration and code generation or conversion of the intermediate form into a simulation. The first 
subsection describes the analysis phase, and the next deals with the code generation. Elaboration deals with 
extraction of a netlist from a structural description.

8.1 vcomp
The VHDL front end analyzer, vcomp has been implemented using the PCCTS [19] LL(k) parser generator. 
The VHDL 93 BNF provided in the VHDL LRM had to be modified to remove all the left recursive rules. 
PCCTS allows varying the lookahead in terms of lexical characters. This feature proved particularly useful 
in dealing with the many grammatical ambiguities of VHDL. In addition, there is support for automatic 
generation of an abstract syntax tree (AST).

8.2 codegen
The C++ code generator is described in this section. The code generator uses the file containing the AST 
which has been produced by vcomp. In addition the symbol tables are also accessed. Since many data 
structures are common to both vcomp and codegen, the code defining these is shared between the two 
applications.

In its simplest form, codegen reads in the AST from the input file and reconstructs the tree in an 
internal data structure. The AST is then traversed in preorder to generate C++ code embodying the 
behavior specified in the processes of the user’s VHDL. Initially only “flattened” descriptions were dealt
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with. In other words, codegen did not deal with hierarchy in a description.
In order to deal with the suspension and resumption of execution as required by the VHDL wait construct, 

in a manner explained in a forthcoming section, it was necessary to extract the control flow graph (CFG) 
corresponding to each VHDL process.

8.2.1 Extraction of Control Flow

In this section, we describe the method used to extract the control flow graph from the AST. There is no 
separate data structure for the nodes of the CFG. Pointers reflecting control flow are placed in the AST 
nodes. The algorithm for control flow is shown below. In practice, owing to the structure of the AST, it is 
necessary to treat looping constructs and conditionals slightly differently, but these details are not shown 
here.

procedure extractCFGC Node ) 

begin

Enqueue( Node );

while( Queue has members )

BuildBB( Dequeue() ); 

end while; 

end;

procedure BuildBB( Node ) 

begin

while( Node is not a Leader ) 

add Node to the current BB;

Node <- nextNode( Node ); 

end while;

Enqueue ( Node ) ;
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Source VHDL Generated Code

a : process 
begin 

code A
wait for timeout; 
code B 

end process;

void
ActorN: :executeProcess() 
{ translate code A; 

enable executeProcess 1; wait( 0 );}
void
ActorN:: execute Process 1 () 
{ code B;}

Figure 9: Translation of a VHDL process with a wait statement in the middle of the code

end;

8.2.2 Dealing with Suspension and Resumption

Wait statements entail suspension of a process statement until a condition is satisfied, timeout occurs, or 
event 4 occurs on a signal. When'the process is ready for resumption, it must begin executing code from the 
statement succeeding the wait statement. In our scenario, this means that the executeProcess() method 
can potentially be suspended and resumed from an arbitrary position in the code. However, the actor model 
precludes suspension and resumption of a thread from an arbitrary point within it [1].

Hence, we had to mimic this suspension and resumption by splitting up the executeProcess () method 
into a set of methods with each such method ending in a wait statement after enabling the method containing 
the code succeeding the wait statement, as in Figure 9. Resumption is then implemented simply by calling 
the enabled method. A similar notion was first reported in [11] where issues regarding compilation of message 
driven programs from conventional imperative programs were discussed.

We now consider handling wait statements appearing in a branch of the if-then-else construct. Figure 
10 contains the original and transformed control flow graphs (CFG) for this case. All the code upto the 
wait statement, including the if statement is placed in the method pi (code A). If the condition in the if 
statement evaluates to TRUE, then the wait statement is executed after enabling method p2. When the wait

4In VHDL, an event is a change in the value of a signal. The VHDL equivalent of an event or tim estam ped message as used 
in PDES term inology is transaction.
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Figure 10: Generating code for a wait statement in a conditional construct.
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Figure 11: Generating code for a wait statement in a looping construct.

statement is satisfied, the method p2 is enabled. On the other hand, if the condition evaluates to FALSE, 
then execution of pi continues in the appropriate manner.

The case of wait statements in a loop body is shown in Figure 11. The looping condition is evaluated in 
the method pi, and if the loop must be entered, then the wait statement is started after enabling p2. If the 
looping condition evaluates to FALSE then the code after the loop is executed. When the wait condition is 
fulfilled, the method p2 is invoked. On entry to p2, the remainder of the loop (Code C) is completed. Then 
the looping condition (Code B) is reevaluated. If it is necessary to reenter the loop, the wait is executed 
after enabling p2 again. If Code B evaluates to FALSE, the remainder of the program (Code D) is evaluated.

We now describe how we implemented the procedures described above. The CFG is first constructed as
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we have described in the previous section. In our implementation we have not dealt with wait statements 
in conditional statements. However, it is common in VHDL to have wait statements within while loops and 
straight line code. Furthermore, it is unlikely that these cases occur in isolation in a process. Therefore, it is 
necessary to determine the order in which to apply the CFG transformations described above. We perform 
the while loop transform from the innermost while loop containing a wait statement and proceed outward. 
We then apply the straight line transform to each of the CFG’s resulting from the previous step. After 
transformation, there is a set of CFGs corresponding to each process. Code is generated by traversing the 
CFGs in a modified BFS order. In order to avoid being stuck in a loop by traversing the back edge of a loop 
in the CFG, it is necessary to mark nodes which have been traversed. However, in order to conserve space, 
CFGs which have common nodes merely contain pointers to the same instance of the common node. Hence 
the first time the node is traversed, the node is marked, making subsequent traversals of the other CFGs 
which point to this node believe that the node has already been traversed. As result code for this node is not 
generated. This problem is tackled by replacing the boolean flag with a counter, which is incremented with 
each subsequent traversal. If this counter exceeds the index value of the CFG currently begin traversed, then 
we have traversed a back edge and are getting stuck in a loop. This observation is stated without formal 
proof.

8.2.3 Dealing with Hierarchy

VHDL allows both behavioral and structural descriptions. Structural descriptions rely upon instantiating 
primitive components and specifying a set of signals which determine the connectivity of the components. In 
order to simulate such a description, it is necessary to obtain the circuit graph wherein the nodes represent 
primitive components and the edges represent nets. From the standpoint of code generation, we would like 
to accomplish the following goals :

• generate the circuit graph.
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• generate code ( a class ) corresponding to each primitive component, and instantiate objects of each 
type corresponding to the component instantiations of the VHDL.

In order to accomplish the second goal, we must also generate a method ( in itS ig n a ls  ) in the generated 
class which will accept parameters specifying the circuit connectivity in a general way. Finally, a procedure 
is generated, calling in itS ig n a l on every object with the appropriate parameters. Due to the general nature 
of circuit connectivity, in itS ig n a ls  must be able to accept a variable number of parameters. In Figure 12, 
we include a structural architecture for the ISCAS 85 benchmark, cl7. This will serve as an example to 
illustrate our point.

The figure shows instantiations of nand gates. A set of signals is declared at architecture scope, and 
these are used to form the connections between the instantiated components. Notice that ultimately this 
architecture will be instantiated within a test bench. Signals will be declared at that level to make connections 
from the cl7_i89 entity to the file reader and file writer. The problem then is, given such a hierarchical 
description, extract the circuit graph. This process is termed as elaboration.

Since a structural description presumes the existence of certain primitive components, we must analyze 
these prior to analyzing the structural architecture. In codegen C++ code is generated for every behavioral 
architecture analyzed. Hence, by the time the elaboration is performed the C++ classes corresponding to 
the architectures which will be instantiated have already been generated.

The signals defined at each level of the hierarchy correspond to nets in the circuit graph. A net, as used 
in this sense is analogous to a net in a physical circuit, wherein all the points it connects are electrically 
equivalent. Hence, for every signal, codegen instantiates a Net data structure which contains a pair of 
integers corresponding to the object Id and pin number of the driver of the signal, and two arrays of integers 
corresponding to the object Id’s of the components which read the signal, and the pin numbers of readers. 
A circuit node is instantiated when it is detected that a behavioral component has been reached in the 
hierarchy. The algorithm in Figure elaborate shows this process.

The parameters to elaborate comprise a data structure containing a pointer to either a process or 
component descriptor, and pointers to each of the Nets associated with the ports of the descriptor.
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ARCHITECTURE structural OF cl7_i89 IS
signal INTERP : std_ulogic_vector(0 to 3) : = (others^’O ’) ;

BEGIN
NANDO : NANDG_N generic map (2,1 ns,l ns) 

port map (
inp(0) => INP(O), 
inp(l) => INPC2), 
out1 => INTERP(0));

NANDI : NANDG_N generic map (2,1 ns,l ns) 
port map (

inp(0) => INP(2), 
inp(l) => INP(3), 
out1 => INTERP(1));

NAND2 : NANDG_N generic map (2,1 ns,l ns) 
port map (

inp(0) => INP(l), 
inp(l) => INTERP(1), 
out1 => INTERP(2));

NAND3 : NANDG.N generic map (2,1 ns,l ns) 
port map (

inp(0) => INTERP(1), 
inp(l) => INP(4), 
ou t1 => INTERP(3));

NAND4 : NANDG_N generic map (2,1 ns,l ns) 
port map (

inp(0) => INTERP(0), 
inp(l) => INTERP(2), 
out1 => 0UTP(0));

NAND5 : NANDG_N generic map (2,1 ns,l ns) 
port map (

inp(0) => INTERP(2), 
inp(l) => INTERP(3), 
out 1 => OUTP(1));

END structural ;

Figure 12: Structural architecture for cl7
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procedure elaborate( params P ) 
begin

foreach signal in P 
create a Net; 

end for;

if P contains a behavioral architecture then 
create a CktNode;
update each Net in P with object and pin Ids; 

else
foreach component instantiated in P

create params with the associated component and Nets; 
elaborate( params ); 

end for; 
endif; 

end;

Figure 13: The elaborate procedure

9 Experim ental R esults and Observations
Our initial experience was with a pair of array multipliers -  an 8x8 bit array multiplier ( with 71 VHDL 
processes ) and a 16x16 bit array multiplier ( with 271 processes ). Each description is fed an input vector file 
of 100 vectors. These multipliers are extensions of the 4x4 bit array multiplier reported in [24]. A diagram 
of such a multiplier is shown in Figure 14.

The ProperCAD II runtime system assigns actors randomly to processors. 5 unless otherwise advised. 
On a bus based symmetric shared memory machine ( such as the Sparcserver 1000 ), the default random 
assignment of actors does not make too much of a difference, owing to the low communication cost. On the 
other hand, on a true distributed memory machine such as the Intel Paragon, placement of actors without 
attempting to localize communication in some manner can have impact the performance heavily.

The simulations were run on a shared memory multiprocessor ( 8 processor SUN SPARCServer 1000 ) 
and a distributed memory machine ( 20 node Intel Paragon ). Our initial experiments are shown in Tables 
1 and 2 . The numbers show that on the SPARCserver, the runtimes scale well with increasing number of

5actually the actors are assigned to processes, but we’ll assume that th ey’re equivalent. Note that this is not necessarily true 
on Unix SM P ’s where the OS decides whether or not each process is assigned to a different processor.
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Figure 14: 4x4 bit array multiplier

Table 1: Runtimes in seconds with default actor placement on SPARCServer 1000
circuit 1 proc 2 procs 4 procs 8 procs
8x8 11.3 6.1 3.9 5.3
16x16 48.6 25.6 16.2 15.2

Table 2: Runtimes in seconds with default actor placement on Intel Paragon
circuit 1 proc 2 procs 4 procs 8 procs 16 procs
8x8 10.6 10.3 8.6 7.2 -
16x16 411.9 440.1 31.22 20.1 14.1
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Figure 15: Speedups on the 8x8 multiplier

Figure 16: Speedups on the 16x16 multiplier. The seemingly superlinear speedups on the paragon are due 
to memory effects.

processors upto 4 processors and then a deterioration occurs. On the Paragon, however, the runtimes scale 
poorly upon increasing the number of processors. Figures 15 and 16 show plots of the speedups obtained 
from the runtimes shown in Tables 1 and 2.

The ProperCAD II runtime environment assigns actors to processes randomly. It starts up the simulation 
using the desired number of heavyweight processes, but assignment of actors to these processes is entirely 
random. To gain speedups especially on distributed memory machines, it is essential to place actors in 
such a way that communication is kept as local as possible. Random assignment of actors will therefore 
not optimize the communication. Hence, our next step was to apply strings based partitioning [16] to the
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Figure 17: 4x4 bit array multiplier partitioned to run on 4 processors

multipliers. This yielded the partition shown in Figure 17. The partitioning strategy also attempts to take 
care of load balance by assigning approximately equal numbers of actors to each partition. In this case, the 
actors have approximately equal computational grain size. We therefore did not assign weights ( reflecting 
the computational grain size ) to each of the actors prior to partitioning. In descriptions having actors of 
varying grain size, it will be necessary to do so, in order to obtain a reasonably balanced partition.

The results obtained with partitioning applied are shown in Tables 3 and 4. Clearly, placement of actors

Table 3: Runtimes in seconds with circuit partitioned actor placement on SPARCServerlOOO
circuit 1 proc 2 procs 4 procs 8 procs
8x8 12.8 6.1 3.9 2.93
16x16 48.7 24.8 14.1 8.8

Table 4: Runtimes in seconds with circuit partitioned actor placement on Intel Paragon
circuit 1 proc 2 procs 4 procs 8 procs 16 procs
8x8 11.1 9.8 7.7 6.4 -
16x16 411.7 289.2 17.4 12.7 10.4
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Figure 18: Speedups on the partitioned 8x8 multiplier

Figure 19: Speedups on the partitioned 16x16 multiplier. The seemingly superlinear speedups on the paragon 
are due to memory effects.

based on a circuit partitioning strategy improves the scalability of the simulation i.e. the overhead of com­
munication does overcome the benefits of utilizing additional processors. Furthermore, since communication 
is localized, the number of rollbacks in the simulation decreases, leading to the improvements seen in the 
results. This corresponds to the result obtained by Cong et.al. [9], wherein a good partitioning leads to less 
blocking in a conservatively synchronized simulator. Figures 18 and 19 show speedups calculated from the 
runtimes shown in Tables 3 and 4.

It should be noticed that for the 16x16 multiplier, when 1 and 2 processors are used, the simulation is 
thrashing badly, but that the partitioning is able to produce a good result for 2 processors in spite of this.
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Table 5: Runtimes in seconds for ISCAS benchmarks executing on SPARCserver.
circuit #actors 1 proc 2 proc 4 proc 8 proc
cl7 7 250.8 145.6 72.8 109.3
c432 162 356.6 258.3 121.3 102.4
c499 204 637.63 310.7 188.3 -
s298 135 28.8 12.85 8.11 5.8
s344 177 52.55 40.58 14.84 10.03

Table 6: Runtimes in seconds for ISCAS benchmarks executing on Paragon
circuit #actors 1 proc 2 proc 4 proc 8 proc 16 proc
c432 162 - 582.747 - 24.92 20.81
c499 204 - - - - -

s298 135 - - - - -
s344 177 - - - - -

Using a larger number of processors relieves the thrashing problem.
In addition to the two circuits above, we have simulated some of the ISCAS [6, 5] set of benchmarks, 

described in structural VHDL style. The runtimes for these simulations can be seen in Tables 5 and 6. We 
had serious difficulties with memory management in simulating these benchmarks. These stemmed from 
two reasons. The first is the fact that Time Warp is inherently space intensive. The second and more 
uncontrollable reason was the behavior of the message queue management system of ProperCAD II . Under 
heavy message traffic, the space the runtime system continues doubling the length of the message system. 
The processes performing file I/O add a significant amount of message traffic. As a result, our results are 
biased by memory effects. In fact, it was difficult to run even small benchmarks on the Intel Paragon which 
has only 16M of memory per node.

Table 7: Runtime in seconds for ISCAS benchmarks on Vantage executing on a Sun 4 architecture
circuit time #  vectors
c432 1.38 102
c499 1.3 100
s298 1.36 100
s344 0.95 100
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We can see that there is a fair amount of parallelism to be exploited even in small circuits. Even cl7 
showed parallelism upto 4. The others all improved with increasing numbers of processors. However, the 
memory usage is unacceptably high. c499 could not be simulated on 8 processors due to excessive memory 
demands. While the memory demands due to Time Warp may be improved somewhat by applying more 
sophisticated state saving and GVT algorithms, and the runtime system can be improved, examination 
of Table 7, which contains runtimes of the ISCAS circuits using the commercial Vantage serial simulator 
suggests that there has to be a fundamental shift in the approach to parallel VHDL simulation.
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