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L ogic D esig n  Error D ia g n o sis  and C orrection

A bstract

Logic verification tools are often used to verify a gate-level implementation of a digital system 

in terms of its functional specification. If the implementation is found not to be functionally 

equivalent to the specification, it is important to correct the implementation automatically. This 

paper describes a formal method for the diagnosis and correction of logic design errors in an 

incorrect gate-level implementation. We use boolean equation techniques to search for potential 

error locations. An efficient search and pruning algorithm is developed by introducing the notion of 

immediate dominator set. Two correction procedures are proposed. Gate correction corrects errors 

such as wrong gate type, missing inverters, etc.; line correction corrects errors such as missing 

wires and wrong connection. Our method is robust and covers all simple design errors described 

by Abadir et al. [1]. Experimental results for a set of ISCAS and MCNC benchmark circuits 

demonstrate the effectiveness of the proposed techniques. Circuits with thousands of gates can be 

corrected in minutes.



1 In tro d u ctio n

The design of digital circuits usually starts from a behavioral description. At some stage in the 

design process, a gate-level circuit implementation is synthesized either automatically or manually 

according to the behavioral description. Although logic synthesis tools have been increasingly used 

by designers, design changes are still mostly being made manually to improve timing performance, 

to obtain more compact structure, or to carry out small specification changes. With the increase 

in circuit size and complexity, logic design errors can easily occur. It is important then to correct 

these errors early in the design cycle.

Logic verification has been studied intensively for finding out whether a gate-level circuit im­

plementation is functionally equivalent to its functional specification. When the implementation 

is proven to be incorrect, it is necessary to diagnose and correct the design errors. This paper 

provides an efficient tool for accomplishing this task.

In practice, there usually exist very few errors in a design and the types of commonly encountered 

errors are limited. In this paper, we assume that exactly one simple design error (defined in the 

next section) exists. This design error could be an incorrect gate type, a missing or extra inverter, 

a missing or extra gate, a missing or extra gate input or an incorrectly placed gate input.

An overview of our work is shown in Fig. 1. First, given a functional specification and a gate- 

level implementation, a logic verification tool is used to examine their functional equivalence. If 

the two files agree, the gate-level implementation is correct; otherwise, a diagnosis procedure is 

performed to search for a potential error location. When a potential error location is found, two 

correction procedures are available for correcting the error. Gate correction changes the function 

of the gate driving the error location, and line correction uses another line in the circuit to drive 

the error location. However, a potential error location may not be an actual error location. In such 

cases, the attempt for correction may fail and the diagnosis and correction procedures are repeated 

until an actual error location is found. It is possible that the errors in the circuit do not satisfy 

our single error assumption. This can be concluded if none of the potential error locations can be 

successfully corrected.

Several previous papers have discussed this problem. Tomita et al. [2] suggest a method for 

correcting a circuit containing a single design error. Input test patterns for locating logic design 

errors (IPLDEs) are generated. Each time an IPLDE is applied, a set of error candidates is
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Figure 1: Overview of logic design verification and correction procedures

generated. After all IPLDEs are applied, the error candidates in the intersection of all sets are 

considered as potential error locations. Any candidate in the intersection can be chosen to correct 

the circuit. However, there are two problems with this scheme. The first one is that the IPLDEs 

may not exist for some incorrect circuits; for example, an inverter is missing at some primary output. 

The second problem is that it has not yet been proven that the modification at any potential error 

location determined by the IPLDEs can always correct the circuit. In the work by Fujita et al. [3], 

the error compensation procedure used in the transduction method [4] is adopted. The algorithm 

is however not robust. In some cases, their method does not guarantee a solution. In [5, 6], formal 

methods for locating and correcting design errors are developed. The problem of locating errors 

is transformed into that of solving boolean equations. For each gate in the circuit, an equation is 

derived and the existence of solutions to this equation can determine as to whether the gate is a 

potential error location or not. However, only those errors which can be modeled as a single gate
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with an incorrect function are considered. Their correction techniques cannot rectify connection 

errors, and are in general very slow. In [7], the work by [5, 6] is extended to cover missing gate 

input errors and 2-input primitive gate missing errors. However, the diagnosis and gate correction 

procedures are still not efficient enough for large circuits.

There are two major parts in this paper, diagnosis and correction. We adopt the formal method 

proposed in [5, 6] for diagnosis but use a different formulation of boolean equations which allows 

incremental calculation of the boolean equations and provides a much stronger pruning condition for 

significantly reducing the search time. The gate correction procedure is based on the one suggested 

in [6], equipped with the following two major improvements : (1) for calculating the new gate 

function, implicit enumeration instead of explicit enumeration is used, so that the complexity is 

changed from exponential to linear (in the number of gate inputs) for most primitive gate types; (2) 

incremental calculation is used in the enumeration to further reduce the execution time. The line 

correction procedure is able to correct more types of connection errors than is previous work [7]. 

The procedure derives a boolean interval for the correct function at a potential error location and 

then search for an existing line in the circuit with function within that interval to replace the 

incorrect line.

In the next section, we formally describe the problem and introduce the simple design error 

model. Section 3 describes the potential error locations and derives the diagnosis procedure; error 

equations are defined and an efficient branch-and-bound search algorithm is given. Gate correction 

and line correction are described in section 4. Section 5 presents the experimental results for a set 

of IS CAS and MCNC benchmark circuits which demonstrate the efficiency of our method.

2 P ro b lem  D escr ip tio n

The existence of design errors is detected by verification tools [8, 1, 9]. We assume that a 

functional specification is given which defines the input and output relationship for a certain design. 

Suppose the design has n primary inputs, {xi : 1 < i < n}, and m primary outputs, {yi : 1 < 

i < m}. Let S denote the functional specification. S can be represented by a vector consisting of 

m boolean functions, i.e., S (X ) = (51(A), 52(A ) ,..., 5m(A)), where A = ( x i , x2, ...,xn) and each 

sfiX )  is the boolean function defining output y\.
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Suppose that a gate-level implementation N  with n inputs and m  outputs has been designed 

to realize S  and the correspondence between the inputs (outputs) of S and the inputs (outputs) 

of N  is given. The function F  of N  can be derived from the circuit structure and represented by 

F (X ) = (/i(X ), /2( X ) , fm(X)),  where each f i (X)  is the boolean function for its corresponding 

output yi.

The gate-level implementation is said to be error-free if and only if F( X)  = ¿»(A), or more 

precisely st(X) = f i (X)  for 1 < i < n. If there exists at least one j  such that Sj(X) 7̂ f j (X) ,  

the circuit is considered as having logic design errors. In practice, either boolean comparisons [8], 

probabilistic verification [9], or test vector method [1] is used to verify the design.

The following assumptions are used in this paper:

1. Both the functional specification and the gate-level implementation are combinational circuits; 

or they are both synchronous sequential circuits with the same state variables and the same 

state assignments. By considering the inputs of flip-flops as pseudo primary outputs and 

the outputs of flip-flops as pseudo primary inputs, a synchronized sequential circuit can be 

treated as a combinational circuit [1].

2. Only one simple design error [1] exists in the gate-level implementation.

2.1 S im p le  D esign  E r ro r  M o d el

The simple logic design error model is adopted from [1]. The model includes eight commonly 

encountered design errors as listed in Fig. 2. Simple gate replacement means that a gate G is 

implemented by a wrong type of gate, for example, an OR gate is used for an AND operation. 

Extra (missing) inverter means that an inverter is accidentally inserted (omitted) on some line. 

Simple extra gate means that two wires are accidentally gated together before feeding to another 

gate. Simple missing gate refers to the reversed situation of simple extra, gate. Extra gate input 

means that a wire is accidentally added from the output of a gate G\ to the input of another gate 

G2• Missing gate input refers to the reversed situation of extra gate input. Incorrectly placed gate 

input means that an input to some gate G3 should have come from gate G1, but is mistakenly drawn 

from another gate G2. Gate G\ in simple extra gate and G2 in missing gate input are restricted 

to primitive gates (AND, OR, NAND, NOR or XOR) for simplicity. Other gates can assume any 

complex function.
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Example
Simple Design Error Incorrect Correct Correction

(1) Simple Gate Replacement 5D-
Gate Correction 

Replace G by AND

(2) Extra Inverter
Gate Correction 
Replace G by BUFFER

- [ g > o - Gate Correction
(3) Missing Inverter W P S *

Replace pseudo buffer by NOT

(4) Simple Extra Gate ÏD - Gate Correction 

Replace G0 by AND

(5) Simple Missing Gate
Gate Correction
Replace Gj  by complex gate with 
function x ( y + z )

(6) Extra Gate Input

Gate Correction

Replace G2 (xy z) by ( y z )

Figure 2: Simple Design Error Models 

2.2 C o rre c tio n  M e th o d s

We will demonstrate that every simple design error shown in Fig. 2 can be corrected by either gate 

correction or line correction. The shadowed area in the incorrect scenario for each design error 

indicates the error location.

D efinition 1 Suppose an error location L is driven by a gate G with p inputs. Gate correction 

replaces G with a different gate which can assume any function of the same p input variables.

It is clear that simple gate replacement error can be corrected by gate correction. In the case of 

extra inverter , the inverter can be replaced by a buffer and since the existence of a buffer would not
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affect the functionality of the whole circuit, the buffer can then be deleted. On the other hand, we 

have to pretend that there is a buffer driving the error location in the case of missing inverter, the 

buffer can then be replaced by an inverter. In the case of simple extra gate, shown in in Fig. 2(4), if 

G\ is AND or NAND, replacing G2 by an AND gate would correct the error; if G\ is OR or NOR, 

replacing G2 by an OR gate would correct the error; if G\ is XOR, then G2 must be replaced by a 

XOR gate. In the case of simple missing gate, G\ cannot be simply replaced by another primitive 

gate; instead, a complex gate combining G\ and G2 should be used. Since the complex gate use 

the same set of input variables of G\, the replacement is considered as gate correction. In the case 

of extra gate input, as shown in Fig. 2(7), the correct function of G2 depends on a subset of the 

original inputs, which also satisfies the definition of gate correction.

D efinition 2 Given an error location L, line correction disconnects the line to L and connects 

another line existing in the circuit to L.

In the case of missing gate input, we pretend that every gate has an extra input, connected 

to ZERO if the gate type is OR, NOR or XOR, or connected to ONE if the gate type is AND or 

NAND. The extra input is the error location and is corrected by replacing it with y as shown in 

Fig. 2(7). The case of incorrectly placed gate input can obviously be corrected by line correction.

2.3 E r ro r  E q u iv a len ce

Since there is more than one way to synthesize a given function, it is possible that there is more 

than one way to model the error in an incorrect implementation, i.e., the correction can be made 

at different error locations. For example, in Fig. 3, the incorrect scenario of ab can be modeled as 

incorrectly placed gate input at either of the two locations; the incorrect scenario of abed can be 

modeled as missing gate input at either of the two locations; the incorrect scenario for a® 6 can be 

modeled as missing inverter or as simple gate replacement. These errors are considered functionally 

equivalent. Our algorithm diagnoses an error to within a functional equivalence class, which means 

that if a designer makes a simple design error a, the error diagnosed by our scheme is functionally 

equivalent to a.
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Specification Incorrect Scenario Model! Model 2

missing inverter________________ simple gate replacement (NOR)

Figure 3: Equivalent errors

3 Search  for Error L ocation

When a gate-level implementation N  has been shown to be incorrect, the first step is to search 

for an error location. Under the single error assumption, an error location must exist within the 

intersection of the backtrace cones of all erroneous primary outputs, called the suspicious area. 

D efinition 3 Given two lines p, q in N , the boolean function f ^ ( X , z )  is constructed as follows: (1) 

disconnect p from its fanouts; (2) introduce z as a new primary input and connect z to p ’s fanouts; 

(3) fP(X,z)  is the function evaluated at q in terms of X  and z. Note that fjj is independent of z 

if q is not a successor of p.

Definition 4 Given a line l in N , define E l( X , z ) = ^2ytERpo(l)(fyt(X,  ¿)© st-(X)), where RPO(l)  

is the set of primary outputs reachable from l. E l( X , z ) = 0 is called the error equation at line l. 

E l( X , z ) = 0 is said to be consistent if E \ X , z )  = 0 has at least one solution for z.

For example, in Fig. 4, f ^ ( X , z )  = x xx3z, f b2(X, z )  = x^+z,  f ^ ( X , z )  = x2x3z , and f £(X,z)  = 

x \x 2. E b( X , z) = x \x 3z 0 s i(X ) + + z) 0 s2(X )  and E h(X, z) — x2x3z 0 $i(X).

Lem m a 1 I f l is an error location, then E l(X, z )  — 0 is consistent.
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h

specification
Sj(X)

s J X )

Figure 4: Example circuit

Proof. If l is an error location, let f i (X)  denote the new global function at / after the correction 

is made. Because the function at the primary outputs after correction must be equal to the 

specification, we have /¿.(X, f i{X)) = Si(X), or / ^ ( X ,  fi(X))($)Si(X) = 0, for all 1 < i < m. Thus, 

E \X ,  f i ( X )) = 0 and f i (X)  is a solution of z to the error equation E l(X,  z) — 0. □

The basic procedure for searching for the error equation can then be described as follows. An 

error equation is formed for each line in the suspicious area. If the equation is consistent, the line 

is declared as a potential error location.

3.1 D o m in a to r  S e t

The basic search process as described above is very expensive because the lines in the suspicious area 

have to be examined one by one until an error location is found, and the equations are calculated 

by symbolic boolean function manipulation. In this section, we introduce the notion of dominator 

set which not only reduces the cost for equation calculation but also provides a strong pruning 

condition for reducing the search space.

D efinition 5 A dominator set of a line l is a set of lines {ei, e2, ..., e/J such that

(1) ej ^  /, for 1 < j  < k\

(2) RPO(ei), RPO(e2),..., RPO(ek) form a partition of RPO (l);

(3) for every primary output yi £ RPO(ej),  every path from l to yi must pass through e0.

For example, in Fig 4, the dominator sets of c are {&}, {/, m}, {yi, m}, {/, y?}, and {yi, y2} and the 

dominator sets of b are {yi,m} and {y 1, y2}- Note that h is not in any dominator set of b because 

there is a path from b to y\ (b-e-k-l-yi) not passing through h, which violates (3) in the above 

definition.
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\
RPOfej)

RPO(e2 )
'  RPO(l)

RPO(ek )

Lem m a 2 Let {ei,e2, ...,eA:} be a dominator set of line l.

(a) For every y, € RPO(ej), f lyi{X,z)  = fUCK,f>.(X,z)).

(b) E ‘( X , z )  = ZUE‘i(X, f ' ei(X,z)) .

Proof. See Fig. 5. (a) Recall that f y- (X, z)  is the function at yi with the function at ej set to 2 
and fj, (X, z ) is the function at ej with the function at / set to 2. Because every path from / to yi goes 

through ej , we can replace the z in f y - (X , z) by (X, z) and obtain /¿.(X , z) — fy- (X, /^ (X , z)).

(b) £ '( X ,Z) = E f y , ( X , z ) ® Si(X)
y ieRPO(i )
k

= 2  E fyt{X, z) © Sj-(X) by (2) in Definition 5
j=i yt£RPO(ej) 

k
= E E Æ ( V ,/ i ; (X ,z ))® S,(X) b y p a rt(a )

J=1 yieRPO(ej)

j=l

Note that Lemma 2(a) is not true if ej does not belong to any dominator set of /. For example, 

in Fig. 4, h does not belong to any dominator set of 6, so /^ (X , z) = x\x^z  does not equal 

fyt (X, f l ( X ,  z)), since /¿(X , z) — x\z  and /£  (X, £iz) = X\X2X^z. This is because when we evaluate 

fyx, the function at / is ^2̂ 3 but it should be x$z when we evaluate .

Theorem  1 Let {ej, e2, be a dominator set of line l. If E l(X, z )  = 0 is consistent, then 

E ej(X,  z) = 0 is consistent for 1 < j  < k.
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Proof. If E l(X,  z) = 0 is consistent, there exists a solution r(X ) such that E l( X , r(X )) = 0. By 

Lemma 2(b), Z j =i E e’ (X,  f le.(X, r(X ))) = 0. Thus, E e*(X, f l6j(X,  r(X ))) = 0 for 1 < j  < k and 

every E ej(X , z )  — 0 is consistent because /^ (X , r(X )) is a solution. □

In the following discussions, we say line l is consistent if E l(X, z )  = 0 is consistent. By Theo­

rem 1, a line is consistent only if all the lines in its dominator sets are consistent. This property 

provides a pruning strategy in the search for potential error locations. More specifically, a line 

cannot be a potential error location if any line in its dominator sets is shown to be not consistent. 

By applying Shannon expansion to Lemma 2(b), we get

E ‘( X , z )  =  ¿ ( / ¿ . ( X ,* ) i^ ( j r ,0 )  + f ,ej( X , z ) E c’(X,  1)) (1)
3=1

E l(X,  0) and E l(X,  1) can then be obtained by substituting z with 0 and 1, respectively. Equa­

tion (1) allows an incremental calculation of E l(X,  0) and E l(X,  1) from E ei(X,  0) and E e](X,  1). 

The calculation is carried out backwards from the primary output side to the primary input 

side. Once E e*(X, 0) and E ei(X,  1) are calculated, only f ^ ( X , z )  needs to be computed to ob­

tain E l(X,z) .  At every primary output yi, the error equation E y,(X,  z) — z ® ¿¿(X) = 0 is clearly 

consistent. We can then obtain E yi(X,  0) = ¿¿(X) and E y,(X,  1) = «¿(X) as the bases for the 

incremental calculation.

The following alternative forms of the error equation will be used throughout the paper.

Lem m a 3 E l(X,  z) = 0 is consistent if and only if E l(X, 0)El(X,  1) = 0, and any function in the 

interval [El(X,  0), E l(X,  1)] is a solution [10, 11].

3.2 Im m e d ia te  D o m in a to r  S et

For any line / in the circuit X, there may exist more than one dominator set. For our application, 

we choose to use the immediate dominator set for both the pruning and the equation calculation. 

The immediate dominator set of / is the dominator set which is closest to /. For any line that has 

no fanout branches, its immediate dominator set has only one element, i.e., the output line of its 

successor gate. For example, {i} is a ’s immediate dominator set in Fig. 6(a). For any line that has 

nonreconvergent branches, its immediate dominator set consists of all of its branches. For example, 

{oi, 02} is o’s immediate dominator set in Fig. 6(a). For those lines that have reconvergent branches,
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their immediate dominators set can be found by using the same algorithm for the supergates1 [14]. 

For example, in Fig. 6(a), the immediate dominator sets of b is {¿i,r, s}.

The relationship based on the immediate dominator set can be represented by a directed acyclic 

graph called the I-DAG and denoted by X. Each node in X represents a line in N  and an edge (u, u) 

exists if v is in the immediate dominator set of u. Fig. 6(b) shows the I-DAG for the circuit in (a).

3.3 T h e  S earch  A lg o rith m

To search for potential error locations, we first find the subgraph of the I-DAG consisting of all the 

lines in the suspicious area, denoted by Xs. A reversed depth-first-search is performed by starting 

from a sink node in Xs. While visiting a node /, we first determine whether it is consistent or not; 

if not, the search on / ’s predecessors in Xs is pruned. The algorithm is shown in Fig. 7. The benefit 

of this branch-and-bound approach is that the pruning condition can reduce the search space size 

quickly. The search algorithm is very efficient as shown by the experimental results.

The consistency determination algorithm follows the previous discussion. If / is a primary 

output, then l is consistent. If any ej in / ’s immediate dominator set is not consistent, then it is 

not. It is possible that the consistency of ej is not checked yet at this point because ej is outside 

the suspicious area or / is searched before ej in the depth-first order. In such a case, the subroutine 

will be called recursively to check ej’s consistency. If all e /s  are consistent, E l(X,  0) and E l(X,  1) 

can then be calculated incrementally to determine /’s consistency. The algorithm is shown in Fig. 8.

Example 1. In Fig. 6(a), let the primary input vector X  = (a, 6, c, d, e, / ,  g, h). The specified 

functions for the three primary outputs ¿1? r and s are (ab,abcgh,bceh(d + /)) . A simple gate 

replacement error is inserted by changing the AND gate driving j  to a NAND gate. The primary 

output functions derived from the incorrect circuit structure is (a&, abcgh, (b -f- c)eh(d -f /))• r and 

s are the erroneous outputs, the intersection of their backtrace cones consists of {o, j i, h, j, 63, c, &}, 

indicated by the grey nodes in Fig. 6(b). Xs is the subgraph induced by these grey nodes, in which 

{o,j,b} are the three sink nodes. Fig. 9 shows the steps of finding potential error locations.

We start with checking o. Since {01,02} is o’s immediate dominator set, we first check if 01 
and 02 are consistent. Because oi’s immediate dominator set is {?*}, and r is a primary output,

1The difference is that all the edges must be reversed in the graph and the input nodes of a supergate of a node 
X  in the modified graph is then the immediate dominator set of X .

11



12



Search_Potential_Error_Locations()
begin
foreach sink node u € Ts, D epth_First_Search(u); 
end

Depth_First_Search(w)
begin
Consistent(u);
if u is consistent, th en

/* u is a potential error location */ 
if gate_correction(w) succeeds, th en  STOP; 
if line_correction(u) succeeds, th en  STOP; 
foreach unvisited predecessor v of u, Depth_First_Search(v); 

else mark predecessors of u as visited; 
end

Figure 7: The algorithm for searching for potential error locations

Consistent(Z)
mark /;
if / is primary output yi, th en  

l is consistent;
E ‘( X , 0 ) = s i(X),  E \X ,1  ) = 5 p ) ;
re tu rn ;

foreach ej in / ’s immediate dominai or set 
if ej is unmarked, then  Consistent(ej); 
if ej is not consistent, th en  

/ is not consistent; 
re tu rn ;

/* every node in /’s immediate dominator set is consistent */ 
foreach ej, calculate f le (X , z)\
calculate E ‘(X,z) = z j= i f [ J x J ) E ' ’(X,0) + 1);
calculate E l{X,  0) and E l(X,  1);
if E l{X, 0)El(X,  1) = 0, th en  l is consistent;
else / is not consistent;
re tu rn ;

Figure 8: The algorithm for determining consistency

13



Depth_First_Search(o)
Consistent(o)

Consistent(oi) C onsistent^)
Consistent(r) Consistent(s)
r is PO 5 is PO
r is consistent s is consistent
E r(X,  0) = abcgh E s(X,0)  = bceh{d+ f )
E r( X , 1) = abcgh E s( X , l )  = bceh(d+ f )
/ r1 (X, z) = abgz fs2 (X , z) = (b + c)e(d + f ) z
E 0l(X,  z ) = abgzabcgh -f abgzabcgh E°2(X , z) = (b + c)e(d + f)zbceh(d + / )  +
by Equation (1) (6 + c)e(d + f)zbceh{d + / )
E 0l (X,  0) = abcgh E°2(X,0)  = bceh(d+ f )
E 0l(X , 1) = (c + h)abg E°*(X,  1) = bceh{d + / )  + (6 + c)e(d + f )
E Oli x , 0 )EOl( X , l )  = 0 E O2(X,0)E°2( X , l )  ± 0
o\ is consistent 02 is not consistent

o is not consistent
mark j \ ,h  as visited ( j i ,h  are not consistent)

return
Depth_First_Search(.7 )

Consistent^')
Oi is consistent s is consistent
f}i ( X , z )  = hz
Ps(X ,z) = he(d + f ) z
E J(X,  z) = hzabcgh + hz(c + h)abg + he(d + f)zbceh(d + / )  + he(d + f)zbceh(d + / )
E J( X , 0) = abcgh + bceh(d + / )
Ei (X,  1) = cabgh + (b + c)he(d + / )
E > ( X , 0 ) E \X , l )  = 0
j  is consistent, j  is a potential error location.

Figure 9: Searching for potential error locations in example 1
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and thus consistent, we conclude that Oi is consistent after calculating E 0l (X,  0) and E 0l (X,  1), as 

shown in Fig. 9. A similar procedure shows that 02 is not consistent, which means that o is not 

consistent. j \  and h, the predecessors of o, can then be pruned.

Next, another sink node j  is checked. o\ and s are in j ’s immediate dominator set and they 

have been shown to be consistent. After calculation, we find that j  is consistent and is therefore 

a potential error location. Because j  can be corrected by the gate correction procedure (described 

later), the program stops. □

4 Error C orrection

4.1 G a te  C o rre c tio n

If line l is a potential error location, we first try to use gate correction to correct it. Suppose / 

is driven by a gate2 G and G has p fanins, Vi, v2, ..., vp. Let f Vi(X)  denote the global function 

at V{. Gate correction is successful if a new p-input function gnew can be obtained such that 

gnewifvAX), f V2( X f Vp(X) )  is in the interval [El(X,  0), E l(X,  1)] as shown in lemma 3.

We illustrate the problem by the example shown in Fig. 10(a). Let X  — (zi, £2, £3)- Gate G 

has two fanins, v\ and t>2, with f Vl( X ) = x\  -f x<i and f V2( X ) = X2 + £3. Suppose we want to find 

a function gnew for G such that gnew( fVi(X),  f V2(X))  is in interval [aff X2 £3, aTf £3 ]. Fig. 10 (b) 

lists the truth tables of the above functions. The truth table of gnew, which is a two-input function, 

can be constructed in the following way. For (u i ,^ )  = (0, 0), the first row in (b) shows that the 

interval is [1, 1], so the first entry in gnew’s truth table is 1, as shown in (c). Similarly, the 2nd and 

the 3rd entries in (c) can be determined from the 2nd row and the 5th row in (b), respectively. For 

(m,V2) = (1, 1), the interval is the intersection of the intervals of the remaining rows in (b), which 

is [0, 0], so the 4th entry is 0. Since the entries are (1, 0, 0, 0), gnew can be implemented by a NOR 

gate and the gate correction is successful.

In contrast, suppose we want to find a function g'new{v 1,^2), such that g'new( fVi (A), f V2(X))  is 

in interval [^1X2̂ 3, £12:3]. We can construct the truth table of g'new by the same method. However, 

when (ui,V2) = (1, 1), the intersection of the interval [0, 0] for the 3rd, 4th and 7th rows and the

2If / is a fanout branch, we assume that a pseudo buffer drives /.

»
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(a)

Xi *2 X3 fvAX ) = *1 + fv2(X)  = x2 + x3 «1 2̂ ^3 x l  x i X\X2X3 XiX3
1 0 0 0 0 0 1 1 0 0
2 0 0 1 0 1 0 0 0 0
3 0 1 0 l 1 0 1 0 0
4 0 1 1 l 1 0 0 0 0
5 1 0 0 l 0 0 0 0 0
6 1 0 1 l 1 0 0 0 1
7 1 1 0 l 1 0 0 0 0
8 1 1 1 l 1 0 0 1 1

(b)

v\ V2 gnew 9nevu
0 0 1 0
0 1 0 0
1 0 0 0
1 1 0 ?

(e)

Figure 10: Example for Gate Correction

interval [1, 1] for the 8th row is empty. Thus, we conclude that there is no way to implement g'new, 

so the gate correction fails.

The basic concept of the gate correction is to synthesize an incompletely specified function with 

on-set E l(X,  0), off-set E l(X,  1), and dc-set E l(X,  0) E l(X,  1) by all the fanins’ global functions 

f Vi(X).  The problem can be formally stated as follows. The function gnew(fvi ( ^ ) ,  f V2( X ) , ..., f Vp( X )) 

is in the interval [E l( X , 0), E l(X,  1)] if and only if [6, 11]

E l( X , 0 ) g ^ ( f n  (X),  f n (X),  + E \ X ,  1 ) g n U M x ), M X ) , M x )) = °-

By Shannon’s expansion, we get

(E‘( X , 0)s^ ( 0 , o , 0) + E ‘(X,  i ) flne„ (0 ,0 , 0 ))7 JX ) M x ) - f v p( x )  +

16



(£ '(X ,0)5^ ( 0,0, . . . , l )  +  £ '( X ,l ) Sne„ (0,0,. . . ,l) ) /„1(X) + ..
{ E \ X ,  0 ) J ^ ( 1 ,  l , . . . , l )  + E '(X ,l)g new(0 ,0 ,...,l))/v ,(X ) = 0

The expansion can be summarized as follows.

2P—1
£ ( £ ' ( * ,  0)ffneJ*'] + E \X A ) g nev\i\)P iU vl( X ) , f V2(X) , . . . , fVr(X))  = 0,
t=0

where P ,( /Vl(X), / U2(X), . . . , fVp(X))  is the elementary product [12], i.e., the global function of 

the ¿th minterm of gnew, and gnew[i\ is the ¿th entry in the truth table of gnew. gnew[i] can 

be set to 0 only if the product E l(X, 0)Pi(fVl(X),  f V2( X ) , ..., f Vp(X))  = 0, which means that 

this minterm does not intersect the on-set. Similarly gnew[i\ can be set to 1 only if the prod­

uct E \ X ,  l)Pi(fVl(X),  f V2( X ) , ..., f Vp(X))  = 0, which means that this minterm does not intersect 

the off-set. If both products are nonzero, gnew[i] cannot be assigned 0 or 1 because this minterm 

intersects both the on-set and the off-set, which means that no correct gate function exists and / 

cannot be corrected by gate correction. If both products are zero, gnew[i\ can be assigned 0 or 1 

and the entry is a don’t care.

By the above method, we have to calculate 2P minterm products [6]. Instead of explicitly 

enumerating all 2P minterms, implicit enumeration can be used to save computation cost. Similar 

to the minterms, a cube can be assigned by the same argument. Hence, instead of generating 2P 

minterms directly, we generate them in depth-first order in a binary tree form as shown in Fig. 11. 

The gate correction algorithm is described as follows. At each node in the binary tree, two products 

are calculated, which are the intersections with the on-set and with the off-set, respectively, for the 

corresponding cube. If a cube does not intersect the on-set (or the off-set), we can assign 0 (or 1) to 

all the truth table entries corresponding to the cube. Therefore, a cube needs to be further divided 

only if it intersects both the on-set and the off-set. When such a cube is a minterm, it indicates 

that the correction fails. The algorithm is shown in Fig. 12.

Example 2. In example 1, we have found that j  is a potential error location. Now we show 

how j  can be corrected by gate correction. The NAND gate driving j  has two fanins with global 

functions b and c, respectively. In Fig. 9, we have calculated that E J(X,  0) and E 3(X,  1). The 

binary tree expansion and the value assignment are shown in Fig. 13. Since the truth table entries 

are 0, 0, 0 and 1, the correct gate type is AND. □
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Figure 11: Binary tree for implicit enumeration

G ate_C orrection(l)
begin

re tu rn  A ssign(£',(X, 0), E \ X , 1), 0,0) 
end

A ssign(Pon(X), P0f f (X) ,  base) 
begin
if (Pon( X ) 7̂ 0 and P0f j ( X ) 7̂ 0), then  /* intersect both on-set and off-set */ 

if i = p , re tu rn  FAIL /* the cube is a minterm */ 
else begin /* divide the cube into two smaller cubes */ 

i =  z +  1
P 'nW  = fon(X)7^(X )
P '„ ( X )  =  P0„ ( X ) f Vi(X)
if A ssign(P 'n(X),P^yy(A),z,6a5e) fails, re tu rn  FAIL
P'on(X) = Pon(X)fv,(X)
p'OJI(X)  =  p0n ( x ) f Vi( x )
if A ssign( P ^ X ) ,  P^j (X) , i , base  + 2̂ p *)) fails, re tu rn  FAIL 

end
else if (Pon( X ) = 0 and P0j f ( X)  = 0), th en  v = DC /* does not intersect on-set and 
off-set */
else if Pon( X ) = 0, th en  v = 0 /* does not intersect on-set */ 
else if P0f f ( X)  = 0, th en  v = 1 /* does not intersect off-set */ 
assign v to truth table entries from base to base + 2̂ p~^ — 1 
re tu rn  SUCCESS 
end

Figure 12: The Gate Correction Algorithm
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Figure 13: Gate correction for j  in example 1

Example 2 shows the following advantages of our approach.

1. By using implicit instead of explicit enumeration, the complexity is reduced from exponential 

to linear (in the number of gate inputs) if the correct gate function is BUFFER, NOT, AND, 

OR, NAND or NOR.

2. The two products at each level can be used for incrementally calculating the products at the 

next level.

4.2 L ine  C o rre c tio n

Line correction is used for correcting missing gate input and incorrectly placed gate input. Line 

correction for a line / follows immediately after gate correction for / fails (see Fig. 1). Based on 

the calculated solution interval for /, line correction for line / searches for any existing line in the 

circuit with a function falling into that interval. Because there should not be any feedback loop 

in a correct implementation, the only candidates are those lines not reachable from /. A successful 

candidate with function h (X ) must satisfy the following two boundary tests: (1) E l(X,0)  < h(X)  

and (2) h(X)  < E l(X,  1). Line correction checks the candidates one by one until a solution is 

found.
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(a) (b)

Figure 14: Test for missing gate input, (a) gate G. (b) gate G with pseudo input lx .

4.2.1 Screening Tests for M issing G ate Inpu t

Note that for missing gate input, we have to introduce a pseudo input as the error location. The 

following lemma shows that if gate G has a missing gate input, the output of G must be a potential 

error location. So we suspect a gate has a missing gate input only if its output is proven to be a 

potential error location.

Lem m a 4 If  gate G has a missing gate input, then the output of G is a potential error location.

Proof. We pretend that G has an extra input lx, as shown in Fig. 14. Let the output of G be l. 

The immediate dominator set of lx is { l }. Because lx is the error location, lx is consistent and 

lx reaches all erroneous outputs. By Theorem 1, / is consistent. Because every path from lx to a 

primary output goes through /, l reaches all erroneous outputs too, i.e., / is in the suspicious area. 

Hence, / is a potential error location. □

The consistency of the pseudo input can be determined by the same method stated in Section 3, 

but the test can be further simplified.

Lem m a 5 Suppose G is an AND gate with output line l, and l is consistent. The pseudo input lx 

of G is consistent if and only if E l(X,  0) < f i (X),  where f i{X) is the function evaluated at l. The 

solution interval for lx is [El(X,  0), f i (X)  + E l( X , 1)].

Proof. G is an AND gate, so f j x( X , z ) = zf i (X),  as shown in Fig. 14.

Elx(X, z)  
E lx(X,  0) 

El*(X, l )  
Elx(X, 0)Elx( X, l )

J M X ) E l(X,  0) + z f i ( X ) E l(X,  1) from Eq. (1)
E l(X,  0)
f l( X) El( X , 0 ) + f l( X) El( X, l )
f i (X ) E l(X,0)  because / is consistent, E l(X , 0) El(X,  1) = 0.
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Table 1: Screening Test and Solution Interval for Missing Gate Input lx to gate G. (/ is C s output 
line and l is consistent.)

G Consistency Test Solution Interval
AND E \ X ,  0) < / / ( * ) [ £ '( x ,o ) ,£ ; '( x , i ) +  /,(*•)]
OR f , ( X ) < E \ X , l ) [El( X , 0)f , (X) t E' (X,  1)]
NAND / ¡(X) < E ‘(X , 1) [£ '(* , 1) ,£ '( X ,0) +  /,(JO]
NOR E l(X,0)  < f i (X) (E' (X, l ) f , (X) ,  E ‘(X,0)]
XOR None(/x is consistent) [f , (X)E‘(X,0) + f i ( X ) E‘(X,  1), ) +

By Lemma 3, lx is consistent if and only if f i ( X ) E l(X,  0) = 0, which is equivalent to E l{X,  0) < 

f i (X).  The solution interval of lx is then [E l*(X , 0), E l*(X,  1)] = [ E\ X ,  0), 7i(X)  + E l(X, l ) \ .  □

The condition E l(X,0) < f i {X)  in Lemma 5 is called the screening test and can be viewed as 

follows. The goal is to make the function at the output of G fall in the solution interval [El(X,  0), 

E \ X , 1)]. For an AND gate, if one more fanin is added, the new output function is the conjunction 

of the old output function and the added input function. Thus the function at the gate’s output is 

reduced. If the old output function does not include the lower bound, neither does the new function. 

Therefore, the consistency test for AND gates checks whether the gate’s function includes E l(X,  0) 

or not, and screens out those gates not possible of having missing gate inputs.

The screening tests and solution intervals for the other gate types are listed in Table. 1.

Example 3. Suppose abc + be is the specified function, and the corresponding circuit is imple­

mented as shown in Fig. 15(a). There are errors in the implementation because the output function 

of the circuit is ab + be.

The circuit has only one output, so everything is in the suspicious area. The I-DAG is shown 

in Fig. 15(b). Using the techniques described in Section 3, the problem is solved in the following 

steps.

1. /  is a potential error location, but cannot be corrected by gate correction or line correction.

2. We check if Gs has a missing gate input. G3 is an OR gate and its output function is ab + be. 

Applying screening test to G3, we get E-f(A, 1) = abc + be and ab + be abc + be, so G3 can 

not have a missing gate input.
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(c)
Figure 15: Example 3

3. d is a potential error location, but cannot be corrected by gate correction or line correction.

4. We check if G\ has a missing gate input. G\ is an AND gate and its output function is ab. 

E d(X,  0) = abc and abc < ab, so G\ passes the screening test. We add a pseudo input to G\ 

and calculate the solution interval to be [a&c,c-f a -f 6]. The candidates for the pseudo input 

are { a,b,c,bic }. Since c is in [ abc, c + a + 6 ], the line correction succeeds. The correct 

implementation is shown in Fig. 15(c).

5 E x p er im en ta l R esu lts

We have implemented our diagnosis and correction algorithms by adopting shared BDDs [15] 

for symbolic boolean expression manipulation. The BDD package developed by Brace et al. [13] 

and the results for BDD ordering described in [16, 17] are used.

The following experiments on a set of ISCAS and MCNC benchmark circuits have been done. 

The test circuits are listed in Table 2. We generate the functional specifications from the given
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circuit descriptions. For each test circuit, we repeatedly insert a random simple design error into 

its gate-level implementation for 100 times. Both the error location and error type are chosen 

randomly. The error found and corrected is then compared to the inserted error. Based on the 

results, we divide the errors into three categories, namely, exact, equivalent and redundant. Exact 

error means the error found is exactly the inserted error; equivalent error means the error found 

is not the error inserted but is equivalent to it; redundant error means the inserted error does not 

change the function at any primary output and therefore does not need any diagnosis or correction. 

Table 3 lists the number of errors in each category. It is interesting to notice that a large percentage 

of errors are equivalent errors. This is because there exist many different realizations for the same 

boolean function. Table 3 also lists the total cpu times including diagnosis, correction and garbage 

collection for BDDs. All the errors are corrected in less than 8 minutes on a SPARC-II workstation. 

The high standard deviation is due to different BDD sizes and different search and correction costs 

for different error locations.

Table 4 lists the cpu times for searching for potential error locations including the calculation of 

error equations. The first column gives the average number of erroneous outputs. The calculation 

of the error equations is more expensive if more outputs are erroneous. Table 4 also lists the 

average number of lines visited until an error location is found in the depth-first search process. 

This reflects how many times the consistency checking has been performed. In general, the numbers 

of lines visited are very small compared to the total numbers of lines existing in the circuits. This 

demonstrates the effectiveness of our pruning technique.

Table 5 lists the average cpu times for correction procedures. The first two columns give the 

average and the maximum numbers of potential error locations found during the search. The 

numbers show how many times the correction procedures have been called. In most cases, the real 

error location is the first one or two potential error location found during the search, which means 

the potential error locations are very useful hints of error locations. In the worst case, the number 

of potential error locations found can be up to 23.

Fig. 16 shows the total time and search time for each error inserted in circuits C432, rot and 

C5315. The errors are sorted according to the total execution time. The time for gate correction 

and line correction contributes most to the difference between these two curves. In these three 

circuits, the total times for about 70 percent of the errors are less than the average time. For small
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Table 2: Test circuits

Circuit Inputs Outputs Gates lines
SBDD

size
Average

Verification time
C432 36 7 160 432 4855 0.7
C499 41 32 202 499 42890 5.6
C880 60 26 383 880 19168 2.7
C1355 41 32 546 1355 134448 13.3
C1908 33 25 880 1908 25405 3.8
C5315 178 123 2307 5315 35088 3.4
b9 41 21 124 291 267 0.0
apex6 135 99 831 1840 1761 0.3
apex7 49 37 269 620 1011 0.1
rot 135 107 691 1640 15598 1.3
des 256 245 4679 11203 20732 4.6

Table 3: Results

Circuit
Errors Total cpu times

Exact Equivalent Redundant Ave. Std. dev. Max.
C432 53 45 2 12.7 21.7 106.7
C499 46 44 10 28.4 26.5 118.5
C880 34 64 2 4.5 7.1 30.3
C1355 51 47 2 115.7 120.0 426.1
C1908 27 71 2 22.3 25.7 110.4
C5315 38 62 0 16.6 18.3 82.6
b9 51 48 1 0.1 0.1 0.5
apex6 62 37 1 1.1 1.8 12.8
apex7 43 56 1 0.2 0.2 1.0
rot 55 45 0 2.9 3.5 13.1
des 51 49 0 35.9 53.8 278.1

24



Table 4: Search for error locations

Circuit
Ave. err. 
outputs

#  lines visited Search times
Ave. Max. Ave. Max.

C432 4.4 11.2 97 11.9 105.7
C499 12.1 4.1 18 22.5 66.7
C880 2.6 2.8 15 3.7 30.0
C1355 18.9 11.2 37 101.3 372.4
C1908 10.9 16.3 77 18.2 95.0
C5315 7.4 6.9 27 2.9 18.5
b9 1.7 2.1 11 0.0 0.2
apex6 2.4 2.3 17 0.0 0.4
apex7 3.0 1.4 9 0.1 0.5
rot 4.9 1.9 10 1.8 12.7
des 2.3 4.8 16 0.4 2.9

Table 5: Error Correction

Circuit
#  PEL found

Gate
correction times

Line
correction times

Ave. Max. Ave. Max. Ave. Max.
C432 2.1 11 0.3 1.3 0.3 2.3
C499 1.6 16 3.7 52.2 1.0 10.3
C880 1.1 4 0.3 6.4 0.3 1.1
C1355 3.8 12 5.9 87.8 5.5 22.3
C1908 4.2 23 0.6 3.6 2.7 16.9
C5315 3.1 12 0.2 1.2 13.1 75.2
b9 1.7 5 0.0 0.2 0.1 0.3
apex6 1.7 9 0.0 0.1 1.0 12.6
apex7 1.2 6 0.0 0.2 0.1 0.5
rot 1.3 4 0.2 3.0 0.8 9.3
des 2.5 9 0.1 0.3 35.2 277.0
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Figure 17: CPU times and BDD size

circuits such as C432, the search time dominates. For mid-size circuits such as rot, neither the 

search time nor the correction time always dominates. For large-size circuits, such as C5315, the 

correction time, or more precisely, the line correction time, dominates. This is because the number 

of lines in such a circuit is enormous, so the line correction becomes very expensive due to the large 

search space. Fig. 17 shows that there is a strong relationship between the cpu time and the shared 

BDD size.

6 C on clu sion s

In this paper we have presented a robust method for the diagnosis and correction of a single 

simple logic design error in digital circuits. The diagnosis is accomplished by an efficient search and 

pruning algorithm based on the notion of immediate dominator set. The gate correction is imple­

mented by an implicit enumeration process which generates the correct truth table with reduced 

time complexity. The line correction was implemented by an simple search process. Experimental 

results on benchmark circuits have shown the effectiveness of our method.

This research is a start for the design correction problem. Future research includes the following 

two open problems.
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1. It is possible for a design to have multiple design errors. In order to handle multiple errors, 

the search strategy and the error equation need modifications.

2. Some large circuits do not have feasible BDD representations. Circuit partitioning is consid­

ered as a solution to this problem. In practice, most of the circuits are designed hierarchically 

with each module having its own input-output specification. When a design is detected to be 

incorrect, it is best to verify the modules one by one. This not only reduces the size of the 

circuit, but also reduce the number of errors to be corrected in each verification process.
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