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PLANE-SWEEP ALGORITHMS FOR INTERSECTING GEOMETRIC FIGURES

J . N ievergelt and F. P. Preparata

A bstract

We con sider various types o f  geom etric fig u re s  in  the plane defined  

by points connected by s tra ig h t lin e  segments, such as polygons (not 

n e ce ssa r ily  sim ple) and maps (embedded planar graphs); and the problem 

o f  computing the in te r s e c t io n  o f  such fig u res  by means o f  a "greedy" 

type o f  algorithm  that sweeps the plane u n id ir e c t io n a lly . Let n be the

to ta l  number o f  poin ts o f  a l l  the fig u res  in v o lved , and s the t o ta l  number

o f  in te rse c t io n s  o f  lin e  segments. We show that in  the general case (no 

con vex ity ) a p rev iou s ly  known algorithm  can be extended to compute in  time

O ((n +s)logn ) and space 0 (n+s) a l l  the connected regions in to  which the

plane is  d iv ided  by in te rse c t in g  the f ig u r e s . When the regions o f  each 

figu re  are convex, the same can be achieved in  time O(nlogn+s) and space 

0 ( n ) .
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1. INTRODUCTION

One type o f  algorithm  that emerged from recent research  in  com putational 

plane geometry promises to be e f f i c i e n t  fo r  a l l  problems to  which i t  a p p lie s . 

I t  sweeps the plane "from  l e f t  to r ig h t " ,  advancing a " fr o n t "  or " c r o s s -  

s e c t io n "  from poin t to next p o in t . A l l  p rocessing i s  done at th is  moving 

fr o n t , w ithout any backtrack ing , w ith  a h orizon  or look-ahead o f  on ly one 

p o in t . Algorithms o f  th is  type are o fte n  c a lle d  "g re e d y ,"  in  con tra st to 

exhaustive search algorithm s that crea te  ten ta tive  p a r t ia l  re su lts  perhaps 

to be d iscarded  la te r .  An im portant issu e  in  com putational com plexity  i s  

to understand which problems can be solved  by greedy algorithm s. We 

con tr ib u te  to th is  is su e , and present two e f f i c i e n t  algorithm s fo r  problems 

that have a p p lica tion s  in  geographic data p rocessin g .

Shamos and Hoey [6 ,7 ]  presented an algorithm  th at, by sweeping the 

plane u n id ir e c t io n a lly , determines in  time O(nlogn) whether or not n l in e  

segments are fre e  o f  in te r s e c t io n s . Bentley and Ottmann [2 ] have extended 

th is  algorithm  to report a l l  s in te rse c t io n s  o f  n l in e  segments w ith in  

time 0 ( (s + n ) lo g n ) . We e laborate  on th is  type o f  a lgorithm  in  two d ir e c t io n s . 

F ir s t ,  we show th at, w ith in  the same asym ptotic e f f o r t ,  i t  can compute a l l  

connected regions in to  which the plane i s  d iv ided  by the lin e  segments, 

where each region  is  presented by a c y c l i c  l i s t  o f  a l l  i t s  boundary 

v e r t ic e s  and/or segments. Second, we show that assumptions o f  con vex ity  

a llow  one to improve these asym ptotic bounds. S p e c i f i c a l ly ,  we present an 

algorithm  that computes a l l  s in te rse c t io n s  o f  two convex maps (embedded 

planar graphs w ith convex reg ion s) w ith a t o t a l  o f  n p oin ts  in  space 0 (n) 

and time O (n logn+s), which is  optim al in  s .
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2. REGIONS FORMED BY A POLYGON

Later se ct io n s  o f  the paper w i l l  r e fe r  to severa l vers ion s  o f  the

problem o f  computing regions o f  the plane formed by embedded graphs. Here

we present in  d e ta il  the v ers ion  which is  sim plest fo r  ex p os itory  purposes:

le t  the given graph be a polygon, i . e . ,  a c lo se d  chain o f  n lin e  segments

(or e q u iv a le n tly , a c y c l i c  l i s t  o f  n p oin ts  in  the p la n e ) . The reader who

has understood how the algorithm  works in  th is  case w i l l  have no d i f f i c u l t y

in  fo llo w in g  the b r ie f  d e scr ip t io n  o f  how i t  app lies  to the in te r s e c t io n

o f  more general plane-embedded graphs.

2 .1  Statement o f  the Problem and Terminology

Given a sequence o f  n poin ts  = (x ^ ,y ^ ), i  = l , 2 , . . . , n ,  in  the plane,

a polygon w ith v e r t ic e s  is  the sequence o f  lin e  segments V1V2> V2V3 ’ --->

V V , . These n lin e  segments in  general d e fin e  s in te r s e c t io n  poin ts n 1 ------------------------ ----------
Wj = (x ^ ,y ^ ), j  = 1 , 2 , . . . , s .  When s = 0 the polygon is  c a lle d  simple and

d iv id es  the plane in to  two re g io n s , an in te rn a l bounded reg ion  R  ̂ and an
2extern a l unbounded region  Rq . In general s = 0(n ) ,  and the polygon

d iv id es  the plane in to  r+1 ^ 2 d is jo in t  reg ion s , namely the extern a l

unbounded reg ion  Rq and r simply connected in te rn a l regions R ^ , . . . ,R r

(when the polygon is  non-degenerate, r = s + 1 ) . Each reg ion  is  i t s e l f  a

polygon that has as i t s  v e r t ic e s  some subset o f  { v . , . .  . ,V ,W .,. . . ,W  } .x n i  s
The d esired  re su lt  i s  a l i s t  o f  a l l  reg ion s , where each region  is  given 

by a c y c l i c  l i s t  o f  i t s  v e r t ic e s ,  s ta rt in g  w ith the righ t-m ost v e r te x ; the 

extern a l region  in  clockw ise  ord er, the in te rn a l regions in  counterclockw ise 

ord er. Figure 1 i l lu s t r a te d  these con cep ts .
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F ig . 1. A polygon o f  5 l in e  segments and the regions i t  d e fin es

V  W l V5
Rr W i wiv3v2wi
R2 : V2V3Wl

As F ig . 1 suggests, we make ce rta in  assumptions o f  non-degeneracy, 

namely: a l l  poin ts (o r ig in a lly  given  or in te r s e c t io n )  are d i s t in c t ; a point 

l ie s  on on ly those l in e  segments on which i t  must l i e ,  and no others ( e .g . ,  

does not l i e  on V^V,.)• S ection  4 d iscu sses the m od ifica tion s  required 

to handle degenerate p ic tu re s .

The notions above are s u f f ic ie n t  to d escr ib e  the problem and i t s  

s o lu t io n . In order to d escr ib e  the algorithm  which computes the so lu t io n , 

we in troduce a u x ilia ry  concepts that r e f l e c t  the dynamic aspects -  a 

u n id ire c t io n a l sweeping o f  the plane. C a ll the o r ig in a l ly  given  points 

and the in te r s e c t io n  poin ts  simply p o in ts , P^,P2> . . . >pn+ s * sorted  in  

order o f  in creasin g  x -coord in ate*  (We assume fo r  ease o f  e x p o s it io n  that no 

two points have equal x -co o rd in a te s ; i f  P_̂  and P_̂ +  ̂ have equal x -co o rd in a te ,

I

I
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a lex icog ra p h ic  ordering on the p a ir  (x ,y )  s u ff ic e s  fo r  the fo llow in g  

d iscu ss ion  to a p p ly .) Under our assumptions o f  non-degeneracy and d is t in c t  

x -co o rd in a te s , each poin t can be c la s s i f ie d  uniquely in to  one o f  the 

fo llow in g  4 c a te g o r ie s :

-  a s ta r t  poin t O C  1

-  an end poin t )
j poin ts o r ig in a lly  given  as v e r t ic e s

-  a bend J  o f  p0 iyg0n<

-  an in te r s e c t io n  poinO O C

F ig . 2. Figure 1 r e v is it e d .  Points have been ordered according to
in creasin g  x -c o o r d in a te . Cross s e ct io n  Y conta ins one in te rv a l 
fo r  each o f  the regions Rq and R^, and two in te rv a ls  fo r  two
branches o f  R  ̂ that have s p l i t .  Oriented "rubber bands" t r a i l in g
the cross  se ct io n  Y are shown as broken l in e s .
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A cross  se ct io n  is  a v e r t ic a l  l in e  in  the plane along w ith a l l  the 

in form ation  about which lin e  segments, regions and components i t  cu ts , 

and in  what ord er. The lin e  segments cut by a cross  s e c t io n  p a r t it io n  

i t  in to  in t e r v a ls . We are mainly concerned w ith cross se ctio n s  that do 

not pass through any p o in ts ; the se t  o f  a l l  ( t o p o lo g ic a l ly  equ iva len t) 

cross  se ct io n s  that l i e  between two ad jacent poin ts  is  c a lle d  a s l i c e .

A cross  s e c t io n  that passes through (e x a c t ly )  one poin t is  c a lle d  a 

t r a n s it io n .

As the current cross  se ct io n  sweeps the f ig u r e , i t  drags along "rubber 

bands" that hug the periphery o f  reg ion s , as shown in  F ig . 2. Much o f  the 

s p e c i f ic a t io n  o f  the re g io n -fin d in g  algorithm  is  concerned w ith properly  

m aintaining these rubber bands across t r a n s it io n s .

2 .2  Data Structures Maintained by the Algorithm

The re g io n -fin d in g  algorithm  to be presented in  se ct io n  2 .3  operates 

upon three data s tru ctu re s . These are c r u c ia l  fo r  understanding the 

algorithm  as w e ll as fo r  i t s  e f f i c ie n c y .  We present these data stru ctu res 

at a f a i r ly  a b stra ct le v e l :  by p ostu la tin g  what operations must be performed 

and how much time i s  a v a ila b le  fo r  them (asym p totica lly  in  terms o f  the 

problem parameters n and s ) . We r e fe r  to standard textbooks [1 ,4 ]  fo r  

con crete  implementations that r e a liz e  the postu la ted  time bounds.

The x -s tru ctu re  X

At any moment X contains those poin ts that have been d iscovered  so fa r  

and are yet to be processed , sorted  according to in creasin g  x -c o o r d in a te . 

Points are assigned a type according to the c la s s i f i c a t io n  o f  se ct io n  2 .1 . 

The x -s tru ctu re  is  a p r io r it y  queue that must support the fo llow in g
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operations w ith in  time bound O (log  k) when i t  conta ins k e n tr ie s :

-  MIN: fin d  and remove the entry w ith minimal x -coord in a te

- INSERT: in s e r t  a new entry with given x -co o rd in a te .

Heaps or balanced trees are su ita b le  fo r  implementing p r io r i t y  queues.

I n i t ia l  con ten t: the n o r ig in a lly  given p o in ts , so rted , w ith th e ir  

c la s s i f i c a t io n .

F inal con ten t: empty.

At each tra n s it io n , the poin t which d e fin es  th is  tr a n s it io n  is  removed,

and at most two in te r s e c t io n  poin ts are in serted  in to  X. During execution

a t o ta l  o f  n+s poin ts  move through the x -s tru c tu re , hence the maximal
2number o f  e n tr ies  at any given time is  < n+s. S ince s = 0 (n ) ,  any operation  

on the x -s tru ctu re  can be done in  time 0 ( lo g (n + s ))  = O (log n ).

The y -s tru ctu re  Y

Y contains a l l  the in form ation  about a cross  s e c t io n  which is  

rep resen ta tive  o f  i t s  e n tire  s l i c e .  I t  has an entry  fo r  each segment 

in te rse cte d  by the s l i c e ,  in clu d in g  two se n tin e ls  corresponding to 

y = +« and y = -oo) and thus i t  never has more than n+2 e n tr ie s . Y is  a 

d ic tio n a ry  (see [1 ])  that must support the fo llow in g  op eration  w ith in  time 

bound O (logk) when i t  contains k e n tr ie s :

-  FIND: given a poin t ( x ,y ) ,  fin d  the lin e  segment in  the cross  se ct io n

at x whose y -va lue does not exceed y .

In a d d ition , in  constant tim e, the y -s tru ctu re  supports the fo llow in g  

operations:
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- DELETE(s): given  a p o in ter  to an entry s , d e le te  that en try .

-  INSERT(s;t): given a p o in ter  to an entry s , in s e r t  a new entry t

fo llo w in g  that en try .

-  PREDECESSOR(s) : given  a p oin ter to an entry s , ob ta in  the p o in ter  to

the immediately preceding en try .

-  SUCCESSOR(s) : given a p o in ter  to an entry s , obta in  the p o in ter  to

the immediately fo llow in g  en try .

Various types o f  balanced tr e e s , with a d d ition a l "p rod ecessor" and 

"su cce sso r"  po in ters  can be used to  implement such d ic t io n a ry . I n i t i a l  and 

f in a l  content o f  the y -s tru c tu re : the p a ir  ( - « , 4 » ) .  Figure 3 shows the 

y -s tru ctu re  o f  the s l i c e  between and P̂  in  F ig . 2.

P oin ter in to  Boundary o f  Name o f  reg ion  o f
periphery o f  in te r v a l which th is  in te rv a l

F ig . 3 . The y -s tru ctu re  o f  the s l i c e  between points P  ̂ and P5 in  F ig . 2.

The f i e ld  "P^P^" con ta ins the d e f in it io n  o f  the l in e  segment
connecting the two poin ts P  ̂ and P^. Given an x -v a lu e , th is  entry
allow s eva luation  o f  the corresponding y-value in  time 0 (1 ) .
N otice the entry R ^ (!) under "Name o f  r e g io n ."  I t  r e fe rs  to a
ten ta tive  region  which was created  at tra n s itio n  P , . In a l e f t - t o -4
r ig h t scan o f  the plane i t  w i l l  on ly become known at tra n s it io n  P̂
that region  R  ̂ i s  to be id e n t i f ie d  with region  R^. The f i e ld
"P oin ter in to  periphery" w i l l  be explained when we d iscuss the 
r -s t r u c tu r e .
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The r -s tru ctu re  R

The r -s tru ctu re  is  the key to our a lgorithm . I t  in tegra tes  in form ation

about the regions and th e ir  p erip h eries  as i t  is  accumulated during the

u n id ir e c t io n a l sweep. I t  i s  in i t ia l i z e d  to be empty and terminates empty.

For any given  cross  se ct io n  i t  con ta ins in form ation  about ex a ctly  those

regions that are cu t by th is  cross  s e c t io n . S p e c i f i c a l ly ,  w ith each

segment in  the cross  s e c t io n  i t  a ssoc ia tes  poin ters  to the two c y c l i c  l i s t s

o f  v e r t ic e s  on the boundaries o f  the regions which are r e sp e c t iv e ly  above

and below that segment; eq u iv a le n tly , w ith each in te r v a l determined by two

adjacent segments i t  a sso c ia te s  the c y c l i c  l i s t  o f  the boundary v e r t ic e s  o f

that part o f  the reg ion  which l ie s  to the l e f t  o f  the cross  s e c t io n . Figure 4

shows the r -s tru ctu re  r e la t iv e  to a cross  s e c t io n  in  the s l i c e  between P,
4

and o f  F ig . 2. •

F ig . 4 . The r -s tru ctu re  o f  a c r o s s -s e c t io n  in  s l i c e  P,P^ o f  F ig . 2,4 5 o >
shown attached to the y -s tru c tu re .
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The d e scr ip t io n  above is  a s ta t ic  p ic tu re  o f  R. S ection  2 .3  presents 

the dynamic p ic tu re , how R is  updated at each tr a n s it io n , and how the 

reg ion  boundaries can be prin ted  to produce the ou tp u t.

2 .3  The Region-Finding Algorithm

The algorithm  that sweeps the plane and outputs the reg ion  boundaries 

has the fo llow in g  simple o v e r a ll  stru ctu re  (here X, Y, and R are the three 

data stru ctu res p rev iou s ly  d e s c r ib e d ) :

Procedure SWEEP

begin  X *- n given poin ts (sorted  by x -coord in a te )

Y *“ ( - a0,+00) ,  name o f  reg ion  ♦” Rq 

R *- 0

w hile X  ̂ 0 do 

begin  P -  MIN (X)

TRANSITION(P)

end

end

Procedure TRANSITION is  the advancing mechanism o f  SWEEP, and denotes a l l  

the work involved  in  p rocessin g  one poin t (P) and moving the " fr o n t "  from 

the s l i c e  to the l e f t  o f  th is  p o in t to the s l i c e  immediately to the r ig h t 

o f  i t ;  in  th is  process i t  updates the corresponding data stru ctu res  and 

b u ild s  up the r e su lt  in  an output s tru ctu re . TRANSITION w i l l  be invoked 

e x a ctly  (n+s) times and, s in ce  i t  w i l l  be shown that one in v oca tion  uses 

O (logn) tim e, an 0 ( (rH-s)logn) time bound on the performance o f  SWEEP w i l l  

r e s u lt .  Figure 5 i l lu s t r a t e s  the s itu a tio n  when tra n s it io n  is  invoked: 

fo r  any given segment s , A (s) and B(s) are re sp e c t iv e ly  the c y c l i c  l i s t s  

o f  v e r t ic e s  o f  the regions bordering s above and below , w ith the shown

o r ie n ta t io n s .
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F ig . 5 . The s itu a t io n  faced  by TRANSITION. The "next p o in t"  P is  o f  
one o f  4 ty p e s :

bend , s ta r t  (X^ , end , in te r s e c t io n  X
A (s) and B (s) are the c y c l i c  l i s t s  o f  v e r t ic e s  o f  the regions 
bordering s above and below , r e s p e c t iv e ly . A ssocia ted  w ith s 
there are p o in ters  to the head o f  A (s) and the t a i l  o f  B (s ) .

L is ts  are thought o f  as being ordered from l e f t  to r ig h t ; thus, fo r  a 

p oin t P and a l i s t  L, "P*L" denotes that P has been added to L as i t s  new 

head, whereas "L*P" denotes that P i s  the new t a i l .

S im ila r ly , fo r  two l i s t s  and L2 , denotes th e ir  concatenation .

We s h a ll now give  a d e ta ile d  d e sc r ip t io n  o f  TRANSITION. The fu n ction  

INTERSECT( s s ^ )  checks in  time 0 (1 ) whether two segments s^ and s^ 

in te r s e c t ,  and i f  so , in se r ts  the in te r s e c t io n  p oin t in to  X in  time 

0 ( l o g | x | ) .
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1.
2 .
3 .
4 .
5 .
6 .
7.
8 . 
9.

10.

11.
12.
13.
14.
15.
16.
17.
18.
19.
20. 
21. 
2 2 .
23.
24.
25.
26.
27.
28.
29.
30.
31.
32.
33.
34.
35.
36.
37.
38.
39.

procedure TRANSITION (P) 
begin  s —  FIND(y[P])

case P i s  "bend” : (*see fig u re  6a*)
begin  t «- segment beginning at P 

h -  SUCC(s) 
i  PRED(s)
i f  { l  4  -®) then INTERSECT(jfc,t) 
i f  (h 4  + ») then INTERSECT(t,h)
A (s) ♦“ A (s)*P  
B (s) «“ P*B(s)
Replace s w ith t

end
case P i s  "end": (*see f ig u re  6b*)

begin  h *- SUCC(s) 
t PRED(s) 
l  -  PRED(t)
i f  (X +  - « )  and (h i  +°°) then INTERSECT (X , h)
Link A (t)*P *B (s) and output i t  
Link A (s)*P *B (t)
DELETE(s)
DELETE(t)

end
case P i s  " s t a r t " :  (*see  fig u re  6c*)

begin  t SUCC(s)
(X,h) *“ segments s ta rtin g  at p 
i f  (s +  - « )  then INTERSECT(s,X) 
i f  ( t   ̂ + «) then INTERSECT(h,t)
INSERT(s;X)
INSERT(X;h)
Link B(X)*P*A(h)
Link B(h)*P*A(X) (*B (X ),A (X ),B (h ),A (h ) c o n s is t  o f  P a lone*)

end
case P is  " in te r s e c t io n " :  (*see fig u re  6d*)

begin h *- SUCC(s) 
t -  PRED(s)
X -  PRED(t)
i f  ( 1 4  - « )  then INTERSECT(X,s) 
i f  (h ^ +ao) then INTERSECT(t,h)
Link A (t)*P *B (s) and output i t  
A (s) «- A( s ) *B 
B ( t) -  P*B ( t )  
interchange s and t
Link B (t)*P *A (s) (*A (s) and B (t) c o n s is t  o f  P alone*)

end
end
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F ig . 6. I l lu s t r a t io n  o f  the four cases treated  by procedure TRANSITION.

As a general comment to the ou tlin ed  algorithm , a l l  fou r  cases have 

an analogous form at. A fte r  segment s has been loca ted  (Step 1) in  Y in  

time 0 (lo g | Y {), the other segments which are candidates fo r  in te rse c t io n s  

are found in  time 0 (1 ) ( e .g . ,  Steps 3, 4 , 5 ) ;  next, in te rse c t io n s  are 

sought and, i f  necessary , X is  updated in  time 0 (log|x| ) ( e .g . ,  Steps 6, 7 ) ; 

f in a l ly ,  R ( e .g . ,  Steps 8 , 9) and Y ( e .g . ,  Step 10) are updated, both in  

time 0 (1 ) .

We have seen in  se ct io n  2 .2  that |x| = 0 (n) and |y | = 0 ( s )  = 0(n  ) ,  

and thus a l l  the operations in  TRANSITION require time 0 ( lo g n ) .  Since the 

algorithm  that sweeps the plane makes n+s tra n s it io n s , i t  requ ires time 

0 ( (n + s )lo g n ), thus confirm ing a p r io r  claim .
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3. INTERSECTION OF CONVEX MAPS

A map is  a planar graph G embedded in  the plane: each vertex  o f  G 

is  represented as a poin t and each edge as a s tra ig h t l in e  segment in  

such a way that edges in te r s e c t  on ly  at common v e r t ic e s .  A map subdivides 

the plane in to  r simply connected in te rn a l regions R ^ ,. . . ,R ^  and one 

ex tern a l unbounded reg ion  R^. A map i s  convex i f  each in te rn a l reg ion  is  

convex and the complement o f  the ex tern a l reg ion  is  convex.

Given two convex maps G  ̂ and G2  w ith n^ and n^ v e r t ic e s ,  r e s p e c t iv e ly , 

and s in te rse c t io n s  o f  edges o f  G  ̂ w ith edges o f  G2 ; we w i l l  show that the 

s e t  o f  these s in te rse c t io n s  can be computed in  time O(nlogn+s) and 

space 0 (n ) ,  where n = n^+n^. A stra ightforw ard  a p p lica tio n  o f  the p lane- 

sweep algorithm  described  in  [2 ] ,  which does not take advantage o f  

con vex ity , would y ie ld  th is  r e su lt  in  time O ((n+s)logn ) and space 0 (n + s ). 

The problem o f  computing in te rse c t io n s  o f  rectangles  w ith p a r a lle l  edges 

has been studied  by Bentley and Wood [3] and McCreight [5 ] .  Their 

re su lts  are not d ir e c t ly  comparable to those o f  th is  s e c t io n , s ince  

rectan gles  may in te r s e c t  even i f  th e ir  edges d o n 't .

Let Ĝ  and G2  be two convex maps. For i  = 1 ,2 , le t  e^ be an edge 

o f  G^, and assume that e^ and e 2  in te r s e c t  in  a s in g le  p oin t u 

(degenerate cases can be handled w ith no d i f f i c u l t y ) . D efine r^ as the 

reg ion  o f  Ĝ  such that r^ fl l ie s  e n t ir e ly  to the l e f t  o f  u (F ig . 7 ) .

We now d e fin e  a plane domain U as fo l lo w s . Let e^  ̂ e^ be an edge - i f  

i t  e x is ts  -  on the boundary o f  r^ which in te r se c ts  e 2 , and le t  e^ be 

analogously d e fin ed . I f  e| e x is t s ,  defin e  IL as the convex h u ll o f  the 

extremes o f  e^ and e|, otherw ise Ih is  the unbounded h a lf  p la n e -s tr ip  

orthogonal to e^ on the s ide  o f  r^; then le t  U = fl (F ig . 7 ) .



F ig . 7. The domain U i s  shown cross-h a tch ed .

We claim  that U conta ins in  i t s  in t e r io r  no edge, nor p o rtio n  o f  edge, 

e ith e r  o f  or o f  • I t  s u ff ic e s  to show that conta ins in  i t s  in te r io r  

no edge, nor p ortion  o f  edge, o f  . This is  obvious when IL is  unbounded, 

because in  th is  case U. i s  contained in  the unbounded e x te r io r  region  o f  G .; 

when th is  bounded, then, by con vex ity , IL c  r\ , and obv iou sly  the cla im  

h o ld s .

Consider now a c r o s s -s e c t io n  Y at the abscissa  o f  a vertex  v o f ,  say,

Ĝ  (F ig . 8a) and suppose that edges e^ and e^, o f  G  ̂ and Ĝ  r e sp e c t iv e ly , 

are adjacent in  Y and in te r s e c t  at p o in t u . By the preceding argument, 

the wedge comprised between the v e r t ic a l  through v , e^, and e ^  does not 

con ta in  edges, nor p ortion  o f  edges, o f  G  ̂ and hence we advance the 

cross  s e c t io n  to include p oin t u to i t s  l e f t  (see F ig . 8 b ). This amounts 

to exchanging the order o f  e^ and e^ in  Y, so that we may proceed with the



F ig . 8. The current cro ss  se ct io n  advances by one p o in t .

v e r i f i c a t io n  o f  whether e^ and e^ have fu rth er in te rse c t io n s  with edges o f  

0 > 2  and G p r e s p e c t iv e ly . S p e c i f i c a l ly ,  fo r  each in te r s e c t io n  found two 

new ad jacen cies  a r ise  which are p o te n t ia lly  in te rse ctio n -p ro d u c in g ; each 

such adjacency is  then placed in to  a queue fo r  la te r  p rocess in g . The

plane-sweeping algorithm  w i l l  scan from l e f t  to r ig h t  the v e r t ic e s  o f  both 

maps and perform the corresponding d e le t io n s  and in te r s e c t io n  o f  edges 

(Steps 5-7 and 9-13 , r e s p e c t iv e ly , in  the fo llo w in g  procedure SWEEP); fo r  

any new v e rte x , at most two ad jacen cies  are created  which may p o te n t ia lly  

y ie ld  in te r s e c t io n s : s p e c i f i c a l ly ,  i f  the edges issu in g  to  the r igh t o f  

a vertex  are ordered cou n terclock w ise , these ad jacen cies  may in vo lve  the 

f i r s t  and the la s t  elements o f  th is  sequence o f  edges. A fte r  th is  

in i t ia l i z a t io n  o f  the queue (Steps 12 and 15 o f  SWEEP), fo r  each in t e r ­

se ct io n  found the cross  s e c t io n  is  dynam ically updated, i . e . ,  an exchange 

o f  order o f  two segments takes p laces (Step 23) and two new ad jacen cies  are 

examined fo r  p o ss ib le  add ition  to the queue (Steps 2 0 -2 2 ). At any poin t 

in  the execution  o f  the algorithm  the cross  se ct io n  corresponds to a curve
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in  the plane (not at s tra ig h t l in e ,  n e c e s s a r ily !)  which bounds the 

d iscovered  in te rse c t io n s  to th e ir  r ig h t  (F ig . 9 ) .

F ig . 9. S tructure o f  cross  section s  in  the proposed technique. Edges 
o f  are shown in  s o l id  l in e s , those o f  in  broken l in e s .

A d e sc r ip t io n  o f  the procedure is  given  below . For each vertex  v (e ith e r  

o f  Ĝ  or G2 ) we denote as L(v) and R(v) the sets  o f  edges in cid en t to v 

and ly in g , r e s p e c t iv e ly , to i t s  l e f t  and to i t s  r ig h t . The y -s tru ctu re  

Y i s  a d ic tio n a ry , w hile the x -s tru ctu re  X is  simply an array; I  denotes 

the se t  o f  the in te rse c t io n s  found; Q is  a queue (implemented as a 

lin ea r  l i s t ) ,  fo r  which Q" and MQ « "  denote the operations "remove" 

and "a d d ." For s im p lic ity , the algorithm  omits con s id era tion  o f  the

r -s t r u e tu re .
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procedure SWEEP

1. begin

2 .

3.
4 .
5.
6 .
7.

8 .
9.

10.
11.
12.

13.

14.
15.

16.
17.
18.
19.
20. 
21.

22.

23.

fo r  each vertex  v o f  G.jUG2 do so rt  counterclock w ise  the 
terms o f  L(v) and R(v)

so rt  the v e r t ic e s  o f  G..UG« by in creasin g  abscissa  and p lace  
them in  X [l :n ]

Y - 0 ,  1 - 0 ,  Q — 0 
fo r  i  «- 1 u n t i l  n -1 do

begin  w hile (L (X [i] )  4  0) do
begin  e * -  next edge in  L (X [i] )

” DELETE(e)
end ( * a l l  edges in c id en t to X [i ]  from the l e f t  

are d e leted *) 
s -  F IN D (y(X [i])) 
w hile (R (X [ i ] )  ̂ 0) do

begin  e *” next edge in  R (X [i] )
~ INSERT ( s ;e )

i f  (s and e belong to d i f fe r e n t  maps) then 
Q * ( s ,e )

s *" e
end ( * a l l  edges issu in g  from X [ i ]  to the r ig h t  

are in serted * ) 
s ' -  SUCC(s)
i f  (s and s ' belong to d if fe r e n t  maps) then Q  ̂ ( s , s ! )

(*a t most two pairs o f  edges have jo in e d  Q*) 
w hile Q 4  0 do

begin  (e 1,e 2) «  Q
i f  (e^ and e2 in te r s e c t )  then

begin  I -  lU (e 1,e 2)
e ' -  PRED(e1) , e "  -  SUCC(e2)
i f  (e* and e2 belong to d i f fe r e n t

maps) then Q «  ( e ' , e 2)
i f  (e^ and e" belong to d if fe r e n t

maps) then Q * (e ^ ,e M)
exchange (e ^ ,e 2) in  Y

end
end

end
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N otice that in te rse c t io n s  are d iscovered  only when marching on an 

edge from l e f t - t o - r i g h t ;  where an edge is  d e leted  (Step 7) a l l  in t e r ­

se ct io n s  o f  th is  edge have a lready been found. Moreover, when edges are 

d e leted  no in terse ctio n -p ro d u c in g  ad jacen cies  are generated; indeed i f  

e (being d e leted ) i s  in c id en t to v from the l e f t ,  e ith e r  there is  some e ' 

in c id e n t to v from the r ig h t  which maintains sepa ra tion , or v is  the 

rightm ost vertex  o f  i t s  map: but in  th is  ca se , no ad ja cen cies  between edges 

o f  G1 and G ^  are p o ss ib le  to the r ig h t  o f  v . The running time o f  the 

algorithm  i s  e a s ily  shown to  be 0 (n lo g n ). Indeed such is  the running time 

o f  Steps 1 and 2; loop  5-7 uses O (logn) time fo r  each v e r te x , and is  

executed n tim es; s im ila r ly  does loop 9-13. N otice that Steps 12, 15,

21, and 22 each use 0 (1 ) tim e, and they are c o l l e c t iv e ly  executed 0 (s )  

tim es; f in a l ly ,  loop  16-23 in volves  0 (s )  m anipulations o f  the y -s tru ctu re  

(Steps 20 and 23) each o f  which uses 0 (1 ) time, s ince  p o in ters  to e^ and e^ 

are a v a ila b le . Thus we conclude that our map in te r s e c t io n  algorithm  runs 

in  time 0 (n log n + s). The 0 (n ) space bound is  obvious.
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4 . VARIANTS OF THE PLANE-SWEEP ALGORITHM

In order to assess the g e n e ra lity  o f  the plane-sweep algorithm , we 

ca s t  the two instances used in  se ction s  2 and 3 in to  a common frame.

Both algorithm s have the fo llow in g  s tru ctu re :

Algorithm  SWEEP:

1. I n i t ia l i z e  x -s tru ctu re

y -s tru ctu re  

(perhaps other data)

2. w hile x -s tru ctu re  not empty do TRANSITION 

where TRANSITION is  o f  the form

1. P = (x ,y )  «- remove next p o in t from x -s tru ctu re

2. w ith  y lo ca te  an in te rv a l in  the y -s tru ctu re

3. compute i  new in te rse c t io n s  and process these.

The y -s tru c tu re  is  id e n t ic a l  fo r  both algorithm s. I t  s tores  the current 

c r o s s -s e c t io n  co n s is t in g  o f  0 (n ) e n tr ie s  in  a data stru ctu re  that supports 

the operation  FIND in  logarithm ic tim e, and the operations PRED and SUCC 

in  constant tim e.

The x -s tru ctu re  is  rather d i f fe r e n t  fo r  the two problems we have 

d iscu ssed . The simple case is  i l lu s t r a te d  by the convex map problem: 

a l l  re levan t tra n s ition s  are known a p r io r i :  the n = n^H^ v e r t ic e s  o f  

the two given  graphs. A fter  they have been sorted  they can be stored  

in  any s ta t ic  data structure su ita b le  fo r  sequ en tia l processin g  ( i . e . ,  

the op eration  NEXT takes constant time) -  fo r  example an array. The 

reason is  that the in te rse c t io n s  being computed can be processed 

e n t ir e ly  (an 0 (1 ) operation ) when they are encountered; hence they
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d o n 't  need to be considered  to be tra n s it io n s , i . e . ,  they d o n 't  need to be 

stored  fo r  deferred  processin g  and re tr iev ed  from the x -s tru ctu re  

(an O (logn) o p e ra t io n ). By co n tra s t , in  the re g io n s -o f-a -p o ly g o n  

problem, a computed in te r s e c t io n  must be treated  as a t r a n s it io n , to be 

stored  and re tr ie v e d  from the x -s tru c tu re . This requ ires  a dynamic data 

stru ctu re , which supports the operations MIN and INSERT, and cannot be as 

e f f i c i e n t  as a s ta t ic  data s tru ctu re . The mere fa c t  that operations on 

the x -s tru ctu re  now requ ire  logarithm ic as opposed to constant tim e, 

however, would not a f f e c t  the asym ptotic time requirement o f  the algorithm , 

s ince  th is  access time gets absorbed in  the nlogn term. The d iffe re n ce  

between O(nlogrtf-s) and 0 ((n + s )lo g n ) i s  merely due to the fa c t  that n+s 

tra n s ition s  move through the x -s tru ctu re  as opposed to n.

This comparison i s  summarized in  the fo llow in g  ta b le :

r e g io n s -in -a -lo o p convex maps

SWEEP:
1. I n i t ia l i z e s o r t : 0 (nlogn) s o r t : 0 (nlogn)
2. w h ile-do TRANSITION (n+s) times n times

TRANSITION:
1. P remove from x -s tru ctu re MIN: 0 (logn ) NEXT: 0 (1 )
2. lo ca te  in te rv a l in  cross  

se ct io n FIND: 0 (logn ) FIND: 0 (logn )
3. process i^  new in te rse c t io n s i  = 0 ,1  or 2 

P
INSERT: 0 (logn )

ip  times 0 (1 ) ,
where 2 i  = s . 

P
TOTAL: 0 (nlogn) 0 (nlogn)

+ (n + s)0 (logn ) + s *0 (1)

The two algorithm s presented can e a s ily  be combined to  compute the regions 

o f  the in te r s e c t io n  o f  two a rb itra ry  maps (non-convex) in  time 0 ( (n + s )lo g n ).
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In order to  do th is , however, the c la s s i f i c a t io n  o f  poin ts in to  the 4 

ca te g o r ie s  , O d  » ^X ) » ( s e c t i ° n 2 .3 ) must be changed to

deal w ith one general type o f  po in t where an a rb itra ry  number o f  edges 

meet. This m od ifica tion  reso lv es  the problem o f  degeneracy mentioned in  

se ct io n  2 .1 . An in te r s e c t io n  between more than 2 edges in  the same p oin t 

is  simply treated  as a vertex  o f  high degree. By means o f  the same 

g e n e ra liza tio n , the regions o f  the in te r s e c t io n  o f  two convex maps can 

be computed in  time O (nlogn+s).
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