
February 1996 U ILU -EN G -96-2204
CRHC-96-04

Center for Reliable and High Performance Computing

Design and Implementation
of Actor Based Parallel VHDL Simulator

V. Krishnaswamy and P. Banerjee

Coordinated Science Laboratory College of Engineering
UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN
Approved for Public Release. Distribution Unlimited.

UNCLASSIFIED________
SECURITY CLASSIFICATION ÒF tw S PAGE

REPORT DOCUMENTATION PAGE
la . REPORT SECURITY CLASSIFICATION 1b. RESTRICTIVE MARKINGS

U n c l a s s i f i e d N one
2a. SECURITY CLASSIFICATION AUTHORITY 3. DISTRIBUTION/AVAILABILITY OF REPORT

A p p ro v e d f o r p u b l i c r e l e a s e ;
d i s t r i b u t i o n u n l i m i t e d2b. DECLASSIFICATION /DOWNGRADING SCHEDULE

4. PERFORMING ORGANIZATION REPORT NUMBER(S) 5. MONITORING ORGANIZATION REPORT NUMBER(S)

UILU-ENG-96-220^rhc- 96-04 .
.

6a . NAME OF PERFORMING ORGANIZATION
C o o r d in a t e d S c ie n c e L a b

U n i v e r s i t y o f I l l i n o i s

6b . OFFICE SYMBOL
(If applicable)

N / A

7a. NAMEAg£^lONITORING ORGANIZATION

Semiconductor Research Corporation National Science Foundation
6c ADDRESS (Oty, State, and ZIP Code)

1 1 0 1 W. S p r i n g f i e l d A v e n u e

U r b a n a , I L 61801

7b. ADDRESS (Oty, State, and ZIP Code)Research Triangle Park, NC 27709
Research Triangle Park, NC 27709
•Washington, DC ‘ I

8a. NAME OF FUNDING/SPONSORING
ORGANIZATION

7a
8b. OFFICE SYMBOL

(If applicable)
9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER

8c ADDRESS (City, State, and ZIP Code) 10. SOURCE OF FUNDING NUMBERS

7b
PROGRAM
ELEMENT NO.

PROJECT
NO.

TASK
NO.

WORK UNIT
ACCESSION NO.

11. TITLE (Include Security Classification)

Design and Implementation of Actor Based Parallel VHDL Simulator

,2- PE?!0m œ 5 § W and P. Banerjee
13a. TYPE OF REPORT 13b. TIME COVERED 14. DATE OF REPORT (Year, Month, Day) 15. PAGE COUNT

Technical FROM TO February 1996 36
16. SUPPLEMENTARY NOTATION

17. COSATI CODES 18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number)
FIELD GROUP SUB-GROUP VHDL, Parallel Discrete Event Simulation, Time Warp

Systems

19. ABSTRACT (Continue on reverse if necessary and identify by block number)

One of the methods used to reduce the time spent simulating VHDL designs
is by parallelizing the simulation. In this paper, we describe the
implementation of an object-oriented Time Warp simulator for VHDL on an
actor based environment. The actor model of computation allows the
exploitation of fine grained parallelism in a truly asynchronous manner
and allows for the overlap of computation with communication. Some
preliminary results obtained by simulating a set of multipliers and some
ISCAS benchmark circuits are provided. In addition, the importance of
placing processes based on circuit partitioning techniques for improving
runtimes and scalability is demonstrated. Results are reported on a
SPARCServer 1000 and an Intel Paragon.

Sun

20. DISTRIBUTION/AVAILABILITY OF ABSTRACT
SUNCLASSIFIED/UNLIM ITED □ SAME AS RPT. □ DTIC USERS

21. ABSTRACT SECURITY CLASSIFICATION

U n c l a s s i f i e d
22a. NAME OF RESPONSIBLE INDIVIDUAL 22b. TELEPHONE (Include A re a Code) 22c. OFFICE SYMBOL

D D F O R M 1473, 84 MAR 83 APR edition may be used until exhausted. SECURITY CLASSIFICATION OF THIS PAGE
All other editions are obsolete. UNCLASSIFIED

UNCLASSIFIED_____________
SECURITY CLASSIFICATION OF THIS FASE

UNCLASSIFIED____________
S E C U R I T Y C L A S S IF I C A T IO N O F T H IS P A G E

Design and Implementation of an Actor Based Parallel
VHDL Simulator 1

V. Krishnaswamy P. Banerjee
462 CSRL 1308 W. Main 469 CSRL 1308 W. Main

Urbana IL 61801 Urbana IL 61801
phone: 217 333 4767 FAX: 217 333 1910 phone: 217 333 6564 FAX: 217 333 1910

email: venkat@crhc.uiuc.edu email: banerjee@crhc.uiuc.edu

^ h is research was supported in part by the National Science Foundation under grant MIP-9320854, the Semi
conductor Research Corporation under grant SRC 95-DP-109, and the Advanced Research Projects Agency under
contract DAA-H04-94-G-0273 administered by the Army Research Office. We would also like to thank Intel Corpo
ration for the donation of an Intel Paragon to the University of Illinois.

mailto:venkat@crhc.uiuc.edu
mailto:banerjee@crhc.uiuc.edu

Abstract

One of the methods used to reduce the time spent simulating VHDL designs is by parallelizing the simulation.
In this paper, we describe the implementation of an object-oriented Time Warp simulator for VHDL on an
actor based environment. The actor model of computation allows the exploitation of fine grained parallelism
in a truly asynchronous manner and allows for the overlap of computation with communication. Some
preliminary results obtained by simulating a set of multipliers and some ISCAS benchmark circuits are
provided. In addition, the importance of placing processes based on circuit partitioning techniques for
improving runtimes and scalability is demonstrated. Results are reported on a Sun SPARCServer 1000 and
an Intel Paragon.

Keywords: VHDL, Parallel Discrete Event Simulation, Time Warp systems.

1 Introduction
The design of a digital VLSI system commonly begins with a description of the system being written in a
Hardware Description Language, an example of which is VHDL [12]. Subsequent to verifying the functionality
of the description, it is given to a system to perform synthesis at varying levels of abstraction, beginningi
with architectural synthesis and ending with layout synthesis.

Verification of the functionality of the description can either be done by formal techniques, or by simu
lation. The latter method is more widely in use. Large amounts of time are spent simulating modern HDL
descriptions and parallel processing is an attractive approach to reduce the runtimes. Parallel simulation of
digital systems is appropriate due to the increased parallelism available in modern pipelined designs.

VHDL has been designed for documentation and simulation of digital systems. Digital systems may
either be described behaviorally or structurally in terms of components and their connectivity. Hierarchical
descriptions may be flattened out to a set of equivalent processes which may execute in parallel. Execution
within a process is serial.

This report describes the design and implementation of properVHDL, a parallel discrete event simulation
system for VHDL, The simulator has been implemented on top of the ProperCAD H libraries [18] for pro
viding an actor based [1] model for concurrent object oriented programming. The level of granularity of
parallelism in properVHDL is the VHDL process statement. Equivalently, there is a separate actor corre
sponding to each process statement in the user’s VHDL source code. The synchronization mechanism chosen
for the parallel discrete event simulator is Jefferson’s [14] Time Warp system for optimistic synchronization.
Each actor is a Logical Process or LP as defined by Jefferson in his paper.

The actor model of computation allows the exploitation of fine grained parallelism in a truly asynchronous
manner and allows for the overlap of computation with communication. It is appropriate to implement a
VHDL simulator in the context of an environment which provides support for fine grained parallelism because
the amount of computation typically carried out in a VHDL process is typically small.

The entire properVHDL system comprises a VHDL front end analyzer which parses the user’s source

1

VHDL into an abstract syntax tree form. This is used as an input to a code generator which produces a
translation of the VHDL into C++. Each process is translated into a separate class, for which both .H and
.C files are generated. The constructor of each such process contains data structures defining the signals
and variables visible to the process statement. The translation of the process statement part is found in
the executeProcess method of each of the generated classes. See Figure 1 for a .pictorial depiction of the
translation process. Wait statements, signal assignments and variable assignments are performed by making
calls to methods in the VHDL Actor class which is the base class for each of the generated classes. The
derivation structure will be defined in greater detail in forthcoming sections.

As has been alluded to in the preceding paragraph, there exists a simulation kernel, which provides
methods for performing actions such as signal assignments, wait statements, and variable assignments. This
also provides the base class for each of the generated classes. In addition, all actions required for performing
the parallel discrete event simulation are carried out by the kernel. These include extraction of events from
the event list, state saving, handling of rollback, and performance of GVT calculations upon arrival of such
a request.

This report is organized as follows. Section 2 briefly mentions some related work. A description of the
simulation kernel appears in Section 3. The User Interface class is described in Section 4, followed by the
VHDLActor class in Section 5. The implementation of the GVT algorithm used in the simulator is discussed
in Section 6. Some issues regarding File I/O appear in Section 7. Section 8 deals with compilation and code
generation. Finally, we report experimental results and provide our observations on these in Section 9.

2 R elated Work
In this section, we mention some work in the area of parallel VHDL simulation, and environments for parallel
simulation. Jade Simulations International Corporation [13] have described a Time Warp based VHDL
simulator. It is implemented on top of the Sim++ simulation system that is a C++ runtime environment for
distributed simulation using Time Warp. However, no experimental results have been reported. Wilsey and

2

User VHDL

a : process

b : process

c: process

VHDL front end parser and code generator

class a : public VHDLActor{
a();
-a () ;
void executeProcess() ;} ;

class b : public VHDLActor{
b<> ;
-b () ;
void executeProcess();) ;

class c : public VHDLActor{
c l) ;
-c () ;
void executeProcess();>;

Figure 1: Processes in User VHDL are translated into classes derived from the kernel VHDLActor class.

3

McBrayer use the QUEST VHDL simulator based on Time Warp to investigate combination of processes
to increase the computation grainsize [17]. Willis and Siewiorek mention the Auriga system in [25], which
is mostly concerned with techniques for optimizing VHDL compilation for parallel simulation. While they
report numbers reflecting their compilation techniques, actual simulation runtimes are not provided. Kapp
et. al. [15] have built a conservatively synchronized VHDL simulator based on the Chandy-Misra [7]
algorithm. Vellandi and Lightner [22] describe a SIMD algorithm for parallel VHDL simulation and use
compilation techniques for extracting parallelism from the source VHDL description. Wen and Yelick [23]
use a library based runtime system to construct a parallel circuit simulator. Bagrodia et. al. have written
the Maisie language for describing parallel simulations [3] and this has been used to implement a gate level
logic simulator described by Cong et. al. in [9]. There has been a great deal of related work in parallel logic
simulation, which has been surveyed by Bailey, Briner and Chamberlain in [4]. Much of the preliminary
work in parallel logic simulation and its parallelization using asynchronous algorithms was first reported by
Soule [21].

3 Sim ulation Kernel
The simulation kernel provides the means for the execution of the simulation cycle as defined by the VHDL
LRM [12]. Hence, the methods for extraction of events from the event queue, advancement of simulation
time, insertion of events in the queue, and maintenance of the sensitivity lists are members of the kernel. In
addition, data structures and methods for performing Time Warp activities, such as state saving, rollback
and GVT computation are also members of the kernel.

3.1 VHDL Time Warp simulation in the context of Actor Model
In this section, the mapping of the VHDL Time Warp simulation onto the Actor Model of concurrent
computation [1] is described. The kernel methods and data structures referred to above are provided within
the VHDLActor class. The VHDLActor actor class is itself derived from the pcActor class. There is, therefore,

4

one VHDLActor class for each process in the source VHDL. In other words, each process in the source
VHDL is represented by an actor.

The VHDLActor class has a virtual method called executeProcess. Each process in the source VHDL is
translated into a class derived from VHDLActor. The executeProcess method in each of the derived classes
is a translation of the actions comprising the corresponding process. The invocation of executeProcess is
dependent upon whether or not a change has occurred in the sensitivity list of the process.

Logical Processes in Time Warp communicate by means of exchanging messages. The pure actor model
does not support the simple transfer of messages between communicating LP’s. It is therefore necessary
to communicate by calling continuations on the destination LP’s. A continuation may be looked upon
as a function pointer. Communication between the actors, which are the LP’s, is performed by calling
continuations upon one another. Continuations are called with arguments, and messages are exchanged
between actors in this way.

Since continuations are similar to function pointers in a global namespace, it is necessary to know the
names of the actors in order to ensure that the continuation is called on the correct actor. The code which
involves sending of messages is in the methods of VHDLActor which is the base class for all the actors.
The actual actors which are started up are the classes generated by the VHDL front end. It is therefore,
impossible for the VHDLActor class to know the names of all the actors to which continuations are sent.
This problem is tackled by generating a file which is essentially a table of all continuations, which can be
indexed by a unique integer identifier given to each actor upon start up. Furthermore, this table is visible
to each actor, and appropriate continuations are called by looking up the table. The actual implementation
is described in a later section.

As of now, a centralized GVT management algorithm, Samadi’s algorithm [20] is being used. This
algorithm presumes the existence of a central GVT manager which is responsible for broadcasting GVT
computation requests, receiving responses, computing and broadcasting GVT periodically. This functionality
has been encoded in the U serlnterf ace class. Figure 2 shows some of the interactions which occur between
LP’s in terms of the continuations invoked upon one another.

5

4 The U serlnterface
The main program creates the U serlnterf ace actor. The first task incumbent upon the U serln terf ace
actor is to start up the simulation by creating actors of the types of each of the derived classes. It must then
build the continuation table (see above) and make this visible to all actors. After the simulation is started
up, the U serln terf ace maintains the GVT, in the case of centralized GVT algorithms.

4.1 Starting up the Simulation
The first action undertaken by the Userlnterface is the invocation of the ForkSimActors method. Since the
names and types of the actors are dependent upon the source VHDL, this method is generated automatically
by the VHDL front end in a separate file. Figure 3 shows an example of this method.

The execution of the initial lines results in the creation of each of the actors in the simulation. Upon
creation, each actor invokes a method in the Userlnterface to signify its successful creation. The following
lines are the building of the continuation table.

4.2 The Continuation Table
The exact nature of the continuation table, in terms of the size of the array is only known at compile time.
Hence, this information is also generated automatically by the front end, in the form of the CTableData
class. This forms the base class for the CTable class which contains methods for accessing the continuations.
An example of the CTableData class is show in Figure 4.

An instantiation of the CTable class is a member of the Userlnterface actor. This is the object which
is shown being initialized in Figure 3. As soon as this initialization is completed, an aggregate [8, 18] is
created, with the continuation table as a data member. As soon as the Userlnterface knows that all actors
have been successfully created, it creates the Continuation Table aggregate, with a representative on each
processor. Once this has been created, the initSim actor on each of the VHDLActors is invoked with the
name of the Continuation Table aggregate. This makes the continuation table visible to each of the actors

7

void
UserInterface::forkSimActors()
{

ackActors:: Customer report(*this);

pcActorName<LOAD> Al = pcActorName<LOAD>::newName();
LOAD::New Actor1(report);
Actorl(Al);
pcActorName<STORE> A2 = pcActorName<STORE>::newName();
STORE::New Actor2(report);
Actor2(A2);

numberProcesses = 2;

Continuât ionTable. niimberOf Rows = numberProcesses;

ContinuâtionTable.initSimCustomer[0] =
LOAD::initActor:¡Customer((pcActorName<VHDLActor>&)A1);

ContinuâtionTable.acceptTransCustomer[0] =
LOAD::acceptTransaction:¡Customer((pcActorName<VHDLActor>&)A1);

ContinuâtionTable.SimCycleCustomer[0] =
LOAD::SimCycle:¡Customer ((pcActorName<VHDLActor>&)A1);

ContinuâtionTable.acceptNegCustomer[0] =
LOAD::acceptNegMsg:¡Customer ((pcActorName<VHDLActor>&)A1);

ContinuationTable.computeGVTCustomer[0] =
LOAD::computeGVT:¡Customer ((pcActorName<VHDLActor>&)Al) ;

ContinuationTable.acceptNGVTCustomer[0] =
LOAD::acceptNewGVT:¡Customer((pcActorName<VHDLActor>&)A1);

ContinuâtionTable.initSimCustomer[1] =
STORE::initActor::Customer ((pcActorName<VHDLActor>&)A2) ;

ContinuationTable.acceptTransCustomer[1] =
STORE: : acceptTransaction:¡Customer ((pcActorName<VHDLActor>&)A2);

ContinuationTable.SimCycleCustomer[1] =
STORE::SimCycle:¡Customer ((pcActorName<VHDLActor>&)A2);

ContinuationTable.acceptNegCustomer[1] =
STORE::acceptNegMsg:¡Customer ((pcActorName<VHDLActor>&)A2);

ContinuationTable.computeGVTCustomer[1] =
STORE::computeGVT:¡Customer ((pcActorName<VHDLActor>&)A2);

ContinuationTable.acceptNGVTCustomer[1] =
STORE:¡acceptNewGVT:¡Customer((pcActorName<VHDLActor>&)A2) ;

Figure 3: The ForkSimActors method.

8

class CTableData{
public:

pcCustomer<pcAggregateName<CTableAggregate» initSimCustomer [2];
pcCustomer<TransMsg> acceptTransCustomer[2] ;
pcCustomerVoid SimCycleCustomer[2];
pcCustomer<TransMsg> acceptNegCustomer[2];
pcCustomer<StartGVT> computeGVTCustomer [2];
pcCustomer<Hntegral<int>> acceptNGVTCustomer [2] ;
CTableDataOO
~CTableData(){}

Figure 4: The CTableData c lass - the array limits are determined only at compile time

in the simulation.

4.3 GVT computation methods
The User In terface class is provided with methods for computation of GVT. Currently Samadi’s algorithm
for GVT computation is used. The i n i t i â t eGVT method invokes the computeGVT method on each of the
VHDLActors. These respond by invoking the computeGVT actor method in the Userlnterface, which actually
computes and broadcasts the new GVT.

5 VH DLActor and its M ethods
VHDLActor is derived from pcActor and is the base class for all the generated classes. It contains methods
and data structures for executing the VHDL simulation cycle, as well as carrying out the actions necessary
for Time Warp simulation such as state saving and rollback recovery.

Figure 5 shows the Time Warp related data structures required by a Logical Process. Each VHDLAc
tor has a QMgr class, whose responsibility it is to handle the input and output queues. There is also a
currentS tate data structure, a stateQueue, the current LVT, Now, and the current GVT. The data type of
the last two are Time which is a dual comprising the time in femtoseconds and an integer sequence number,
to distinguish events occurring at the same time epoch, but different simulation cycles.

9

State Queue

Figure 5: Data Structures internal to a Logical Process.

The initial sections of this section describe in detail, the TimeWarp related data structures and their
implementation as members of the VHDLActor class. Later sections briefly describe some of the VHDL
related activities, and the implementation of the simulation cycle.

5.1 The QMgr class
The QMgr class deals with the creation and maintenance of the input and output queues. Since both input
and output queues contain transactions, or time stamped event messages, the Transaction class is the base
class for all the queues. The functionality of timestamp order insertion and maintenance of transaction is
handled within the TransactionQ class.

The input queue contains input transactions to the LP which have yet to be executed. The output
queue contains executed transactions from the input queue which resulted in messages being sent to other
processes, to enable sending antimessages in case of rollback.

10

Q M gr

T ran saction Q internallnputQ ;

T ran saction Q externalln putQ ;

T ran saction Q outputQ ;

Figure 6: Data Structures in the QMgr class.

In our case, there are two sources of input transactions. The first possibility is the arrival of transactions
from other LP’s in the simulation. The second source is the execution of signal assignment statements in
the process itself.1

To preserve the causal semantics of discrete event simulation, and to provide a means for in e r t ia l
and transpo rt delays on signal assignments, it is necessary to carry out forward and backward preemption
on events created by the execution of signal assignments [2]. In order to easily implement this, the QMgr
has two TransactionQ objects, internallnputQ and externallnputQ. As the names indicate, the former
deals with internally generated transactions while the latter accepts transactions from other LP’s. The third
TransactionQ is the outputQ. Figure 6 shows a pictorial depiction of the QMgr class.

*Wait statem ents are also implemented as the insertion of events in the input queue, but these do not result in the sending
of m essages to other processes as wait statem ents, unlike signal assignments are local, and do not fanout.

11

Insertion of transactions into the in te rn a l Input Q is followed by marking, which is the VHDL LRM
terminology for forward and backward preemption. Insertion of transactions into the external Input Q
must take the sign2 into account. It should be noted that an antimessage can never be inserted into the
in t ernalInput Q.

The outputQ has been implemented such that both a message and its antimessage can simultaneously
exist. This is an artifact of the current implementation of Samadi’s algorithm. This done, so that it is
possible to correctly account for acknowledgements from the message and its antimessage, if it becomes
necessary to send out the antimessage. When a decision is taken to rollback, and antimessages to a message
are sent, a transaction of opposite sign is created and inserted in the outputQ. In this way, it is possible to
account for arriving acknowledgements easily. When a GVT algorithm which utilizes sequence numbers is
implemented, it will be possible to do away with this creation of extra transactions.

5.2 The stateQueue
This is a simple doubly linked list of the state data structure. In the current implementation, state is saved
with the occurrence of each event. However, as soon as a coastForward method is written, it will be easy
to incorporate periodic state saving. The arrival of a new GVT causes fossil collection of the stateQueue
whereas the arrival of a straggler results in rollback, and the restoration of an older state from the stateQueue
as the current state.

5.3 ActorM ethods dealing with receiving messages
This section describes some methods written for receiving messages from other LP’s in the simulation.

5.3.1 acceptTransaction

This Actor Method is called by other LP’s when they require to send a transaction. The transaction is a
member of the arguments to acceptTransaction. The transaction is inserted into the externallnternalQ

2whether a positive or antimessage

12

member of the QMgr object. In addition, the acknowledgement to the Transaction is sent by invoking the
continuation sent as an argument to the method. The acceptTransaction method also detects whether the
arriving transaction is a straggler, and calls a rollbackHandler method, if such should be the case.

5.3.2 acceptNegMsg

This is exactly identical to acceptTransaction, except that it handles the receipt of antimessages. Again,
insertion is into the external Input Q , and rollback detection and recovery management is performed as
before.

5.3.3 computeGVT

This ActorMethod is called by the central GVT manager, (in this case, the User Interface. Methods are
invoked to calculate the minimum message in transit. The GVT is then calculated as explained in a later
section, and the continuation in the User Interface is called with the locally determined minimum.

The ActorMethods acceptNewGVT and acceptAckMsg are used for receiving newly calculated values of
GVT and acknowledgement messages respectively. They are simple in their functionality and implementation
and are not further described in this document.

5.3.4 Implementation of Wait Statement

A wait statement could come with any combination of none or all of a sensitivity clause, a condition clause
and a timeout clause. A Wait data structure has been defined, to implement each of the wait statements
appearing in a process statement. The fields in this data structure include an integer id to distinguish waits
in a given process and an integer type field. The types of waits are enumerated as shown in Figure 7.

A wait statement which looks like wait; is recognized to be of type 0 since there is no accompanying
sensitivity clause, condition clause or timeout clause. According to the LRM the timeout clause, simply
specifies the latest time at which the process must resume. In other words if a change occurs in a member of
an accompanying sensitivity clause or a specified condition evaluates to TRUE before the timeout expires,

13

sens .list cond.clause timeout
0 0 0
0 0 1
0 1 0
0 1 1
1 0 0
1 0 1
1 1 0
1 1 1

Figure 7: Enumeration of possible types of wait statements.

the process is resumed. However, a wait statement containing a condition clause cannot resume until the
condition evaluates to TRUE. Finally, a process statement with a sensitivity list is translated as a process
with a wait on the same sensitivity list as the last statement in the process.

A timeout clause is implemented as the insertion of a transaction into the event queue. The wait statement
times out when the transaction is executed. To deal with condition clauses the wait data structure contains
a pointer to a method (generated by the code generator) which evaluates the condition. Finally sensitivity
clauses are checked by looking at whether or not an event has occurred on a signal.

5.4 Implementation of the Simulation Cycle
The VHDL LRM stipulates the existence of an initialization step, during which signal and variable values
are initialized. This is carried out by the initSim actormethod which is invoked by the User In terface
with the name of the Continuation Table aggregate.

The Simulation Cycle is defined by the VHDL LRM to be as follows.

• The current time Tc is set equal to Tn. Simulation is complete when Tn = TIME’HIGH and there are
no active drivers or process resumptions at Tn.

• Each active explicit signal in the model is updated. (Events may occur on the signals as a result.)

• Each implicit signal in the model is updated. (Events may occur on the signal as a result.)

14

• For each process P, if P is currently sensitive to a signal S, and an event has occurred on S in this
simulation cycle, then P resumes.

• Each non-postponed process that has resumed in the current simulation cycle is executed until it
suspends.

• The time of the next simulation cycle, Tn, is determined by setting it to the earliest of :

- TIME’HIGH

- the next time at which a driver becomes active, or

- the next time at which a process resumes.

If Tn = Tc then the next simulation cycle (if any) will be a delta cycle.

The implementation of the above is found in the VHDLActor: :SimCycle method. Figure 8 shows a
flowchart of the activities occurring within the method.

At the beginning of the simulation cycle, the QMgr is queried for outstanding transactions awaiting
execution. This is done by searching both in te rn a l Input Q as well as external Input Q. The transaction
scheduled most immediately in the future is chosen. In case of a tie, the in te rn a l Input Q is chosen.

If a transaction exists, it is “executed”. In other words, its value is copied into the signal for which it
is intended, and the LVT is made equal to the scheduled time of the transaction. If the transaction has a
fanout, the acceptTransaction methods on all LP’s listed in the fanout list of the signal are invoked with
the transaction as an argument. If there is no transaction, LVT is made equal to p_inf in ity . This process
is repeated for all further transactions scheduled to occur at the same time.

At this point, it is worth mentioning how changes in the sensitivity list are kept track of. The S tate data
structure has a sensitive flag which is initialized to ‘off’ at the beginning of each simulation cycle. As signals
are assigned, events occurring on them are detected. If the signal is on the sensitivity list of the process,
the sensitive flag is turned on. The sensitive flag can be overriden by a higher priority flag which is set at
compile time, if the process has no sensitivity list (i.e. is always active).

15

Start

Figure 8: The VHDLActor: :SimCycle method.

16

If the process is determined to have resumed by inspection of the sensitive flag, the executeProcess 3
method is invoked.

Finally, SimCycle is reinvoked as an ActorMethod. This is done in order to allow the properCAD runtime
to schedule other actors assigned to the same processors. This prevents any one LP from advancing its virtual
time too far, thus minimizing wasted lookahead in case of a rollback.

6 Im plem entation of G VT using Sam adi’s algorithm
GVT is defined as the lowest time to which any LP in the simulation may rollback. It is therefore defined
as the minimum of all messages in transit, and the minimum LVT of executing LP’s. There are two notable
difficulties in calculating GVT [10], namely tracking messages in transit, and tackling the simultaneous
reporting problem.

Samadi’s algorithm tackles the first problem by introducing acknowledgements for every message and
antimessage in the system. It then becomes trivial to find the minimum unacknowledged message simply
by searching the output queue. The manner of implementation (placing sent messages as well as negative
messages in the output queue) restricts the search to only the outputQ. The second problem is tackled in
the following way. Whenever an LP receives a StartGVT message, it enters the find mode, and it remains in
this mode until the GVT is reported to it. Any acknowledgements sent during this time are tagged with the
fact that the LP is in find mode. The local minimum reported by each process is the minimum of

• current LVT

• minimum unacknowledged message

• minimum time of all acknowledgements tagged find

Notice that the last quantity decreases monotonically during any given GVT cycle for a particular LP.
Hence it is sufficient to maintain a running minimum which is updated by the acceptAckMsg method. The

3recall that ex ecu teP ro cess() is virtual in the VHDLActor (base) class, but is redefined in each of the derived classes.

17

running minimum is updated to p_inf in i ty when the new GVT is reported.

7 File I /O
File I/O in a Time Warp system presents some unique problems. In the case of output, rollbacks may
necessitate invalidation of previously written values. On the other hand, a line of a file may have to be read
on several occasions since rollbacks may destroy the work done with the value read on a previous occasion.
The same problems present themselves when handling exceptions in the form of the VHDL asse rt statement.
In this section, we describe how we handle File I/O in our simulator. We have used the C++ strstream
facilities in our data structures for input and output.

7.1 Input
Each VHDLActor class has data structures for handling file input. The data structures created for this purpose
are InputLine and InputLineQ. When READ or READLINE commands are detected in the source VHDL, calls
are made to the readLine and read members of VHDLActor. The former creates an inputLine if that line
has not already been read. The inputLine data structure is timestamped with the time of reading. It is
thus possible to ascertain whether a line has been read from the file into the InputLineQ or not. The read
uses the appropriate line to obtain the desired value. When the VHDLActor receives new values of GVT, the
inputLineQ is garbage collected. The code generator is responsible for generating information on whether
an object is a file reader or a file writer. It also generates code to open the appropriate input or output file.

7.2 Output
Data structures for file output are defined in a manner similar to that of file input. In this case they are
named OuputLine and OutputLineQ respectively. WRITE and WRITELINE statements in the user VHDL are
translated into calls to the write and w rite line methods of VHDLActor. These calls result in creation and
updation of OutputLine data structures. These OutputLines are enqueued, but are not committed until

18

GVT rolls past the creation time of the OutputLine. When this occurs, the lines are written out into the
files, and are then garbage collected.

8 Code Generation
In this section, we describe how we generate C++ code given a user’s source VHDL. The entire code
generation process is divided into two parts - analysis or parsing and conversion into an intermediate form,
and elaboration and code generation or conversion of the intermediate form into a simulation. The first
subsection describes the analysis phase, and the next deals with the code generation. Elaboration deals with
extraction of a netlist from a structural description.

8.1 vcomp
The VHDL front end analyzer, vcomp has been implemented using the PCCTS [19] LL(k) parser generator.
The VHDL 93 BNF provided in the VHDL LRM had to be modified to remove all the left recursive rules.
PCCTS allows varying the lookahead in terms of lexical characters. This feature proved particularly useful
in dealing with the many grammatical ambiguities of VHDL. In addition, there is support for automatic
generation of an abstract syntax tree (AST).

8.2 codegen
The C++ code generator is described in this section. The code generator uses the file containing the AST
which has been produced by vcomp. In addition the symbol tables are also accessed. Since many data
structures are common to both vcomp and codegen, the code defining these is shared between the two
applications.

In its simplest form, codegen reads in the AST from the input file and reconstructs the tree in an
internal data structure. The AST is then traversed in preorder to generate C++ code embodying the
behavior specified in the processes of the user’s VHDL. Initially only “flattened” descriptions were dealt

19

with. In other words, codegen did not deal with hierarchy in a description.
In order to deal with the suspension and resumption of execution as required by the VHDL wait construct,

in a manner explained in a forthcoming section, it was necessary to extract the control flow graph (CFG)
corresponding to each VHDL process.

8.2.1 Extraction of Control Flow

In this section, we describe the method used to extract the control flow graph from the AST. There is no
separate data structure for the nodes of the CFG. Pointers reflecting control flow are placed in the AST
nodes. The algorithm for control flow is shown below. In practice, owing to the structure of the AST, it is
necessary to treat looping constructs and conditionals slightly differently, but these details are not shown
here.

procedure extractCFGC Node)

begin

Enqueue(Node);

while(Queue has members)

BuildBB(Dequeue());

end while;

end;

procedure BuildBB(Node)

begin

while(Node is not a Leader)

add Node to the current BB;

Node <- nextNode(Node);

end while;

Enqueue (Node) ;

20

Source VHDL Generated Code

a : process
begin

code A
wait for timeout;
code B

end process;

void
ActorN: :executeProcess()
{ translate code A;

enable executeProcess 1; wait(0);}
void
ActorN:: execute Process 1 ()
{ code B;}

Figure 9: Translation of a VHDL process with a wait statement in the middle of the code

end;

8.2.2 Dealing with Suspension and Resumption

Wait statements entail suspension of a process statement until a condition is satisfied, timeout occurs, or
event 4 occurs on a signal. When'the process is ready for resumption, it must begin executing code from the
statement succeeding the wait statement. In our scenario, this means that the executeProcess() method
can potentially be suspended and resumed from an arbitrary position in the code. However, the actor model
precludes suspension and resumption of a thread from an arbitrary point within it [1].

Hence, we had to mimic this suspension and resumption by splitting up the executeProcess () method
into a set of methods with each such method ending in a wait statement after enabling the method containing
the code succeeding the wait statement, as in Figure 9. Resumption is then implemented simply by calling
the enabled method. A similar notion was first reported in [11] where issues regarding compilation of message
driven programs from conventional imperative programs were discussed.

We now consider handling wait statements appearing in a branch of the if-then-else construct. Figure
10 contains the original and transformed control flow graphs (CFG) for this case. All the code upto the
wait statement, including the if statement is placed in the method pi (code A). If the condition in the if
statement evaluates to TRUE, then the wait statement is executed after enabling method p2. When the wait

4In VHDL, an event is a change in the value of a signal. The VHDL equivalent of an event or tim estam ped message as used
in PDES term inology is transaction.

21

Originul CFC; Transformed CFG

Figure 10: Generating code for a wait statement in a conditional construct.
OriKinal CFG Tniasfortiwd C'F<!

Figure 11: Generating code for a wait statement in a looping construct.

statement is satisfied, the method p2 is enabled. On the other hand, if the condition evaluates to FALSE,
then execution of pi continues in the appropriate manner.

The case of wait statements in a loop body is shown in Figure 11. The looping condition is evaluated in
the method pi, and if the loop must be entered, then the wait statement is started after enabling p2. If the
looping condition evaluates to FALSE then the code after the loop is executed. When the wait condition is
fulfilled, the method p2 is invoked. On entry to p2, the remainder of the loop (Code C) is completed. Then
the looping condition (Code B) is reevaluated. If it is necessary to reenter the loop, the wait is executed
after enabling p2 again. If Code B evaluates to FALSE, the remainder of the program (Code D) is evaluated.

We now describe how we implemented the procedures described above. The CFG is first constructed as

22

we have described in the previous section. In our implementation we have not dealt with wait statements
in conditional statements. However, it is common in VHDL to have wait statements within while loops and
straight line code. Furthermore, it is unlikely that these cases occur in isolation in a process. Therefore, it is
necessary to determine the order in which to apply the CFG transformations described above. We perform
the while loop transform from the innermost while loop containing a wait statement and proceed outward.
We then apply the straight line transform to each of the CFG’s resulting from the previous step. After
transformation, there is a set of CFGs corresponding to each process. Code is generated by traversing the
CFGs in a modified BFS order. In order to avoid being stuck in a loop by traversing the back edge of a loop
in the CFG, it is necessary to mark nodes which have been traversed. However, in order to conserve space,
CFGs which have common nodes merely contain pointers to the same instance of the common node. Hence
the first time the node is traversed, the node is marked, making subsequent traversals of the other CFGs
which point to this node believe that the node has already been traversed. As result code for this node is not
generated. This problem is tackled by replacing the boolean flag with a counter, which is incremented with
each subsequent traversal. If this counter exceeds the index value of the CFG currently begin traversed, then
we have traversed a back edge and are getting stuck in a loop. This observation is stated without formal
proof.

8.2.3 Dealing with Hierarchy

VHDL allows both behavioral and structural descriptions. Structural descriptions rely upon instantiating
primitive components and specifying a set of signals which determine the connectivity of the components. In
order to simulate such a description, it is necessary to obtain the circuit graph wherein the nodes represent
primitive components and the edges represent nets. From the standpoint of code generation, we would like
to accomplish the following goals :

• generate the circuit graph.

23

• generate code (a class) corresponding to each primitive component, and instantiate objects of each
type corresponding to the component instantiations of the VHDL.

In order to accomplish the second goal, we must also generate a method (in itS ig n a ls) in the generated
class which will accept parameters specifying the circuit connectivity in a general way. Finally, a procedure
is generated, calling in itS ig n a l on every object with the appropriate parameters. Due to the general nature
of circuit connectivity, in itS ig n a ls must be able to accept a variable number of parameters. In Figure 12,
we include a structural architecture for the ISCAS 85 benchmark, cl7. This will serve as an example to
illustrate our point.

The figure shows instantiations of nand gates. A set of signals is declared at architecture scope, and
these are used to form the connections between the instantiated components. Notice that ultimately this
architecture will be instantiated within a test bench. Signals will be declared at that level to make connections
from the cl7_i89 entity to the file reader and file writer. The problem then is, given such a hierarchical
description, extract the circuit graph. This process is termed as elaboration.

Since a structural description presumes the existence of certain primitive components, we must analyze
these prior to analyzing the structural architecture. In codegen C++ code is generated for every behavioral
architecture analyzed. Hence, by the time the elaboration is performed the C++ classes corresponding to
the architectures which will be instantiated have already been generated.

The signals defined at each level of the hierarchy correspond to nets in the circuit graph. A net, as used
in this sense is analogous to a net in a physical circuit, wherein all the points it connects are electrically
equivalent. Hence, for every signal, codegen instantiates a Net data structure which contains a pair of
integers corresponding to the object Id and pin number of the driver of the signal, and two arrays of integers
corresponding to the object Id’s of the components which read the signal, and the pin numbers of readers.
A circuit node is instantiated when it is detected that a behavioral component has been reached in the
hierarchy. The algorithm in Figure elaborate shows this process.

The parameters to elaborate comprise a data structure containing a pointer to either a process or
component descriptor, and pointers to each of the Nets associated with the ports of the descriptor.

24

ARCHITECTURE structural OF cl7_i89 IS
signal INTERP : std_ulogic_vector(0 to 3) : = (others^’O ’) ;

BEGIN
NANDO : NANDG_N generic map (2,1 ns,l ns)

port map (
inp(0) => INP(O),
inp(l) => INPC2),
out1 => INTERP(0));

NANDI : NANDG_N generic map (2,1 ns,l ns)
port map (

inp(0) => INP(2),
inp(l) => INP(3),
out1 => INTERP(1));

NAND2 : NANDG_N generic map (2,1 ns,l ns)
port map (

inp(0) => INP(l),
inp(l) => INTERP(1),
out1 => INTERP(2));

NAND3 : NANDG.N generic map (2,1 ns,l ns)
port map (

inp(0) => INTERP(1),
inp(l) => INP(4),
ou t1 => INTERP(3));

NAND4 : NANDG_N generic map (2,1 ns,l ns)
port map (

inp(0) => INTERP(0),
inp(l) => INTERP(2),
out1 => 0UTP(0));

NAND5 : NANDG_N generic map (2,1 ns,l ns)
port map (

inp(0) => INTERP(2),
inp(l) => INTERP(3),
out 1 => OUTP(1));

END structural ;

Figure 12: Structural architecture for cl7

25

procedure elaborate(params P)
begin

foreach signal in P
create a Net;

end for;

if P contains a behavioral architecture then
create a CktNode;
update each Net in P with object and pin Ids;

else
foreach component instantiated in P

create params with the associated component and Nets;
elaborate(params);

end for;
endif;

end;

Figure 13: The elaborate procedure

9 Experim ental R esults and Observations
Our initial experience was with a pair of array multipliers - an 8x8 bit array multiplier (with 71 VHDL
processes) and a 16x16 bit array multiplier (with 271 processes). Each description is fed an input vector file
of 100 vectors. These multipliers are extensions of the 4x4 bit array multiplier reported in [24]. A diagram
of such a multiplier is shown in Figure 14.

The ProperCAD II runtime system assigns actors randomly to processors. 5 unless otherwise advised.
On a bus based symmetric shared memory machine (such as the Sparcserver 1000), the default random
assignment of actors does not make too much of a difference, owing to the low communication cost. On the
other hand, on a true distributed memory machine such as the Intel Paragon, placement of actors without
attempting to localize communication in some manner can have impact the performance heavily.

The simulations were run on a shared memory multiprocessor (8 processor SUN SPARCServer 1000)
and a distributed memory machine (20 node Intel Paragon). Our initial experiments are shown in Tables
1 and 2 . The numbers show that on the SPARCserver, the runtimes scale well with increasing number of

5actually the actors are assigned to processes, but we’ll assume that th ey’re equivalent. Note that this is not necessarily true
on Unix SM P ’s where the OS decides whether or not each process is assigned to a different processor.

26

X<3> X<2> X<1> X<0>

Y<0>

Y<1>

Y<2>

Y<3>

P<6> P<5>

Figure 14: 4x4 bit array multiplier

Table 1: Runtimes in seconds with default actor placement on SPARCServer 1000
circuit 1 proc 2 procs 4 procs 8 procs
8x8 11.3 6.1 3.9 5.3
16x16 48.6 25.6 16.2 15.2

Table 2: Runtimes in seconds with default actor placement on Intel Paragon
circuit 1 proc 2 procs 4 procs 8 procs 16 procs
8x8 10.6 10.3 8.6 7.2 -
16x16 411.9 440.1 31.22 20.1 14.1

27

16
ideal

S P A R C S erver
Paragon

Q. 10 *

6 8 10 12 14 16
P rocessors

Figure 15: Speedups on the 8x8 multiplier

Figure 16: Speedups on the 16x16 multiplier. The seemingly superlinear speedups on the paragon are due
to memory effects.

processors upto 4 processors and then a deterioration occurs. On the Paragon, however, the runtimes scale
poorly upon increasing the number of processors. Figures 15 and 16 show plots of the speedups obtained
from the runtimes shown in Tables 1 and 2.

The ProperCAD II runtime environment assigns actors to processes randomly. It starts up the simulation
using the desired number of heavyweight processes, but assignment of actors to these processes is entirely
random. To gain speedups especially on distributed memory machines, it is essential to place actors in
such a way that communication is kept as local as possible. Random assignment of actors will therefore
not optimize the communication. Hence, our next step was to apply strings based partitioning [16] to the

28

Figure 17: 4x4 bit array multiplier partitioned to run on 4 processors

multipliers. This yielded the partition shown in Figure 17. The partitioning strategy also attempts to take
care of load balance by assigning approximately equal numbers of actors to each partition. In this case, the
actors have approximately equal computational grain size. We therefore did not assign weights (reflecting
the computational grain size) to each of the actors prior to partitioning. In descriptions having actors of
varying grain size, it will be necessary to do so, in order to obtain a reasonably balanced partition.

The results obtained with partitioning applied are shown in Tables 3 and 4. Clearly, placement of actors

Table 3: Runtimes in seconds with circuit partitioned actor placement on SPARCServerlOOO
circuit 1 proc 2 procs 4 procs 8 procs
8x8 12.8 6.1 3.9 2.93
16x16 48.7 24.8 14.1 8.8

Table 4: Runtimes in seconds with circuit partitioned actor placement on Intel Paragon
circuit 1 proc 2 procs 4 procs 8 procs 16 procs
8x8 11.1 9.8 7.7 6.4 -
16x16 411.7 289.2 17.4 12.7 10.4

29

16

2 4 6 8 10 12 14 16
P rocessors

Figure 18: Speedups on the partitioned 8x8 multiplier

Figure 19: Speedups on the partitioned 16x16 multiplier. The seemingly superlinear speedups on the paragon
are due to memory effects.

based on a circuit partitioning strategy improves the scalability of the simulation i.e. the overhead of com
munication does overcome the benefits of utilizing additional processors. Furthermore, since communication
is localized, the number of rollbacks in the simulation decreases, leading to the improvements seen in the
results. This corresponds to the result obtained by Cong et.al. [9], wherein a good partitioning leads to less
blocking in a conservatively synchronized simulator. Figures 18 and 19 show speedups calculated from the
runtimes shown in Tables 3 and 4.

It should be noticed that for the 16x16 multiplier, when 1 and 2 processors are used, the simulation is
thrashing badly, but that the partitioning is able to produce a good result for 2 processors in spite of this.

30

Table 5: Runtimes in seconds for ISCAS benchmarks executing on SPARCserver.
circuit #actors 1 proc 2 proc 4 proc 8 proc
cl7 7 250.8 145.6 72.8 109.3
c432 162 356.6 258.3 121.3 102.4
c499 204 637.63 310.7 188.3 -
s298 135 28.8 12.85 8.11 5.8
s344 177 52.55 40.58 14.84 10.03

Table 6: Runtimes in seconds for ISCAS benchmarks executing on Paragon
circuit #actors 1 proc 2 proc 4 proc 8 proc 16 proc
c432 162 - 582.747 - 24.92 20.81
c499 204 - - - - -

s298 135 - - - - -
s344 177 - - - - -

Using a larger number of processors relieves the thrashing problem.
In addition to the two circuits above, we have simulated some of the ISCAS [6, 5] set of benchmarks,

described in structural VHDL style. The runtimes for these simulations can be seen in Tables 5 and 6. We
had serious difficulties with memory management in simulating these benchmarks. These stemmed from
two reasons. The first is the fact that Time Warp is inherently space intensive. The second and more
uncontrollable reason was the behavior of the message queue management system of ProperCAD II . Under
heavy message traffic, the space the runtime system continues doubling the length of the message system.
The processes performing file I/O add a significant amount of message traffic. As a result, our results are
biased by memory effects. In fact, it was difficult to run even small benchmarks on the Intel Paragon which
has only 16M of memory per node.

Table 7: Runtime in seconds for ISCAS benchmarks on Vantage executing on a Sun 4 architecture
circuit time # vectors
c432 1.38 102
c499 1.3 100
s298 1.36 100
s344 0.95 100

31

We can see that there is a fair amount of parallelism to be exploited even in small circuits. Even cl7
showed parallelism upto 4. The others all improved with increasing numbers of processors. However, the
memory usage is unacceptably high. c499 could not be simulated on 8 processors due to excessive memory
demands. While the memory demands due to Time Warp may be improved somewhat by applying more
sophisticated state saving and GVT algorithms, and the runtime system can be improved, examination
of Table 7, which contains runtimes of the ISCAS circuits using the commercial Vantage serial simulator
suggests that there has to be a fundamental shift in the approach to parallel VHDL simulation.

References
[1] G. A. Agha. Actors: A Model of Concurrent Computation in Distributed Systems. The MIT Press,

1986.

[2] Larry M. Augustin, David C. Luckham, Benoit A. Gennart, Youm Huh, and Alec G. Stanculescu.
Hardware Design and Simulation in VAL/VHDL. Kluwer Academic Publishers, 1991.

[3] R. Bagrodia and W. Liao. A language for design of efficient discrete event simulations. IEEE Transac
tions on Software Engineering, March 1994.

[4] Mary L. Bailey, Jack V. Briner, and Roger D Chamberlain. Parallel logic simulation of VLSI systems.
ACM Computing Surveys, 26(3):255-294, Sept. 1994.

[5] F. Brglez, D. Bryan, and K. Kozminski. Combinational Profiles of Sequential Benchmark Circuits.
IEEE Inti. Symp. on Circuits and Systems, pages 1929-1934, May 1989.

[6] F. Brglez and H. Fujiwara. A Neutral Netlist of 10 Combinational Benchmark Circuits and a Target
Translator in Fortran. IEEE Inti. Symp. on Circuits and Systems, 3(3), June 1985.

[7] K. M. Chandy and J. Misra. Asynchronous distributed simulation via a sequence of parallel computa
tions. Communications of the ACM, 24(11):198 - 206, April 1981.

32

[8] A. A. Chien. Concurrent Aggregates: Supporting Modularity in Massively Parallel Programs. The MIT
Press, 1993.

[9] Jason Cong, Zheng Li, and Rajive Bagrodia. Acyclic multiway partitioning of boolean networks. In
31st ACM/IEEE Design Automation Conference, pages 670 - 675, June 1994.

[10] Richard M Fujimoto. Optimistic approaches to parallel discrete event simulation. Transactions of SCS,
7(3):153 - 191, June 1990.

[11] J G Holm, A Lain, and P Banerjee. Compilation of scientific programs into multithreaded and message
driven computation. In Proceedings of the 1994 Scalable High Performance Computing Conference,
pages 518-525, Knoxville, TN, May 1994.

[12] IEEE, New York, NY. IEEE Standard VHDL Language Reference Manual, 1988.

[13] Jade Simulations Int. Co. Implementation issues of Jade’s VHDL simulator. Technical report, Calgary,
Alberta, Canada, 1989.

[14] David Jefferson. Virtual time. ACM Transactions on Programming Languages and Systems, 7(3):404-
425, 1985.

[15] Kevin L. Kapp, Thomas C. Hartrum, and Tom S. Wailes. An improved cost function for static par
titioning of parallel circuit simulations using a conservative synchronization protocol. In Proc. of 9th
Workshop on Parallel and Distributed Simulation, pages 78 - 85, June 1995.

[16] Y.H. Levendel, P.R. Menon, and S.H. Patel. Special purpose computer for logic simulation using
distributed processing. Bell System Tech. J., 61(10):2873-2910, Dec. 1982.

[17] Timothy J. McBrayer and Philip A. Wilsey. Process combination to increase event granularity in parallel
logic simulation. In Proceedings of Int. Parallel Processing Symposium, April 1995.

33

[18] Steven Parkes, John A. Chandy, and Prithviraj Banerjee. A library based approach to portable, par
allel, object-oriented programming: Interface, implementation and application. In Supercomputing ’94,
November 1994.

[19] T. J. Parr and R. W. Quong. ANTLR: A predicated-LL(k) parser generator. Software, Practice and
Experience, 25(7):789, July 1995.

[20] B. Samadi. Distributed Simulation, Algorithms and Performance Analysis. PhD thesis, UCLA, 1985.

[21] Larry Soule and T. Blank. Parallel logic simulation on general purpose machines. In Proc. 26th Descign
Automation Conf., pages 81-86, June 1989.

[22] B. Vellandi and M. Lightner. Parallelism extraction and program restructuring of VHDL for parallel
simulation. In Proc. European Design Automation Conf. (EDAC-93), March 1993.

[23] Chih-Po Wen and Katherine Yelick. Portable runtime support for asynchrnous simulation. In Proc. of
the 1995 Int. Conf. on Parallel Processing, volume 2, pages 11-196 - 11-204. The Pennsylvania State
University, 1995.

[24] Neil Weste and Kamran Eshraghian. Principles of CMOS VLSI Design. Addison Wesley Publishing
Company, 1992.

[25] John C. Willis and Daniel P. Siewiorek. Optimizing VHDL compilation for parallel simulation. IEEE
Design and Test of Computers, pages 42 - 53, September 1992.

34

