
ACT- 4 6 FEBRUARY 1984

S * COORDINATED SCIENCE LABORATORY
APPLIED COMPUTATION THEORY GROUP

THE VLSI OPTIMALITY OF THE
AKS SORTING NETWORK
B ILA R D I, GIANFRANCO
PREPARATA , FRANCO P.

APPROVED FOR PUBLIC RELEASE. DISTRIBUTION UNLIMITED.

REPORT R -1 0 08 U I LU-ENG 8 4 -2 2 0 2

UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN

I
I
I
I
I
I
I
I
K
I
I
I
I
I
I

I
I

Unclassified
s e c u r i t y c l a s s i f i c a t i o n o f t h i s p a g e

REPORT DOCUMENTATION PAGE
1a. R E P O R T S E C U R IT Y C L A S S IF I C A T I O N

Unelassified
1b. R E S T R I C T I V E M A R K I N G S

None
Za. S E C U R IT Y C L A S S IF I C A T I O N A U T H O R I T Y

N/A
2b. OE CLASSI F I C A T I O N / D O W N G R A D I N G S C H E D U L E

N/A

3. O IS T R I 8 U T I O N / A V A I L A 8 I L I T Y O F R E P O R T

Approved for public release, distribution
unlimited.

A. P E R F O R M IN G O R G A N I Z A T I O N R E P O R T N U M B E R (S)

R-report # 1008; UILU-ENG 84-2202; ACT-46

5. M O N I T O R I N G O R G A N I Z A T I O N R E P O R T N U M B E R (S)

N/A
6a. N A M E OF P E R F O R M I N G O R G A N I Z A T I O N

Coordinated Science
Laboratory, Univ. of Illinois

Sb. O F F IC E S Y M B O L
(I f applicable)

N/A

7a. N A M E O F M O N I T O R I N G O R G A N I Z A T I O N

Joint Services Electronics Program
6 c . A O D R E S S (City. State and ZIP Code)

1101 W. Springfield Avenue
Urbana, IL 61801

7b. A O O R E S S (City, State and ZIP Codet

800 N. Quincy Street
Arlington, VA

3a. N A M E OF F U N O I N G / S P O N S O R IN G
O R G A N I Z A T I O N

Joint Services Electronics---- Prngr q m

8b. O F F IC E S Y M B O L
(If applicable)

N/A
9. P R O C U R E M E N T I N S T R U M E N T I D E N T I F I C A T I O N N U M B E R

Contract N00014-79-C-0424
8c. A O O R E S S (City, State and ZIP C ode)

800 N. Quincy St.
Arlington, VA

10. S O U R C E OF F U N O I N G NOS.

P R O G R A M
E L E M E N T NO.

";T,TuS " Z iT * ' “n ? c u m in o ., The VLSI Optimality of the AKS Sorting Network N/A

P R O J E C T T A S K W O R K U N I T
NO. NO. NO.

N/A N/A N/A
1 2 . P E R S O N A L A U T H O R (S)

Bilardi, Gianfranco anc Preparata, Franco P.
13a. T Y P E OF R E P O R T 13b. T I M E C O V E R E O 14. O A T E O F R E P O R T tY r., Mo., Day) 15. P A G E C O U N T

F R O M T O February 1984 11
16.. S U P P L E M E N T A R Y N O T A T I O N

N/A
17. C O S A T I C O D E S

F I E L D G R O U P 1 SUB. GR.

1

18. S U 8 J E C T T E R M S tContinue on reverse if necessary and identify by block num ber)

Sorting networks, VLSI complexity, optimal VLSI networks

A VLSI implementation is given fo^the sorting network proposed by Ajtai, Komlos, and
Szemeredi, which can be laid out in 0(n) area and works in O(logn) time. This performance
is optimal under the (synchronous) VLSI model of computation.

Z a O IS T R I 8 U T I O N / A V A I L A B I L I T Y OF A B S T R A C T

U N C L A S S I F I E D / U N L I M I T E D S S A M E AS RPT. □ O T IC USERS □

21. A B S T R A C T S E C U R I T Y C L A S S IF I C A T I O N

Unclassified
22a. N A M E OF R E S P O N S IB L E I N D I V I D U A L 22b. T E L E P H O N E N U M B E R

IInclude A rea C ode)
22c. O F F IC E S Y M B O L

NONE
QD FORM 1473, 83 APR E O I T IO N OF 1 JA N 73 IS O B S O L E T E .

security c l a SS I f ; c a “ ' o n ' = -i.-t

THE VLSI OPTIMALITY OF THE AKS SORTING NETWORK

G. Bilardi and F. P. Preparata
Coordinated Science Laboratory

University of Illinois at Urbana-Champaign

Introduction

Ajtai, Komlos, and Szemeredi [1] recently proposed a sorting network

(referred to hereafter as the AKS network), of O(nlogn) comparators and

O(logn) depth. Their construction is of great theoretical interest, for

it shows that O(nlogn) comparisons suffice to sort n elements, even under

the constraint that comparisons be nonadaptively executed in O(logn) parallel

stages. At present, the AKS network appears not suitable for practical

implementations, due to the large value of the constants; however, improve­

ments are conceivable that could make the network more attractive for

real-world applications.

It is therefore natural to ask what is the performance of the AKS network

in the synchronous VLSI model of computation which has been proposed [2] to

capture the essential features of planar very large scale integration as a

computing environment.

In this model it is known that any chip capable of sorting n words of
2 2 9length q = (l+a)logn, with a > 0, must satisfy the relationship AT = fi(n log^n),

where A is the chip area, and T is the computation time. This lower bound

has been originally obtained by Thompson [2] under the word local restriction

(all the bits of the same word enter the circuit at the same input port) .

Recently Leighton [3] has shown that the lower bound holds valid even for

non-word-local designs.

This work has been supported in part by the Joint Services Electronics Program
under Contract N00014-79-C-0424 and by the IBM Predoctoral Fellowship Program.

2

Many designs of VLSI sorters have already been proposed (see Thompson

[4] for a survey). We mention here the ones that achieve minimum area
2 2 2A = 0(n log n/T) at their computation time T:

- the mesh-connected [1,5,6] bitonic sorter [7], for T = 0(/i).

- the pleated-cube-connected-cycles (PCCC) [8] also implementing
bitonic sorting for T in the range [ft(log n),0(/nlogn)].

- a hybrid architecture based on the cube-connected-cycles and the

orthogonal trees interconnections [9], which implements the

enumeration sorting schemes of [10] , and works in minimum computation
time T = O(logn).

- a hybrid architecture consisting of orthogonal trees and permuter

networks [3], which implements a generalization of the even-odd sort

[7], and also works in time T = O(logn).

It is then interesting to see how the AKS algorithm, which is radically

different from any other known sorting paradigm, compares with more classical

methods in the VLSI environment, where the heaviest demand of resources

usually comes from communication, rather than from computing requirements, so

that a small number of processing elements does not necessarily imply a good
performance.

In this note we show that the AKS sorting network can indeed be laid out
2in area A = 0(n), while maintaining an O(logn) computation time, thereby

establishing its optimality in the VLSI model of computation.

3

Layout of the AKS Network

The original description [1] of the AKS network (with n inputs) is given

in terms of an n-node graph G = (V,E), whose nodes are registers, and whose

edges are comparators. The set of edges E is partitioned as E = E U U . . . U E ^

where each of the E^’s is a (possibly partial) matching on V, and N < 6 logn for
some (very large) constant 3. Since each E (s = 1,...,N) is a (possibly

partial) matching, all of its comparators can be simultaneously active. Thus

the AKS sorting algorithm can be described as follows:

begin for s := 1 to N

for all (x,y) € Eg, and x < y pardo

(R(x),R(y)):= (min(R(x),R(y)),max(R(x),R(y)))

end

where R(x) is the content of the register associated with node x.

Since the embedding of a graph in a planar grid requires nodes of bounded

degree, we shall modify the original description as follows. According to a

scheme described by Knuth [11], we consider n lines that run parallel, say,

to the horizontal axis. On line r (r = 1,2, ,n) there will be N processors

P[r> 1] > • • • >i)[r»N] , whose capability will be specified below. For each

s = 1,2,...,N, and for each (x,y) € Eg, we connect processors P[x,s] and

P[y,s] by a vertical line. Such vertical line supports the execution of the

comparison-exchange (R(x),R(y)) : = (min(R(x),R(y)),max(R(x),R(y))) , where

R(x) and R(y) are respectively the operands stored in P[x,s] and piy,s].

Once the comparison-exchanges specified by E^ have been executed, the

results will be forwarded on each line (that is, from P[x,s] to P[x,s+1],
x = 1,... ,n).

4

This basic layout can be further specified by selecting the degree of

parallelism of the operand transmission. Due to the amenability to

pipelined operation, the q-bit operands are fed in bit-serial fashion

starting with the most significant bit and each processor is equipped with

a serial comparator. In each comparator, as long as the two inputs agree,

they are transmitted to the next processor on the same line. As soon as a

bit discrepancy is detected, a switch is set and, from then on, the remaining

substrings of each of the operands will follow a fixed path independently

of their value.

Thus we have ensured that the AKS network works in T = O(logn+q) = O(logn)

time, and we turn our attention to the layout area. We first observe that

both the horizontal, and the vertical lines are of 0(1) width. It is then

simple to conclude that the height of the entire layout is 0(n). On the

other hand, any matching of n lines can be easily laid out in (at most) n/2
vertical tracks of constant width, by using a track for each edge of the

matching. Since there are N = O(logn) matchings to be cascaded in the AKS
2network, it is readily proved that O(nlogn) width, and therefore 0(n logn)

area, suffices for the layout. A closer analysis however, reveals that many

of the matchings E^,...,E^ are such that many edges can be laid out, without

overlap, in the same vertical track, yielding the conclusion that the bound
2for the area can be lowered to 0(n).

To establish this claim we introduce the following top-down description

of the layout of the AKS network. The layout could be analyzed as the assembly

of suitable simpler building blocks, whose hierarchy is illustrated in Figure 1

Each of these building blocks will now be described in detail, in a top-down

fashion.

PM !3 H

5

Depth

1 + 3 logn

1

log(l/n)

c

Figure 1. Hierarchy of building blocks of the AKS network. The depth is
, expressed as the length of the cascade of blocks of the

immediately lower level.

(1) The AKS network on n = 2 inputs is the cascade of (l+3d) stages,

called cherry stages, and denoted by s0 >sn *s12’S13’•••>sdl>sd?»S
(Figure 2).

I
N

S

0
u
T
T
p
U
T
S

Figure 2. The AKS network on input is the cascade of (l+3d) cherry stages.

6

(2) To each cherry stage St h (t = 1,... ,d; h = 1,2,3) there corresponds a

Par^̂ -̂ Q̂n Pj. ^ integers (lines) l,2,...,n. Although the assignment
of the integers to the partition blocks is too complicated to be repeated

here (the reader is referred to [1]), what is important now are the
properties of P that are relevant to the layout. Specifically, Pt ,n t ,h
consists of the following (disjoint) blocks:

P = P = {Tc(2i,j): i = 0,1.... l(t-l)/2J ; j =

P = {Tt(2i-l),j): 1 = 1 , 2 , , lt/2j; j = 1,2,...

To stage there corresponds the trivial partition P^

block only.

1,2 }

,22i_1} U {Tt(-1,0)}.

consisting of one

If we now define as span(T) the smallest interval of {l,...,n} containing

T C {l,...,n}, we have the following properties:

(1) For given t and i, and j' ^ j , span(T^(i,j)) H span(T^(i,j?)) - <i>.

(2) |span(T (i,j))| n/21 for every t and j.
(3) jT^(i,j) | <_ y n/2i A1 C for every j, where y and A = 2a > 1 are

constants.

The lines numbered by the integers in a block Tt(i,j) are involved in a

network of comparators called an n-nearsorter (see Figure 3). Properties (1) and

(2) show that for any fixed t and i, all n~nearsorters corresponding to

(Tt(i,j) : j = 1,2,...,21 } can be laid out in the same vertical strip

as shown in Figure 3. Moreover, all nearsorters in the same cherry stage

can operate in parallel (indeed, no two share a line).

7

St2

Figure 3. Typical cherry stages and S ̂ (t is even in the figure) .
The region labelled T (i,j) correspond to the layout of an
p-nearsorter.

(3) An p-NEARSORTER, corresponding to block T (i,j), has the structure

of a full binary tree of depth log^ Each node of this tree is a

network of comparators, called an e-HALVER (see (4)), encompassing an

interval of lines (Figure 4). If m = |T̂ _(i,j) | » then the root encompasses

m lines; if a node v of the tree encompasses s lines, then

its two offsprings encompass each (approximately) s/2 lines.

8

nm inputs
£-HALVER

Figure 4. An p-NEARSORTER is a full binary tree of £ -HALVERS.

(4) An s-HALVER stage on m lines (with £ < n/(log 1/n)) consists of the

cascade of c (where c is a function of £, but is independent of m)

one-factor stages (matching stages). (When the network is viewed as

a graph G = (V,E), i.e. when each line is shrunk to a single node, the

e-HALVER becomes an expander graph on the set of nodes on which its

edges are incident.) (See Figure 5.)

9

Figure 5. An e-HALVER is a cascade of a constant number of one-factors.

(5) Finally a one-factor stage on m lines is a matching between the lower

and the upper half of these lines, and it is a subset of exactly one

of the sets {E^: s = 1,...,N} introduced earlier. (See Figure 6.)

Figure 6. A one-factor is a matching between the top and the bottom half
of lines.

10

Now we proceed, bottom-up, to analyze the area of the network.

(i) A one-factor stage on m lines can be laid out in 0(m) length, by

allocating a vertical track for each of the m/2 edges. The height

of the layout will be proportional to the distance between the

topmost and the bottommost of the input lines.

(ii) An e-HALVER has a length of 0(cm); c is the valence of the e-HALVER.

(iii) An n-NEARSORTER has a length also of 0(cm), since the length

of the e-HALVERS decreases geometrically with the level.

(iv) We now subdivide the layout into vertical slabs, with slab(t,i)

containing the nearsorter on sets Tt(i,j) for all suitable values

of j. (There are in fact two identical copies of Tt(i,j) when i is

even, but this will only affect constant factors.) From point (iii)

and property (3) it immediately follows that

£(t,i) = length of slab(t,i) <_ y 2 1Ai t

Then, the total length £ can be obtained by summing £(t,i) over all the

vertical slabs:

d t d d
£ = E E £(t,i) = E E £(t,i)

t=0 i=0 i=0 t=i
d d

1 Y n E 2 1 E (l/A)* 1 <_ T17T7TT n.
i=0 t=i 1 U / '

2In conclusion A = height x length = 0(n) x 0(n) = 0(n) as claimed.

11

References

1. M. Aitai, J. Komlos, E. Szemeredi, MAn O(NlogN) Sorting Network," Proc.
15th SIGACT, Boston, MA, April 1983, pp. 1-9.-

2. C. D. Thompson, A Complexity Theory for VLSI, Ph. D. Thesis, Computer
Science Department, Carnegie-Mellon Univ., Aug. 1980.

3. F. T. Leighton, "Tight Bounds on the Complexity of Parallel Sorting,"
Proc. 16th SIGACT, Washington, D.C., April 1984.

4. C. D. Thompson, "The VLSI Complexity of Sorting", IEEE Trans. Comp.,
vol. C-32, no. 12, Dec. 1983.

5. C. D. Thompson and H. T. Kung, "Sorting on a Mesh Connected Computer,"
Comm, of ACM, voi. 20, no. 4, pp. 263-271, April 1977.

6. D. Nassimi and S. Sahni, "Bitonic Sort on a Mesh-Connected Parallel
Computer," IEEE Trans, on Computers, vol. C-28, no. 1. pp. 2-7.
Jan. 1979.

7. K. E. Batcher, "Sorting Networks and Their Applications," Proc. AFIPS
Spring Joint Computer Conference, voi. 32, pp. 307-314, April 1968.

8. G. Bilardi, F. P. Preparata, "A VLSI Optimal-Architecture for Bitonic
Sorting," Proc. 7th Conf. on Information Sciences and Systems, The
Johns Hopkins University, Baltimore, MD, (March 1983); pp. 1-5.

9. G. Bilardi, F. P. Preparata, "A Minimum Area VLSI Architecture for
O(logn) Time Sorting," Proc. 16th SIGACT, Washington, D. C., April 1984

10. F. P. Preparata, "New Parallel Sorting Schemes," IEEE Trans. Comput.,
vol. C-27, no. 7, pp. 669-673, July 1978.

11. D. E. Knuth, The Art of Computer Programming: Sorting and Searching,
Voi. 3, Reading, MA: Addison-Wesley 1973.

Keywords: VLSI complexity, area-time trade-off, sorting networks,

optimal algorithms, parallel computation.

Keywords: VLSI complexity, area-time trade-off, sorting networks,

optimal algorithms, parallel computation.

