
ACT-11 SEPTEMBER 1978

~ *  COORDINATED SCIENCE LABORATORY

APPUED COMPUTATION THEORY GROUP

A NEW APPROACH TO 
PLANAR POINT LOCATION

FRANCO P. PREPARATA

REPORT R -8 2 9 UILU-ENG 7 8 -2 2 22

UNIVERSITY OF ILLINOIS -  URBANA, ILLINOIS



UNCLASSIFIED
S E C U R IT Y  C L A S S IF IC A T IO N  O F T H IS  P A G E  (When D a ta  E n te re d )

R EPO RT  DOCUMENTATION PA G E READ INSTRUCTIONS BEFORE COMPLETING FORM
1. R E P O R T  N U M B ER 2. G O V T  A C C ESSIO N  NO. 3. R E C IP IE N T 'S  C A T A L O G  N U M B ER

4. T I T L E  (a nd  S u b ti t le )

A NEW APPROACH TO PLANAR POINT LOCATION
5. T Y P E  O F R E P O R T  & P E R IO D  C O V E R E D

Technical Report
6. P E R F O R M IN G  ORG. R E P O R T  N U M B E R
R-829 (ACT-11);UILU 78-2222

7. a u t h o r ^»; 8. C O N T R A C T  O R G R A N T  NUMBERr»,)

Franco P. Preparata MSC76-17321
DAAB-07-72-C-0259

9. P E R F O R M IN G  O R G A N IZ A T IO N  N A M E AND A D D RESS
Coordinated Science Laboratory 
University of Illinois at Urbana-Champaign 
Urbana, Illinois 61801

10. PRO G RAM  E L E M E N T , P R O J E C T . TA S K  A R E A  & WORK U N IT  N U M B ERS

11. C O N T R O L L IN G  O F F IC E  NAM E AND A D D RESS 12. R E P O R T  D A T E
October, 1978

Joint Services Electronics Program 13. N U M B ER  O F  PA G E S
24

14. M O N ITO R IN G  A G EN C Y NAM E a A D D R E S S f/f d if fe re n t  from  C o n tro ll in g  O ff ic e ) 15. S E C U R IT Y  C LASS, ( o f  th is  re p o rt)

UNCLASSIFIED 1
15a. D E C L A S S IF IC A T IO N /O O W N G R A D IN G  1 S C H E D U L E

_ ---- .. . . . i;
16. D IS T R IB U T IO N  S T A T E M E N T  ( o f  th is  R ep o rt)

Approved for public release; distribution unlimited

17. D IS T R IB U T IO N  S T A T E M E N T  ( o f  the  a b s tra c t e n te red  in  B lo c k  20, i f  d if fe re n t from  R ep o rt)

18. s u p p l e m e n t a r y  n o t e s

19. K E Y  WORDS (C o n tin u e  on re ve rse  s id e  i f  n e c e ssa ry  and id e n t i f y  by b lo c k  number)

Computational Geometry 
Analysis of Algorithms 
Point Location 
Planar Graphs

20. A B S T R A C T  (C o n tin u e  on re ve rse  s id e  i f  n ec essa ry  and id e n t i f y  by b lo c k  number)
Given a planar straight line graph G with n vertices and a point P^, locating
P q  means to find the region of the planar subdivision induced by G which 
contains P^. Recently, Lipton and Tarjan presented a brillian but extremely
complex point location algorithm which runs in time 0(logn) on a data structure 
using 0(n) storage. This paper presents a practical algorithm which runs in 
less than 6 Tlog2nl comparisons on a data structure which uses O(nlogn) 
storage, in the worst case. The method rests crucially on a simple partition

D D  1 JA N M73 ^ 4 7 3  E D IT IO N  O F I NOV 65 IS O B S O L E T E  UNCLASSIFIED
S E C U R IT Y  C L A S S IF IC A T IO N  O F  TH IS  P A G E  (W hen D a ta  E n te re d )



—  UNCLASSIFIED_________________
S E C U R IT Y  C L A S S IF IC A T IO N  O F  T H IS  PAQgfW 'htn P ete  Entered)

20. Abstract (continued)

of each edge of G into 0(logn) segments.

UNCLASSIFIED
S E C U R IT Y  C L A S S IF IC A T IO N  O F  T H IS  PA G EfU T jen D a ta  E n te red )



UILU-ENG 78-2222

A NEW APPROACH TO PLANAR POINT LOCATION

by

Franco P. Preparata

This work was supported in part by the National Science Foundation 
under Contract MSC76-17321 and in part by the Joint Services Electronics 
Program (U.S. ARmy, U.S. Navy and U.S. Air Force) under Contract DAAB-07- 
72-C-0259.

Reproduction in whole or in part is permitted for any purpose 
of the United States Government.

Approved forpublic release. Distribution unlimited.



A NEW APPROACH TO PLANAR POINT LOCATION*

Franco P. Preparata 
Coordinated Science Laboratory- 

University of Illinois at Urbana

September, 1978 
Abstract

Given a planar straight line graph G with n vertices and a point PQ, 

locating Pq means to find the region of the planar subdivision induced 

by G which contains Pq , Recently, Lipton and Tarjan presented a brilliant 

but extremely complex point location algorithm which runs in time O(logn) 

on a data structure using 0(n) storage. This paper presents a practical 
algorithm which runs in less than 6 Tlog^nl comparisons on a data structure 

which uses O(nlogn) storage, in the worst case. The method rests crucially 

on a simple partition of each edge of G into O(logn) segments.

This work was supported in part by the National Science Foundation under 
Grant MCS76-17321 and in part by the Joint Services Electronics Program 
under Grant DAAB-07-72-C-0259.

Also Departments of Electrical Engineering and of Computer Science



1. Introduction

The problem of locating a point in a planar subdivision - briefly-

called 'point location" - is quite important in computational geometry and
has received considerable attention in the recent past. It is stated as

follows 2 Given a odnnected planar straight-line graph G on n vertices and a

point Pq , find which region of the planar subdivision induced by G contains Pq .

An early solution to this problem was proposed by Dobkin and Lipton C l] ,

whose location algorithm runs in time O(logn) on a data structure which uses 
2 20(n ) space and can be built in 0(n ) time. More recently Lee and 

Preparata C 2 ] C 3 ] developed an O(log n)^  ̂ time location algorithm on a 
data structure constructed in O(nlogn) time and using 0(n) space. Observing 

the trade-off between space/preprocessing on one side and search time on the 
other, Shamos [4 ] raised the question of whether O(logn) search time was 

achievable with less than quadratic storage. This issue was definitively 

settled by Lipton and Tarjan [5 ] who showed that the point location problem - 

called by them "triangle problem" - could be solved in O(logn) time on a 

data structure which uses 0(n) space and can be constructed in time O(nlogn). 
Their brilliant method, which is based on a theoretically far-reaching 

planar separator theorem [ 6 ], is, however, algorithmically extremely 
complicated; to quote Lipton and Tarjan themselves, "... this algorithm 

[is not advocated] as a practical one, but its existence suggests that there 

may be a practical algorithm with O(logn) time bound and 0(n) space bound".

^^All logarithms in this paper are to the base 2.



2

The result presented in this paper comes very close to providing a 

complete substantiation of the above conjecture; specifically, we shall exhibit 

a Practical point location algorithm which runs in O(logn) time on a data 

structure, which can be constructed in O(nlogn) time, but which uses 

O(nlogn) space rather than just 0(n).

Our method could be viewed as an evolution of the original technique of 

Dobkin and Lipton [l], which we now briefly review. A horizontal line is 

drawn through each vertex of G, thereby slicing the plane into horizontal 

strips called "slabs"; each slab contains no vertex of G and is subdivided by 

the transversal edges into an ordered set of 0(n) regions. Point location is 

accomplished by first searching the horizontal lines to locate a slab and by 

next searching the segments crossing the slab to locate a region. Clearly 

this search is carried out in O(logn) comparisons, but since an edge is 

partitioned by 0(n) horizontal lines, 0(n ) storage is used. In contrast, our 

method interleaves tests against horizontal lines and test against edges; thus 

it will not be necessary to decompose the edges in 0(n) portions. In particular, 

the method rests crucially on the observation that each edge of G can be 
decomposed uniquely into O(logn) segments.



3

2. Logarithmic segmentation of edges

Let a point v in the plane (x,y) be given as a pair of coordinates x(v) and 
y(v) and let [v^,...>vn_^} the vertex set of G, where the numbering is 

such that y(vQ) < y(v^) <  ... <  y(vn_^)* (In the sequel we shall assume for 

simplicity that these ordinates are distinct; the details of the general 

case are straightforward.) For additional simplification and without loss of 

generality we may assume that y(v^) =* i; so, when we say that the ordinate of 
a point u is i we mean y(u) — y(v^).

Each edge is to be partitioned into a collection of segments; each of

these segments will be simply denoted by the ordered pair of ordinates of its

extremes. The set of pairs of ordinates delimiting segments is 
f k kS * 1(2 j,2 (j+l))|j,k nonnegative integers}. We want to partition each edge 

into a minimal number of such segments: for example, edge (9,21) will be 
partitioned into (9,10)(10,12)(12,16)(16,20)(20,21).

For any given pair of nonnegative integers m and r we define the set 

S(m,r) - a subset of S - as follows:

S(m,r) = {(2 j,2 (j+l))|2 m <  2 j,2 (j+1) <  2r(m+l)}. The elements of 

S(m,r) are organized as the nodes of a full binary tree D(m,r) as shown in 

figure la (a similar structure has been called range tree by Bentley [11]).
In figure lb we show the complete tree D(0,3).

Figure 1. Definition of tree D(m,r) and illustration of D(0,3).



4

Given an edge (v^v.), with 0 <  i < j <  n-1, we can now produce the desired 

logarithmic segmentation of it with the aid of the tree D(0, riog(n-l)! ),

simply referred to as D. This is accomplished by the following algorithm 

SEGM((i,j) ,D) (here and Z2 are lists, and "o'* denotes list concatenation).

The segmentation is performed on the vertical projection (i,j) of (v.,v.).

SEGM((i,j),D)
begin V 4- ROOT(D)

(P.q) ♦- (L(V),R(V>).
I£ (i»j) * (P,q) then X 4- (p,q)
else j ^  (p-fq)/2 then Z 4- SEGM((i,j), LEFTSUBTREE(V))

else If i ^ (p4q)/2 then Z 4- SEGM((i, j ),RIGHTSUBTREE(V)) 
else begin Zl 4- SEGM((i,(p+q)/2), LEFTSUBTREE(V))

Z2 4- SEGM(((p+q)/2,j), RIGHTSUBTREE(V))
X 4- X^ o Z2

end
end return X

For example, SEGM((1,7), D ) produces X = (1,2),(2,4),(4,6),(6,7). The 

action of SEGM can be viewed as tracing two paths - possibly with a common 

initial subpath - from the root of D to two of its leaves. The number of 

recursive calls is therefore at most twice the depth of D, and since each 

new call takes time bounded by a constant, SEGM runs in time O(logn).



5

We now state without proof properties which follow directly from the 
algorithm SEGM:

Proposition 1.

An edge (i,j) with 0 ̂  i < j <  n-1 is partitioned by SEGM in at most 

2riog(n-l)"] -2 segments;
Proposition 2.

Let (h,k) be a segment, with h < k (h and k are the ordinates of the

two extremes of the segment). If h * 2r *h' with h* odd, then
k 6 [2r *h' + 2*1 i*0,l,•..,r.}.

3. Construction of the point location tree

We shall now construct the data structure J - a binary search tree -
to be used by the point location algorithm.

Without loss of generality we may assume that the given planar straight-line

graph G with n vertices be a triangulation; if not, G can be transformed into one
in time O(nlogn) by adding edges,according to the algorithm of Garey et al. [7].

The graph G is also assumed to be given as a collection of ordered edge

lists; specifically, we let 6 .. * C(j,i)|(j,i) is an edge of G and i > j] and
we assume that the members of £. are ordered clockwise around v .

J j
This representation is obtainable in time O(nlogn) from the more 

conventional representation [Edges incident on v^|j = 0,...,n-l}.



6

A preliminary task is the logarithmic segmentation of the edges of G.

Let G have m edges. Each edge e of G is partitioned into a string of segments 
by means of the algorithm SEGM outlined in the previous section. With each 

segment t we associate an integer, height(t), which is the ordinate of its 
upper extreme. The string of segments of e is stored as an ordered list 

(t^,t2»...,tr), where the order is such that height(t^) < height(t2> < ...
< height(tr>: t^ and t are respectively the initial and terminal segments

in the list. Since each edge can be partitioned in time O(logn) and 

m <  3n-6, the entire edge segmentation task runs in time O(nlogn) and uses 

O(nlogn) space.

The procedure which constructs the data structure is called ORGANIZE 

and has access both to the set of lists {£  ̂| j = 0,...,n-2} and to the m ordered 
lists of segments. Specifically, it starts with the initial segments of the 

edges issuing from v^, processes them and proceeds by acquiring the "upward 

continuations)" of each of the processed segments. This is easily done as 

follows, where we assume that segment t is contained in some list cr. We also 

denote by L(t) a list of segments which are the upward continuations of t* L(t) 

is referred to by a pointer b(t) associated with t.:

If t is terminal in cr (Comment: t reaches vertex v. . . , % of G) then—  ------- height (t) 7 ----
e - eheight(t)
ĥeight(t)*" A(2)
If £ ^ A then L(t) 4- string of initial segments of edges in £ 
else L(t) *- A

end

else L(t) ♦- successor of t in cr

(2)Here and hereafter, A denotes the empty sequence.



7

The procedure also makes use of two auxiliary functions, JOIN and BALANCE, 

to be discussed in detail later: presently, suffice it to say that JOIN 

joins together two binary trees by providing a common root, while 

BALANCE structures a forest of binary trees into a single binary tree.

We shall now informally describe, and illustrate with an example, the 
procedure ORGANIZE (X,h,k), where h and k are integers (h < k) and:

(i) X is a string of segments, which have the properties that the 

ordinates of their lower extremes are identical and equal to h, 
while the ordinates of their upper extremes are no greater than k 

(descriptively we say that the segments in X are contained in the 
horizontal slab [h,k]).

(ii) Either k » n-1 or, letting h = h' • 2r (odd h'), k = h + 2^ 
for some 0 < l <  r.

Notationally, for some terms a1>‘**>ar* (a^...^ ) denotes a string, 

while (a1,...,ar) denotes a binary tree so that the string (a^...,a ) is obtained 
when the tree is traversed in inorder ([8],p, ). If and A„ are two strings, .

(Ai ,A2) is their concatenation. The procedure also makes convenient use of 
stacks X,S,U, 8 ; following [8 ], for a stack S, "x « S" denotes that x 

is the element which has been "popped”, while "S * x" denotes that x has 
been "pushed" into the stack. When a string is stored in a stack, its left
most term is at the top of the stack.



8

ORGANIZE (X,h,k)(see Comment 1, below)

1. begin S «- A, j - k, j - 0

2. If h ^ k then (see Comment 2)

3. While Jq < k do (see Comment 2)

4. begin While X A and height(TOP(X)) <  j do

5. begin x « X

6* j *- height(x),

Form L(x) and b(x) (see Comment 3) 
S « (x,b(x)) 

end (see Comment 4)

9- While height(TOP(S)) = j do
10.
11.
12.

begin (x,b(x)) « S 

U « x 

13 * L(x)

13.

14.

15.

16.

17.

18.

end (see Comment 5~) 

a^ *- BALANCE(U) (see Comment 6)
(a2*b(a£)) ORGANIZE {¡3,j,min(2j-h,k)) (see Comment 

I£ a2 J6 A then a - JOIN (a1>a2),b(a) - b(a2> 
a *“ a >̂ L(a) *“ 13 (see Comment 8)

S * (a,b(a))

j0 ^ j
j *- min (2j-h,k) (see Comment 9)

end
19. return S

end



9

Comment 1» [Referring to the graph in Figure 2, we consider ORGANIZE(£,4,8);
segments are indicated by means of integers and Z ■ (15,16,
17,18,19,20,21,22,35); TOP(JE) is segment 15.]

Comment 2. The major controls of the algorithm are embodied by Steps 2

and 3. Obviously, if h = k, the horizontal slab is empty and the empty

tree is returned (Steps 2 and 19)» Moreover - as we shall see (Comments

8 and 9) - processing is completed when the control variable becomesJ0
equal to k.

Comment 3. The string L(x) of the upward continuations of segment x is 

constructed and referred to via b(x), as previously outlined.
Comment 4 . Loop 4-8 finds the longest prefix Z* of string Z so that the 

terms of (S,£*) have nonincreasing heights; Z* is removed from Z and 

concatenated with S. Specifically two-field records (x,b(x)) are entered 
into S. [in our example, S becomes (19,18,17,16,15).]

Comment 5. Loop 9-12 finds the longest suffix of S of elements with constant 

heights, removes it from S and places it into a stack U. Also for each 
x transferred from S to U the list L(x) (pointed to by b(x)) of the 

upward continuations of x is placed into a stack &. [in our example, 

at this point we have S * (16,15), U = (17,18,19) and ¡3 = (26,25,24).] 
Comment 6. The function BALANCE - to be described in Section 4 - structures 

the terms of U into a binary tree to be denoted as HT^U). Each of 
these terms is stored as a node in the search data structure a^ 

refers to the node storing the root of HT^U), and is itself treated 
as a ’'term".



10

Comment 7. This recursive call obtains a tree HT2(U), again referred to 
through its root in b(a2) points to the string of segments which 

are the upward continuations of HT2(U). [in our example,

HT2(U) = (24,25,26) and b(a2) points to the string (28,29,30).]
Comment 8. If both HT^(U) and HT2(U) are nonempty, they are joined together 

into a new binary tree VT(U) - referred to via its root a - and the 

upward continuations of HT2(U) become the upward continuations of VT(U) 
[in our example, VT(U) = <(17,18,19) * (24,25,26))]; otherwise, when 

HT2(U) is empty, the string B itself gives the upward continuations. 
Notice that HT2(U) is empty only when in Step 14 we have a call 
ORGANIZE(/?, k,k), i.e., when j = k.

Comment 9. A new "term” (a,b(a)) is formed in Step 16 and pushed into S

[in our example, S becomes (((17,18,19) * <24,25,26)),16,15)]. Notice 

that the major loop 4-18 is repeated until j is set equal to k in 

Step 17, which occurs exactly just after Step 14 returns the empty tree.



11

In our example, ORGANIZE ((15,16,17,18,19,20,21,22,35),4,8) produces the tree 

a = (15((16,<<17,18,19)*(24,25,26)),20)*(((27,28)*(32,33,34)),29,30)),21,22,35); 
b(a) points to the string (36,37,38,39,40,41).

height

Figure 2. Illustration for the procedure ORGANIZE

Ofrce the function ORGANIZE is available,denoting by the string of the 
initial segments of the edge string the construction of the search 

structure J for graph G is trivially done by the single call 
ORGANIZE(I0,0,n-1). In our example, = (1,2,3).

The construction of subtrees occurs in Steps 14, 15, and 16. As we noted 

there are two types of subtrees - H-trees and V-trees -, depending upon the way 

they are generated. The root of a V-tree is said to be a V-node, while all 
others are referred to as H-nodes.



12

A subtree is said to contain a segment t if t has been assigned to one 

of its nodes; a subtree is said to contain a vertex v of G if v is in the 

interior of the trapezoid which is the convex span of the points of the 

segments contained in the subtree; for each subtree we define its slab as 

the smallest horizontal planar strip where all of the tree's segments lie.

We begin by discussing V-trees. Subtree VT(U) is obtained by "joining" 

together two H-trees, HT^U) and HT2(U). Notice that slabCHT^U)) = [h,j] 

and slab(HT2(U)) = [j,min(2j-h,k)] are adjacent; HT (U) and HT2(U) are joined 
by means of a V-node, which is assigned, as a discriminant, the ordinate of 

the horizontal line separating the two adjacent slabs (for example, in 

Figure 2, (27,28) and (32,33,34) are separated by the horizontal line y = 7). 

Notice that in executing ORGANIZER, 0, n-1), the condition k < 2j-h in a 
recursive call (Step 15) may occur only for k = n-1; since j-h « (2j-h)-j, 

for the two adjacent slabs we have:

Proposition 3. width(slab(HT1(tJ))) £ width(slab(HT2(U))). If the inequality 

is strict, then slab(HT2(U)) is upper bounded by the line y = n-1.

We define the level of VT(U) as log max (width(slab HT.(U))) + 1. Since
i-1,2 1

a slab of width w (an integer) contains exactly w-1 vertices of G in its 

interior, we obviously have that a V-tree of level i contains at most 2i-l 

vertices of G. On the other hand any V-tree - except possibly one whose slab 

is upper bounded by y * n-1 - contains at least one vertex of G. Thus we have: 

Proposition 4. All V-trees - except possibly one - contain at least one 

vertex of G; if level (T) * i, then T contains at most 2L-1 vertices of G.

The number of V-nodes is obtained as follows. Let P*[t |t is a V-tree and there 
is no other V-tree T' which is a proper subtree of t }. The root of any T 6 P is



13

the only V-node in T, otherwise there would be V-tree T f which is a subtree of T.
The cardinality of P is at most (n-2), since vn and v are not contained inu n
any V-tree. For each T € P, suppose to trace the path from its root V to the 

root of J and let ^2^ 3» ...>V t l̂e secluence of the V-nodes encountered;
Vj is the root of some V-tree T., and obviously level (T) < level (T ) <

< level (Tp). Since the level of any V-tree is upper-bounded by Tlognl , and 
|p| <  n-2, we conclude that the number of V-nodes is upper-bounded by
O(nlogn).

We now consider the other type of subtrees, the H-trees. They are formed

by structuring (Step 14) into a binary tree a mixed sequence U of segments and

V-trees, all spanning the same horizontal slab (e.g., 16, <(17,18,19>*<24,25,26)),

and 20 in Figure 2). In general U is the form t 0Tit iT2* • ̂ r - l V r * where th<?
Tj s are V-trees of identical level and TQ,...,Tr are each a string of

segments; we claim that none of the strings T1,...,Tr-1 is empty. To

prove this, notice that each T. is the join of two H-trees H- . and H ;J 1 j 2 j *
if Ti is empty, for 1 <  i <  r-1, the procedure ORGANIZE would combine 

the members of Hu  and H^ i+1 into a single tree, before examining the 
members of H2  ̂and ^2,i+l* t̂lus contradicting the existence of T^ and T.+ .̂
The nodes created in structuring U are H-nodes and to each one of them we 

assign one of the segments in t q U t x U ... U Tr , and a (discriminant) 

linear function f(x,y), so that f(x,y) - 0 is the equation of the line 
containing that segment. The details of the construction of HT^(U) and 

HT2(U) - by the subroutine BALANCE - will be discussed in the next section 
in connection with the performance analysis of the method; presently, we just 

note that the number of V-nodes (i.e. of V-trees) involved in the structuring 
process is just 0(n), rather than O(nlogn).



14

To see this, we reduce the tree J* to a tree which contains only V-nodes 

and is constructed as follows: delete and bypass all the H-nodes of T one at a 

time, i.e., for each non-leaf H-node V replace the three arcs (FATHER(V),V), 

(V,LEFTSON(V)), and (V,RIGHTSON(V)) with the two arcs (FATHER(V),LEFTSON(V)) and 

(FATHER(V),RIGHTSON(V)); a leaf H-node is just suppressed. Clearly J has at mos 

(n-2) leaves. The nodes of are of three types: the regular ones with 

two or more "children’1, the singular ones with exactly one child,and the 

leaves; it is clear that only the children of regular nodes take part in the 

balancing process. Therefore suppose now to further delete and bypass every 

singular node; the resulting tree is such that its non-leaf nodes have at 

least two children and, since there are at most (n-2) leaves, there are at 
most 2n-5 nodes altogether. This proves the claim.

If we represent H-nodes by the symbol (jt) , where t is the number of 

the segment assigned to the node, and V-nodes by the symbol , where y is 

the ordinate assigned to the node, the structure J" for the graph of Figure 2 
is shown in Figure 3.

Figure 3. The binary search tree J for the graph of Figure 2.



15

4. Performance analysis of the method - _____

We begin by evaluating the depth of the search tree T. Clearly J has 

O(nlogn) nodes. In fact the H-nodes are in a one-to-one correspondence with 

the set of segments, and the latter has cardinality O(nlogn); as to the 

V-nodes, we have just shown that their number is also O(nlogn).

If J were balanced, it would have depth O(logn). However there is no

explicit provision in the ORGANIZE algorithm to achieve such property; as a

matter of fact, the depth of J critically depends on the subroutine BALANCE

used for structuring H-trees. Indeed, suppose that in Step 14 of ORGANIZE, the

set U contains 0(n) V-trees. The increase in depth produced by BALANCE(U)
2could be O(logn), thereby resulting in an O(log n) depth for J. However, 

we shall now describe a procedure BALANCE which produces a global O(logn) 

depth for J. The procedure is based on the following lemmas (the first of which 
is a variant of another lemma presented in [9 ]):

Lemma_^l. Let d = a^a2***ap be a string with p > 1 and let the positive 
integer |3j| denote the weight of a ; also, let \a\ = E? |a | and M - max la.I.

J j1 3 ^
Then for any number M < m < |c7|, the string £7 can be algorithmically 

partitioned as £7 so that |c72| <  m, \a\3 <  m, and |<72| + ^  > m.

Proof: Arrange the terms of ¿7 as the leaves of a balanced binary tree
t(£7) and for each node V of this tree t(£7) compute the weight jv| as 

|LEFTSON(V)[ + |RIGHTSON(V) |; obviously |R00T(t(£7)) | = \d\. If we trace a 

path from the root of t(¿7) following at each node the branch of larger weight, 

the weights of the traversed nodes form a decreasing sequence whose minimum 

is guaranteed to be no larger than M. Thus there is a unique node V* on this 
path such that |V | > m, |LEFTSON(V )| <  m,|RIGHTSON(V*)| <  m. We then let 

&2:ts strinS of leaves of LEFTSON(V ), ¿7^;= string of leaves of RIGHTSON(V*), 
while ¿7̂  and C?̂  are the (possibly empty) prefix and suffix of d . □



16

For a V-tree T we define its weight | t | as the number of vertices of G
contained in T (recall that, by Proposition 4, (level(T) = 1) => (| t | =1)).

An l-string has the form U = TnT1T 1...T ,T t , where the T.'s are V-trees ofu l l r-i r r j
identical level JL > 1 and the T.'s are (possibly empty) strings of segments.

r
We define the weight | u| of U as E | T .|.

j=l J
Lemma 2. Let VT = JOIN(HT1,HT2). The trees HT1 and HT2 can be algo

rithmically constructed so that depth(VT) < Tlognl + 21og|VT| + 31evel(VT) - 1 

Proof: For simplicity, let 6 (T) = depth(T) - Tlognl . We make the
following inductive hypotheses:

PI. If U is a j-string with 0 < | u| < ^  < K, then 6 (U) < 21og|u| + 3j + 1 
P2. If T is a V-tree, with | t | < K and level(T) = j < £, then 

6(T) < 21og| t | + 3j - 1.

The induction can be started with j = 1. In fact level(T) = 1 implies 

It J =1, i.e., if T = JOIN(H1}H2), and H2 are each trees of 
0(n ) segments, so that 6 (IL) < 0 (i = 1,2) and 6 (T) < 1 < 2. Also, if U 

is a 1-string, its corresponding slab has width 2. It follows that | u| < 1 

and either U = t 'Tt " or U = t , where t ,,t ",t are strings of segments and 
level(T) = 1; in either case 6(U) < 4.

Proof of PI. Let U = t0Tit i‘ • ̂ r - r V r  and I ul = K,. Notice that
depth (T^) < Tlognl (i.e. 6(t )̂ < 0, for every 0 < i < r) and let
I T I = max I T . I .
I s ' j=1 1 j 1

c1) lTsl i Kx/2. We express U as u1t1Tst2U2» where both and U2 are 
j-strings (with | uj , |u2| < K^/2) and t^ and t2 are segments. Since 

lTsl S Ki < K and level (Tg) = j, by P2 we have 6(Tg) < 21og| T | + 3 j - 1
< 21og + 3j - 1. With regard to th(i = l,2), either | Û l = 0 (in which case



17

Ui consists of segments and 6 (IL) < 0) or by PI 6(1̂ ) < :21og|-'üJ +3j + l 
< 21og K^ + 3j - 1. Clearly the tree in Figure 4a structures U so that 
ô (U) < 2 log Kx + 3j + 1.

Figure 4.

(2) | Tg| < K^/2. We apply Lemma 1 to the string U with m=K1/2. We 

obtain the decomposition where t ^ , ^  are segments and

the Uj's are j-strings with | U2| ,|u3| < 1̂ /2, and | U2| + |u | > K,/2.
The latter implies | uj + | Û | < 1^/2, i.e., 1^1 .¡uj < Kj/2. By PI 

6(U^),5(U2),6(U3),6(U^) < 21og(K^/2) + 3j + 1 = 21ogK^ + 3j — 1, Then clearly, 

the tree in Figure 4(b) structures U so that 8(U) < 21ogK1 + 3j + 1.
Proof of P2. Let |VT| = K and level(VT) = l, with VT = JOBKHTjjHTj ), 

|HTXI - Kx> |HT2| = Kj, ( ^  + 1^ = K).

We must now distinguish two cases:

(1) the root of VT is a regular V-node. In this case, 0 < < K.

Consider HT^ (an analogous argument holds for HT2>. The set U is an



18

(4-l)-string t 0t it i *•*Tr-lTrTr* with I Ul “ KL < K and level(U) = 4-1. Then, 
by PI, we have 6 (U) < 21og| u| + 3(4-1) - 1 = 21(^1^ +34 - 2. It follows 

that 6 (VT) = max(6 (HT1) ,6 (HT>)) +1 < 2max(logK1> logl^) + 34 - 2 + 1 < 21ogK+34-l.
(2) The root of VT is a singular V-node. In 31 there is a sequence of 

V-trees TQ (= VT), T]L,...,Tp , such that T., is a subtree of Ti_1 (for i=l,...,p), 
the roots of TQ,...,Tp_j, are singular V-nodes, while the root of Tp is regular, 

and | T̂ j < K. Clearly level (Tp) = 4-p, whence, by the proof of case (1),

6(Tp) < 21og|Tp| + 3 (4-p)-l. Now, notice that T^(l < j < p) is contained in 

an (4-j)-string of the forraT'TJ", whence 6(T^) < 5 ( 1 ^ + 3 .  It follows that 

6(VT) < 5(Tp) + 3p < 21ogJ Tp| + 3(4-p)-l + 3p < 21ogK + 34-1, since |T | < | VT| = K. 
The proof is thus completed. □

a

In conclusion we have:

Theorem. The depth of the binary tree J is less than 6l"lognf .
Proof: If the root of J is a V-node, then J is a V-tree of level Tlognl

and, by lemma 2, depth (T) < Tlognl + log(n-2) + 3riognl-l < 6 flognl-l. If

the root of J is an H-node, then there is one edge in G between v* and v0 n-1
and (n-1) is a power of 2. In this case G appears as G1tG2 where both G1 
and G2 are graphs with no more than n vertices; G^ and G2 can be structured 
into binary trees J^ and J*2, respectively, whose roots are V-nodes and heights 

are less than 6flognl-l. It follows that the tree structuring G has depth less 
than 6l”lognl . □

We shall now estimate the running time of the procedure. First we 

consider the global work performed by the BALANCE subroutine, described in 

the proof of Lemma 2. If U contains r V-trees Tl,T2,...,T , then, using a 
result of [10], the balancing runs in time O(rlogr). As we have shown, the 

total number of V-trees involved in balancing operations is 0(n), whence 

O(nlogn) is the overall running time of BALANCE.



19

We shall now evaluate the running time of the procedure ORGANIZE. We 

have just shown that BALANCE uses O(nlogn) steps altogether; analogously 

JOIN runs in time proportional to the number of V-nodes, i.e., in time O(nlogn) 

The remaining work is conveniently charged to the individual segments. Specifi 

cally, each segment is transferred from X to S (Steps 5 and 8), and then 
from S to U (Steps 11 and 12); clearly, the work expended in these transfers 

is bounded by a constant. When a segment x is transferred from £ to S we 

associate with it a pointer b(x) (Step 8) to the string L(x) of its upward 
continuations. The construction of L(x)(Step 7) takes time proportional to 

its size, so that the global work which is done in Step 7 is proportional 

to the number O(nlogn) of segments; the construction of b(x) takes constant 

time. In summary, a segment x is transferred from an original segment list 

to some list L(t) of "upward continuations" of some other segment t and from 

here to a stack 0; from 0 it is next transferred to S and finally to U: 

clearly the total work involved per segment is bounded by a constant, and 

since there are O(nlogn) segments, also this portion of the work is O(nlogn).

We conclude therefore that the running time of ORGANIZE (XQ,0,n-l) is O(nlogn); 
that the space used is also O(nlogn) is straightforward.

5. Point location

To locate a point P^ = (xo,y(P in the Planar subdivision induced by G, we 
use 7 as a binary search tree. With each H-node of 7 which has one or no des

cendant we append one or two leaves, respectively, and with each such leaf we 

associate the identifier of a planar region (bordering with the edge associated 

with the parent H-node). The point location proceeds as follows: at each node 

V of y we choose a branch: if V is a V-node, by comparing y^ with y (V) ; if V



20

is an H-node, by testing the sign of f(x0,y0), where f(x,y) is the discriminant 
function of V. Thus we trace a unique path from the root to a leaf at which 

point the point location is completed. By the preceding discussion this 

process uses a number of comparisons bounded by the depth of i.e., 6Tlognl .

6. Comments and Applications

As the previous analysis indicates, planar point location is simply 

done in time 0(logn) using a search structure which can be stored in 
O(nlogn) space. Specifically, less than 6flogn] comparisons are ever 

needed, although the analysis which establishes the upper-bound on the 

depth of T is overly generous and a multiplicative constant for Tlognl 

substantially lower than 6 can be expected.
As to the storage requirement, the analysis refers to the case in 

which each of 0(n) edges is partitioned into O(logn) segments; this 

intuitively corresponds to a large fraction of long edges, which 

presumably is not the average case; however, graphs can be constructed 

for which this situation occurs. It is conceivable that the simple 

approach presented in this paper could be further refined to achieve 

Q(n) storage while maintaining O(logn) search time.
Notice that the described point location method is not restricted 

to triangulations, nor to planar subdivisions induced by straight-line 

graphs. Indeed the straight-line segments may be replaced by other curves 

if the following two properties hold: (i) the curves are single-valued 

in one selected coordinate (say, y), and (ii) the discrimination of a point 

with respect to any of the curves can be done in constant time. For example 

these conditions are clearly met by arcs of circle or of other conics if



21

they have no horizontal tangent, except possibly at their extremes. We 

can now mention two applications of the given method. Both problems have 
recently received consideration in the literature [11,12].

1# Fixed-radius near neighbor searching. This problem involved finding 
all points of a set F in the plane which are within some fixed radius r of a 
"query point"[ll]. Bentley and Maurer have recently proposed - among

other methods - a locus approach, which consists in subdividing the plane 
into regions each of which is the locus of the points within distance r 

from a given subset F' of F (this region is clearly the intersection of 

all the circles with radius r centered at the points in F'). Let 

F - ip1....,Pn3, and let be the circle of radius r with center in

Pi€F. For each C^, let u^ and be the two points on the circle C. with 

largest and smallest ordinates, respectively, and let 1 denote the set of 
intersections of pairs of circles in { cj i * 1,... ,n }. If we define 

V = IU{u J i = 1,... ,n}u{4jJ i = 1,... ,n) , the circumference of each C. is 

partitioned into a set of arcs which have properties (i) and (ii) given 

above. Therefore V is the vertex set of a planar graph G whose edges are 

the arcs just described. To this planar graph the method of this paper is

applicable. Since |v |  - | l |  + | {hji = 1,...,n)| + |fi. | i = 1,...,n}| =
n o2(2) + n + n * n(n + l), graph G is planar with 0(n ) vertices. Thus fixed-

radius near-neighbor searching can be solved in O(logn) time with a data
2 2 structure using 0(n logn) space and constructible in 0(n logn) time; in [11]

othe latter two quantities are both 0(n ).
2. Maxima testing in three dimensions. For points u and v in three-

3
dimensional Euclidean space E  , u is said to dominate v if x lul > x ivl--------  i — i1 JO

~ 1*2,3), Given a finite set F of points in H  , u£F is a maximum of F



22

if it is not dominated by any other point in F. Suppose now that F is a set 

of maxima of F; testing a target point p for maximum in F means to determine 

if there is at least a point u£F which dominates p.

Letting |f |= n, Bentley [12] solves this problem in O(log^n) time 

on a search data structure that is stored in O(nlogn) space and is 

constructed in O(nlogn) time. We now show that the same storage and 

preprocessing time can be maintained while reducing the test time to 

O(logn)•
r f nLet F = l u , j .  Let v be the point such that x.[v] = min x.[u.]I n i . - i i

(j=l,2,3); for convenience we may assume that v be the origin of ]R , so th a t all
3points of F lie in the positive orthant ]R+ . Let M. be the domain of points 

3 nof H  dominated by u.6F, and let M = U M.. Consider now the surface of M + i . . i1=1
and suppose to project it on one of the coordinate planes, say (x^jX^). This 

projection appears as a planar straight-line graph G, each finite region 

of which is the projection of a portion of the surface of for some i 

(Figure 5); it follows that if the (x^^^projection of the target point

Figure 5. Typical projection of the surface of M on the plane (x^x^. 
The vertical edges are shown as thick lines.



23

P falls in the region of G associated with u ^€f , then the maxima testing 

reduces to comparing x^[p] with x^fu^. Thus maxima testing is done via 

point-location in G. Notice now that G has two edges - respectively parallel- 

to the x^ and x̂  axes - issuing from the (x^x^)-projection of each u^F.

It is easy to realize that the point-location procedure can be applied to 

the graph consisting of the n edges parallel to, say, the x^-axis, and the 

positive x^-axis itself (see Figure 5). Obviously the search data structure 

can be stored in O(nlogn) space and is constructible in O(nlogn) time. 
Referring to the arguments of Bentley [12], the time for worst-case maxima 

testing in k dimensions can be reduced from OClog^^n) to O(logk~2n) for 
k > 3.



24
References

1. D. P. Dobkin and R. J. Lipton, "Multidimensional searching problems," 
SIAM Journal on Computing« vol. 5, 181-186 (1976).

2. D. T. Lee and F. P. Preparata, "Location of a point in a planar 
subdivision and its applications," Proceedings of Eighth ACM 
Symposium on Theory of Computing (SIGACT), Hershey, Penn.,
pp. 231-235, May 1976.

3. D. T. Lee and F. P. Preparata, "Location of a point in a planar 
subdivision and its applications," SIAM Journal on Computing 
vol. 6, N. 3, pp. 594-606, September 1977.

4. M. I. Shamos, Computational Geometry. Dept, of Comp. Sci., Yale 
University, 1977. To be published by Springer Verlag.

5. R. J. Lipton and R. E. Tarjan, "Applications of a planar separator 
theorem," Proceedings of the 18th Symposium on Found, of Computer 
Science. Providence, R. I., pp. 162-170, October 1977.

6. R. J. Lipton and R. E. Tarjan, "A separator theorem for planar graphs," 
Conference on Theoretical Computer Science. Waterloo, Ont., pp. 1-10, 
August 1977.

7. M. R. Garey, D. S. Johnson, F. P. Preparata, and R. E. Tarjan, 
"Triangulating a simple polygon," to appear in Information Processing 
Letters. Nov. 1977.

8. E. M. Reingold, J. Nievergelt, and N. D.eo, Combinatorial Algorithms: 
Theory and Practice. Prentice-Hall, Englewood Cliffs, N. J., 1977.

9. R. P. Brent, D. J. Kuck, and K. Maruyama, "The parallel evaluation 
of arithmetic expressions without division," IEEE Transactions on 
Computers, vol. C-22, N. 5, pp. 532-534, May 1973.

10. D. E. Muller and F. P. Preparata, "Restructuring of arithmetic 
expressions for parallel evaluation," Journal of the ACM, vol. 23,
N. 3, pp. 534-543, July 1976.

11. J. L. Bentley and H. A. Maurer, "A note on Euclidean near neighbor
searching in the plane, submitted to Information Processing Letters 
(1978). --------

12. J. L. Bentley, "Multidimensional divide-and-conquer," Carnegie-Melion 
University Research Review, Department of Computer Science, Fall 1977.


