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Abstract

Two sets H and V of horizontal and vertical segments, respectively, 

determine a subdivision M of the plane into regions. A nontrivial 

region is one whose boundary contains an end-portion of nonzero length of at 

least one segment, and the nontrivial contour of M is the collection of the 

boundaries of nontrivial regions. In this paper we consider several 

problems pertaining to H and V, such as the construction of the non

trivial contour of M, of the external contour of M, and of a path 

between two points in the plane avoiding the segments (route-in-a-maze).

We show that, if | h | + | v| = n, all of these problems are solved in 

time O(nlogn), by making use of a static data structure, called the 
adjacency map, which can be searched in time O(logn) and can be con

structed in time O(nlogn). The algorithms for the nontrivial and 

external contour are shown to be optimal.
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1. Introduction

Several applications arising in diverse fields such as computer aided 

design, operations research, large-scale-integration, data base concurrency 

control, puzzles, etc., [1-4] call for the solutions of problems whose 

basic ingredients are two mutually orthogonal collections of parallel 

straight line segments in the plane. Although in many practical cases — 

typically, we may think of VLSI applications — these segments are con

strained to form the boundaries of rectangles, there is some gain in 

generality, and applicability to a wider class of problems, if we consider 

the segments as unconstrained, except that no two parallel segments are 

allowed to overlap. In general, we shall view the two families H and V of 

segments as being respectively parallel to the x- and the y-axis of the 

plane (horizontal and vertical, respectively).

In this paper we shall consider a number of diverse geometric problems 

and we shall show how they can all be efficiently solved by the same tech

nique. The common setting of all these problems are the two finite sets
2H and V of horizontal and vertical segments; denoting by E the Euclidean

2plane, the point set M = E - HU V (relative complement of HU V) is a sub

division of the plane consisting of a finite number of connected regions, 
of which one is unbounded and is called external. We now describe the 

problems to be considered.

(1) NONTRIVIAL-CONTOUR. In the planar subdivision M we call non- • 
trivial any region whose boundary contains an end-portion of nonzero length 
of at least one segment (that is, a segment endpoint and a nontrivial portion 

of that segment); all other regions are called trivial. (Notice that each 

trivial region is a rectangle, although the converse is not true.) The 

NONTRIVIAL-CONTOUR problem consists in producing the boundaries of all 

nontrivial regions in M. A problem reducible to NONTRIVIAL-CONTOUR is
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(2) EXTERNAL-CONTOUR. Here the objective is the determination of the 

boundary of the external region (external contour). Notice that, in 
general, the external contour is a subset of the nontrivial contour.

(3) POINT-LOCATION (in a segment-induced planar subdivision).

Given M and a target point p, find the region of M which contains p. Of 

course, this problem is interesting if such searches have to be made in 

a repetitive mode, so that it pays to preprocess M in order to ease the 
search. A problem related to "point location" is

(4) ROUTE-IN-A-MAZE. Consider the maze created by the two collections 

of segments. A route between two selected points s and t in the plane is
a curve connecting the two points without crossing any segment. Obviously 

a route is entirely contained in a region of M, so the existence of a 

route can be decided by POINT-LOCATION, since s and t must belong to the 

same region of M. The objective of ROUTE-IN-A-MAZE, however, is the 
actual construction of such route if it is possible.

The paper is organized as follows. In Section 2 we shall describe 

a basic data structure, called "adjacency map", and its search algorithm, 

which is efficiently applicable to the solutions of the above problems, 
and presumably of many others arising in similar contexts. In Section 

3 we shall describe in detail the solutions of the selected problems, 

while in Section 4 we shall develop some efficiency considerations 
regarding the proposed methods.

2. The adjacency maps

As we mentioned earlier, our approach to the previously illustrated 

problems rests on the construction of two data structures, called the 

horizontal and vertical adjacency maps, and is an adaptation of a 
recently developed planar point-location technique [5 ]. We shall
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confine our presentation to the horizontal adjacency map (HAM); the 

discussion is applicable with trivial changes to the vertical adjacency- 

map (VAM) .

Consider the set V of the vertical segments (figure la). Through 

each endpoint p of each member of V we trace a horizontal half-line 

to the right and one to the left; each of these half-lines either 

terminates on the vertical segment closest to p or, if no such intercept 

exists, the half-line continues to infinity. In this manner the plane 

is partitioned into regions, of which two are half-planes and all the others 

are rectangles, possibly unbounded in one or both horizontal directions 

(figure lb). Each rectangle is an equivalence class of points of the plane 

with respect to their horizontal adjacency to vertical segments (whence the 

name "horizontal adjacency map"). A simple induction argument shows that

(a) (b)
Figure 1. The set V of vertical segments (a) and the resulting 

horizontal adjacency map (b).
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the total number of regions in the HAM is at most 3| V| +1.

The horizontal adjacency map is just a special case of a subdivision of 

the plane induced by an embedded planar graph; therefore the point-location 

problem in the HAM can be handled by one of the general techniques recently 

proposed to solve this problem [5-7]. Particularly suited to this 
instance is the techniques proposed in [5 ]; however, due to the 

specialization that the edges of the graph correspond either to vertical 

or to horizontal segments, there are some natural simplifications. For 

the benefit of the reader, we shall now describe the adaptation of the 
general technique to our instance.

The HAM will be represented by a search data structure K, a binary 

tree; the construction is based on the normalization of coordinates and 

the partition of segments as induced by segment trees [ 8 ]. Normaliza

tion means that the members of each of the two sets of coordinates — 
abscissae and ordinates — are replaced by their rank in the set (ties 

are possible, i.e., there are m ^  21 v| distinct ordinates). Partition 

of segments is the subdivision of an interval [ê , e^] (ê  and e^ are 

integers) into a collection of standard intervals, which are defined 

by a segment tree. We recall that, for an integer interval [a, b]

(a < b), a segment tree T(a, b) consists of a root v with INTERVAL[v] = 
[a,b], and if b - a > 1, of a left subtree T(a, L(a+b)/2J) and a right

i
subtree T( l(a+b)/2J,b); if b - a = 1, then the left and right subtrees 

are empty. In figure 2 we illustrate the tree T(l,ll), where each node v 
is labeled with INTERVAL[v]. It is well-known [5,8] that an interval 

[e 1 > e 2 1 — < e^ — m) can be subdivided in a standard way into
O(logm) segments, each of which equals INTERVAL[v] for some node v of 

T (1,m). The partition induced by T(l,ll) (figure 2) on the members of V
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Figure 2. Illustration of T(l, 11).

of our current example (figure 1) is shown in figure 3.

Figure 3. The partition of the members of V induced 
by T(l, 11).
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In the tree K we shall use two types of nodes, with different 
pictorial representations: "V", a V-node or "horizontal node") has 

as discriminant an ordinate; "0", an 0-node or "vertical node," has as 

discriminant an abscissa. A slab [b,t] is the plane strip b < y < t. 

For any segment e € V, L[e] and U[e] are respectively the lower 
and upper endpoints of e.

The tree K is constructed by a recursive procedure. Each recur

sive call processes one slab, that is, it accepts a slab and a left- 

to-right sequence S of segments which have a nonempty intersection 

with the slab. The search tree 1C is built by TREE (S*, l,m), where S* 

is the left-to-right ordering of the members of V (structured as a 

queue) and TREE(S, b,t) is the recursive procedure^ given below. 

Notice that the procedure implicitly performs the segment partition as 
induced by the segment tree.

procedure TREE(S, b,t) 

begin if S = 0 then TREE «- A

else begin ♦" ♦" U +* 0 (* queues S^, and U are local to
this procedure*) 

repeat e <= S (*e=A if S = 0*)

if (e f A) and ((b < L[e]) or (U[e] < t)) then

(*in this case [L[e],U[e]] 2  [b,t]*) 
begin if L[e] < L(b + t)/2J then « e 

if L(b + t )/2J < U[e] then S2 * e
end

^^If S is queue "S^" and "^S" denote the "add to" and "remove from" 
operations, respectively.
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else (*in this e = A or [L[e],U[e]] 3 [b,t]*) 

begin new (w) (* create a new V-node w *)

Y [w] <- L(b + t)/2J

LTREE [w] TREE(S1, b, Y[w])

RTREE [w] TREE(S2, Y[w ] , t)
U * w

if (e ^ A) then U * X[e]
end

until e = A 

K ♦- BALANCE (U)
(* procedure BALANCE takes the alternating sequence U 
of trees and abscissae and arranges these items 

into a balanced tree *) 

return

end
end

It has been shown in [5 ] that BALANCE can be designed so that the 
total depth of JC is O(log|v| ) ; moreover, the analysis presented in [5 ] 

shows that both the running time and the storage requirement of TREE are 

0(| V| log| V| ). The tree K pertaining to our running example (figures 1 and 3) is 
shown in figure 4 (0-nodes and V-nodes are labeled with abscissae and 

ordinates, respectively). To each node, with less than two offsprings, 

we append one or two "leaves" so that each shown node has exactly two 

offsprings; a leaf is simply to be viewed as the termination of a path
from the root.



9

Figure 4. The search tree K corresponding to 
the examples of figures 1 and 3.

The horizontal adjacency problem for a given point p^ = (x̂ , y ) in 

the plane slab [l,m] is solved by locating pQ in the planar subdivision 

described by X. This corresponds to tracing a path in K from the root 

to a leaf and recording on this path either (i) the smallest abscissa 
larger than xQ for the segment adjacent to the right or (ii) the largest 

abscissa smaller than Xq for the segment adjacent to the left; obviously, 
if on the path the set of abscissae larger than x^ is empty, then there 

is no segment adjacent to the right, and analogously for the other case.
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3. Applications

3.1 NONTRIVIAL-CONTOUR. Let | h | + | v| = n. The number t of edges
2forming the boundaries of all regions of M may be, in general, 0 (n ); 

however we shall see that the number of edges in the boundaries of all 

nontrivial regions (see Section 1) is only 0(n).

Each segment in H is partitioned into edges by the members of V 

which intersect it; similarly a segment in V with respect to H (the 

endpoints of an edge are naturally called vertices). We regard each 

edge as being lined by two arcs with opposite direction and lying on 

either side of the edge, as illustrated in figure 5. The boundary of 

any region in M consists of (directed) circuit (s) of arcs; a circuit is 

called external or internal depending upon whether it is clockwise or

Figure 5. Conventions on the directions of the lining arcs, 
counterclockwise. An arc is said to be terminated if it contains an

endpoint of the segment to which it belongs. A circuit is said to be trivial 
or nontrivial depending upon whether or not it contains a terminated arc. 

Notice that the nontrivial contour of M - defined as the collection of the 

boundaries of all nontrivial regions - contains all the nontrivial 
circuits, but it may contain in addition "trivial" rectangles containing 

in their interior one or more nontrivial circuits; in any case the 

number of the latter is less than the number of nontrivial circuits.
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A very interesting fact, given as an appendix to this paper,is 
embodied by the following proposition:

Proposition: The total number of arcs in the nontrivial circuits of
M is 0(n) .

We shall now describe the method to obtain the nontrivial contour.
Its central constituent is a procedure for constructing arc-by-arc each 

nontrivial circuit. The advancing step runs as follows. Starting from 

the current vertex v^ (see figure 6) we march along the current segment 

in the assigned direction, and one of the following three cases occurs:

(2.1)

■>-

(2.2)
Figure 6. Illustration of the advancing step of the 

circuit construction procedure.
1. There is a segment , closest to v^, which intersects and 

crosses the region to the left of In this case we make a 

left-turn, i.e, the intersection v^ becomes the current vertex 
and becomes the current segment;

2. We reach the endpoint v^ of without finding any segment which 

intersects and crosses the region to the left of & We now check:

2.1 is also the endpoint of a segment (notice that can 
only be in the region to the right of £^). In this case we 

make a right-turn, i.e. v^ becomes the current vertex and 
becomes the current segment;

2.2 v^ is just the remaining endpoint of In this case we make a



12

U-turn, i.e. becomes the current vertex and X , with 

reversed direction, becomes the current segment.

The implementation of the advancing step is quite simple with the use 

of the adjacency maps. In fact, suppose that v^ = (x^ , y^) and that

belongs to the line y = y^ in the interval [x^,x^]. We locate in
(2)the HAM the point (x̂ , y^ + e) (where e > 0 is arbitrarily small ) and

we obtain the abscissa x^ of the closest vertical segment to the right

of (x̂ , y^+ e). If x^ ^ x^, then we have a left-turn; if x^ > x^,

then we check whether (x^, y^) is also the endpoint of a vertical

segment, and resolve between cases 2.1 and 2.2. (There is more than
one way to perform the latter check: for example, by locating (x^ - e,

y^ - e) in the HAM). The other three possible cases for the current

segment (to the left, above, and below the current vertex) are handled

in exactly analogous ways. Thus the addition of one arc to a nontrivial
circuit costs one (or two) interrogation(s) of either adjacency map;

(3)i.e., a computational work bounded by O(logn).
It should be evident that all nontrivial circuits are generated by 

initializing the above method to a segment endpoint and a direction on the 

segment (i.e., either "away" from the endpoint or "toward" it). Therefore, 

each of the endpoints of members of H U V (left, right, bottom, and top) 

_
Note that e need not be explicitly defined; it simply gives a rule on 
how to break ties in comparisons.

(3)Strictly speaking, a single advancing step may produce an arc which 
is the union of several consecutive arcs (according to our definition); 
this happens when several parallel segments terminate on a single 
orthogonal segment and all lie on one side of it.



13
gives rise to two "circuit seeds" (of nontrivial circuits), which are 

naturally called centrifugal (away from the endpoint) and centripetal 

(toward the endpoint). For example, given segment 1 - corresponding to 

the interval [x^,X2 ] (x^ < x^) on the line y = y^ - consider endpoint 

(xl,yi) of l: the corresponding centrifugal seed is given by point 
(Xi,yi+e) and direction of increasing x, while the centripetal seed is 

given by point (x^ + e,y^-e) and direction of decreasing x.

Initially, all endpoints are placed in a pool and are untagged. They 

are extracted one by one from the pool, to generate all the nontrivial 

circuits. In the course of this construction an endpoint v of a segment l 
is tagged with the label OUT if we traverse i from v, while it is tagged 

with the label IN when we reach v along i. Whenever an endpoint is tagged 

with both labels OUT and IN, it is excised from the pool of endpoints. 

Obviously, whenever the currently considered endpoint is tagged OUT only 

the centripetal seed is to be used; similarly, when it is tagged IN only 

the centrifugal seed is to be used. The process is concluded when the 
pool becomes empty.

In summary, since there are 0(n) arcs in the collection of non

trivial circuits and the construction of one such arc can be done in 
time O(logn), the set of nontrivial circuits can be constructed in 

time O(nlogn), including the preprocessing required to construct the 
search trees of the adjacency maps (see Section 2).

The construction of the nontrivial contour, however, is not yet 
complete. Indeed, we must still link together different circuits 

forming the boundary of the same region. Nontrivial region boundaries 

consisting of more than one circuit are of two types (see figure 7):
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either a collection of clockwise nontrivial circuits (the unique external 
region) (figure 7a), or a collection of clockwise nontrivial circuits enclosed 

by a single counterclockwise circuits , either nontrivial or trivial (a 

rectangle) (figure 7b,c); obviously the enclosing trivial circuit is 
not generated by the process described above.

Figure 7. Types of boundaries of nontrivial regions

The above task can be carried out as follows. Each arc of a nontrivial 

circuit is a portion of an original segment; it is now useful to construct 

a map which for each point on a segment gives the arc, or arcs, which 

contain that point. Specifically, extending the set of arcs of nontrivial 

circuits with the empty arc A, for each point on a segment the points-of- 
segments — arcs map provides two arcs - one or both possibly empty - 

with opposite directions and containing that point. This map is easily 
constructed by scanning the set of arcs of the nontrivial circuits and 

by distributing over the set of segments the vertices which are origins 
and termini of arcs; next, for each segment, the vertices lying on it 
are organized as a search tree. The construction of this map can be 
accomplished in time O(nlogn) in a straightforward manner.
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Next we label the clockwise nontrivial circuits, by assigning the 

same distinguishing label to all arcs of a given circuit; moreover in 
each circuit a vertex, sayswith lowest ordinate, is selected as the 

"representative" of the circuit.

At this point, region boundaries can be assembled together by a 

UNION-FIND approach. The set of nontrivial clockwise circuits is 

scanned in order of increasing ordinate of their representative vertices.

For each such vertex v we seek in the vertical adjacency map its closest 

horizontal segment below it (this corresponds to drawing a vertical line 
passing through v and seeking a closest intercept p). If no such segment 

exists, then the circuit being considered belongs to the unbounded region. 

Otherwise, using the previously constructed map, we locate point p in 

the found segment. Now, two cases are possible: p belongs to an arc e 

of a nontrivial circuit C or otherwise. In the first case , "FIND" 

consists in obtaining the label of (the circuit containing) e, and "UNION" 

consists in identifying the labels of the two circuits under consideration 
(notice that this is correct, irrespective of whether e belongs to a

clockwise or a counterclockwise nontrivial circuit); in the second case, e
is an arc of a trivial enclosing rectangle (figure 7c), which can there
fore be constructed in a straightforward manner, and also added to the

points-of-segments -» arcs map. Referring to the properties of the 
adjacency maps, of the standard UNION-FIND techniques [9], and to the fact 

that there are 0 (n) nontrivial circuits, it is easily realized that the just 
described taks can be completed in time 0 (nlogn).
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3.2 EXTERNAL CONTOUR. As we noted, the method to obtain the non

trivial contour presented above implicitly produces the contour of the 

external region, i.e., the external contour. However, some efficiency 

can be gained by simplifying the process of linking nontrivial circuits. 

Specifically, the "UNION" task is omitted any time the labels to be 

identified are not those of the external region. Obviously, this minute 

modification does not change the order of the running time. In addition, 

the presented method is entirely applicable to the determination of both 

external and nontrivial contour of a collection of rectangles (a special 
case). It is interesting to contrast this method with the one presented 

in a related paper [10] to obtain the boundary of a union of n rectangles, 

not just the nontrivial boundary. In that case, if t is the total number

of arcs in the boundary, the algorithm proposed in [10] runs in time
20 (nlogn + t log(2n ft)).

3.3 POINT-LOCATION. Assume that the nontrivial contour of M be 
available. We assigrl to each nontrivial region a distinguishing label 

and associate with each arc of a nontrivial circuit the label of the 

region lying to the left of it. This labeling is completed in time 0(n).

Assume also that the map points-of-segments -* arcs be available.

Location of a target point p in M can be carried out in the following 

manner. We locate p in one of the two adjacency maps, say the HAM; this 

search operation returns two (possibly empty) abscissae x^ and x^

(with x^ < X£)j which are respectively the intercepts, closest to p and 
on opposite sides of p, of a horizontal line through p with vertical 

segments. We now have one of the following cases:

(i) either x^ or x^ (or both) belong to an arc (this can be tested in
O(logn) time with the aid of the points-of-segments -> arcs map); then 

in constant time we obtain the name of the nontrivial region containing p.
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(ii) neither x^ nor x^ belongs to an arc (in this case p lies in a

trivial rectangle); using the HAM and the VAM we obtain in O(logn) 

time two pairs of segments, respectively vertical and horizontal, 

which define the trivial rectangle containing p.

In all cases, point location is completed in O(logn) time on data 

structures which use O(nlogn) space (the space needed to store the
2adjacency maps), although - as we noted earlier - M may contain H(n ) 

regions

3.4 ROUTE-IN-A-MAZE. Given two points s and t in the plane, 
using the point-location technique just described, we can readily 

ascertain the existence of a route between s and t by simply verifying 

if both points belong to the same region of M. However, this preliminary 

point location is not necessary; we shall try to construct a route from 

s to t, and the constructions fails if and only if s and t do not lie in 
the same region.

In view of the present application, we slightly modify the method 

for the assembly of boundaries of nontrivial regions described in Section 

3.1. Specifically, we keep track of the "history" of label-identifica

tions by setting up a directed forest F, whose nodes correspond to 

circuits of M and whose arcs correspond to label-identifications (the 
arc is directed from the node of the current circuit to that of a 

previously considered circuit): thus, in F there is a tree for each
nontrivial region. With this information at our disposal, we locate 
in the vertical adjacency map the circuits C(s) and C(t) which are 

respectively adjacent to s and t from below. Next in F we determine 

the roots of the trees to which the nodes corresponding to C(s) and 

C(t) belong: if these roots are distinct, then there is no route
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between s and t, otherwise we obtain the two paths from the two nodes 

to the common root. These two paths contain all the information 

necessary for constructing the route: indeed, starting from s, we
use a vertical edge to reach C(s) and proceed on C(s) to its "representa
tive" vertex (lowermost), use another vertical edge to reach another 

circuit (specified by one of the paths in F), and so on in a straight

forward manner. This construction is done in time O(nlogn),

An interesting related problem — not be be discussed in this 

paper — is the construction of a shortest route between two points 

under the L^-metric.

4. Performance Analysis

We observe that EXTERNAL-CONTOUR is transformable in time 0(n)

to NONTRIVIAL-CONTOUR: in fact no additional operation is needed on the
input, but the output of the latter must be inspected, in 0(n) time,

to extract the external contour from the nontrivial contour.

We now show that sorting of n numbers x.,...,x can be transformedI n
in 0(n) time into EXTERNAL-CONTOUR. This transformation is quite simple
and is illustrated in figure 8. Indeed,let m' = min X£ and

l£i£n
m" = max Xj_ . For each x. we construct two segments H. and V.,

l̂ isin 1 1 i
where lies on the line y = m" - x^ and spans the interval ,[m', x_̂ ]

while lies on x = x^ and spans the interval [0, m" — x^] . Obviously,
H. and V. share the endpoint (x. , m"-x.) (also if x. = m' and l i  ^ v i i 3 l

x. = m" segments, H. and V. are empty). It is clear that from theJ2 Jl J2
external contour of the set of segments {h i9...,H } U [v,,...,V } we1 n 1 n
obtain the sorted sequence of the x^ in 0(n) time^. In the compari

son tree model, sorting requires Q(nlogn) time, whence the proposed

(4)This reduction is identical to that used in [10].



algorithm for EXTERNAL-CONTOUR and NONTRIVIAL-CONTOUR are both optimal 

under this model.
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Figure 8 To show that SORTING is transformable to 
EXTERNAL CONTOUR.
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Appendix

Since a segment endpoint can belong to at most two nontrivial 

circuit (this occurs when this endpoint lies in the interior of some 

other orthogonal segment), and there are 2n endpoints, we obtain the 
following straightforward lemma:

Lemma 1. The number of nontrivial circuits of M does not exceed 4n.

But a stronger statement can be proved.
Lemma 2. The total number of arcs in the nontrivial circuits of 

M is 0(n).

Proof. We say that a vertex is of type i (i = 0,1,2,3) if the 

clockwise angle formed by the arcs meeting at that vertex (ordered 

according to the direction on the circuit) is iTT/2 (see figure 9).

We also let denote the number of vertices of type i on a given 

circuit. Then, for any circuit we have the following relation:

4 for an internal (counterclockwise) circuit
<
-4 for an external (clockwise) circuit

Type 0 Type 1 Type 2 Type 3

Figure 9. Types of vertices.
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Consequently, the total number v of vertices (i.e., 

expressible as

V = V0 + V 1 + V2 + V3 = V0 + 2V1 + 3V2 -  4 ~  v

By summing v over all nontrivial circuits we obtain (the 

extended over all such circuits) for the total number of

t £ 2>0 + 2INX + 32^2 + 4£ 1

£ 2n + 2n 4- 3*2n 4- 4*4n £ 26n.

of arcs) is

( + 2v^ + 3v 2 4- 4

summations are 

arcs t:

□


