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Duplex: Simultaneous Parameter-Performance Exploration
for Optimizing Analog Circuits

Seyed Nematollah Ahmadyan and Shobha Vasudevan
Coordinated Science Lab, Electrical and Computer Engineering Department

University of Illinois at Urbana-Champaign
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ABSTRACT
We present Duplex random tree search, an algorithm to op-
timize performance metrics of analog and mixed signal cir-
cuits. Duplex determines the optimal design, the Pareto
set and the sensitivity of circuit’s performance metrics to
its parameters. We demonstrate that Duplex is 5× faster
than the state-of-the-art and finds the global optimum for
a design whose previously published result was a local opti-
mum. We show our algorithm’s scalability by optimizing a
system-level post-layout charged-pump PLL circuit.

Keywords
Design space exploration, Circuit simulation, Circuit syn-
thesis, Optimization, Random tree search

1. INTRODUCTION
In the traditional analog/RF IC design flow, designers

would manually calculate optimal assignments to a circuit’s
parameters to ensure that the design meets the performance
specification requirements [1][2][3]. In modern designs, ana-
log and mixed signal ICs are ubiquitous due to their de-
sirable flexibility in power, performance, etc. This coupled
with shrinking transistor sizes, circuit complexity and new
challenges in fabrication processes has made manual calcu-
lations infeasible [2][4][5].

Recent pioneering research has developed automatic opti-
mization algorithms for analog design [4][6][7][8][9][7][10][11].
Despite this, some challenges still remain. Firstly, ana-
log/RF circuits tend to have a complex state space with
local minima and saddle points. State of the art optimiza-
tion algorithms [10] can get stuck in local minima, resulting
in a non-optimal design. Secondly, quantitatively explaining
the decisions made by the optimization algorithm is impor-
tant for designer interpretability during design optimization.
Current optimization algorithms provide no such feedback
to the user.

In this work, we propose a new optimization algorithm
that addresses these challenges. We introduce Duplex ran-
dom tree search, an algorithm meant for performance opti-
mization of nonlinear analog circuits. Our algorithm does
not get stuck in local minima and provides valuable feed-
back to the user in the form of performance to parameter
sensitivity graphs and Pareto distributions. Duplex is also
highly performance efficient and scalable, as demonstrated
in our results.

The principle of Duplex is different from other known op-
timization algorithms like simulated annealing [1], gradient

descent [12], etc., used in performance optimization. Other
algorithms focus their search either on the parameter space
(e.g. transistor width), or the performance space (metrics
such as gain, bandwidth, etc.). In contrast, Duplex simul-
taneously analyzes both performance and parameter spaces.
Global decisions are made in the performance space and ac-
tions are taken locally in the parameter space. To the best of
our knowledge, this is the first algorithm to simultaneously
keep track of a global objective/goal and use it to guide local
search steps.

Duplex uses random tree search- a tree based simulation
algorithm that also maintains the tree data structure as a
record of the state space traversed. It maintains and simul-
taneously grows two homomorphic (mirrored) random trees-
one in the parameter space and the other in the performance
space. In the performance space, it uses the basic random
tree search to find the globally optimal design by expanding
the tree toward the goal region. In the parameter space, it
decides which parameter needs to change to get closer to
the goal region. This decision is made using a reinforce-
ment learning algorithm [13] that evaluates the history of
previous changes in the parameter tree based on a reward
function. Duplex does not get stuck in local minima be-
cause of the probabilistic completeness property of random
trees[14]. This is in contrast to random walk based methods
like simulated annealing. The guidance in every step from
the global search towards the local step decision helps in
converging quickly to the optimal goal region.

The choice of random trees contributes to most of the
advantages of Duplex. Random trees generally search the
space more efficiently than Monte Carlo based simulation
methods [14][15][16][17], contributing to Duplex’s efficiency.
Additionally, during the course of the simulation, a unified
tree structure connecting performance and parameter space
of the circuit is maintained. This helps generate by-products
like Pareto surfaces and sensitivity analysis that provide de-
sign insights. Computing the exact Pareto surface is typ-
ically computationally very expensive [11][4] since Pareto
sets are high dimensional surfaces in the parameter space.
Duplex uses a statistical inference algorithm to infer the dis-
tribution of optimal states in the tree in the parameter space.
It uses the inferred distribution of optimal parameter states
as a Pareto surface. In addition, Duplex keeps track of how
variations in a given parameter cause performance metrics
to change and retrospectively generates a performance to
parameter sensitivity graph. This is in contrast to typical
algorithms that do not record circuit information during the
optimization process.



Duplex is a scalable algorithm and can optimize system-
level post-layout circuits. We demonstrate duplex’s scalabil-
ity by optimizing a system-level post-layout 1.6GHz charged-
pump PLL circuit [18] (with over 131 CMOS transistors) as
shown in Figure 10. Duplex’s scalability is due to its open-
ended search being restricted to the performance space, that
tends to be much smaller than the parameter space, greatly
reducing the size of the search space. The size of parameter
space depends on the size of the circuit. The PLL circuit
has over 100 CMOS transistors, but the performance space
has only 5 dimensions (Table 2). The complexity of Duplex
is not dependent on circuit size, allowing it to scale easily.

Duplex is computationally highly efficient. We demon-
strate that Duplex has an 81% (up to 5×) more speedup as
compared to state-of-the-art results [10] on the same design
(two stage operational amplifier [10]). Notably, this design
has local minima. Although a few branches in the param-
eter tree grow toward the local maxima, Duplex used the
performance tree to grow toward the global optimum and
successfully converged toward the global maximum (result-
ing in an opamp with 5GHz bandwidth), unlike [10] which
got stuck in a local minima (reporting 2GHz as a maximum
bandwidth for the circuit) (Figure 6). We also demonstrate
Pareto surface computation and sensitivity analysis (Sec-
tion 4.1). Duplex is a stable algorithm with little variance
in its execution with different initial states. We demonstrate
Duplex’s stability by running it multiple times on a CMOS
inverter circuit and optimizing the inverter for power and
delay (Figure 7).

Our contributions are as follows. We present Duplex ran-
dom tree search for performance space optimization of ana-
log circuits that is more efficient than state-of-the-art. Du-
plex is inherently scalable and does not get stuck in local
minima. We provide a simple and efficient technique for
Pareto surface generation. We also present a technique to
analyze the relative sensitivity of a parameter with respect
to performance. With Duplex, we present the idea of opti-
mization by simultaneously traversing dual spaces.

2. PRELIMINARIES
For a given circuit topology and process technology, per-

formance of the circuits is measured with respect to metrics
such as gain, slew rate and bandwidth. The circuit’s per-
formance depends on parameters such as transistor width,
length, resistor and capacitor values. Let P ∈ Rn and
Q ∈ Rm denote the parameter and performance space, re-
spectively. Let n and m denote the number of parameters
and performance metrics, respectively. We refer the points
in the performance and parameter space as a performance
and parameter states, respectively.

We model physical constraints of the circuit and manu-
facturing process as constraints in the parameter space. For
example, for the inverter circuit in Figure 1, transistor M1

could have a width constraint 1µm < M1 ≤ 10µm. The pa-
rameter space may also have equality constraints enforced
by layout design rules. For example, width of transistor M1

should be twice the width of transistor M2.
The parameter and performance variables can each have

different scales (say Nano to Giga) and measuring units.
We normalize across them by mapping every variable to the
interval [0, 1]. In general, the size of a parameter space n is
related to the number of components (size) of the circuit.

WNMOS/Lmin

WPMOS/Lmin

=1.2V

=5pF

Lmin=65nm

Figure 1: Schematic of an inverter circuit that we use as
an illustrative example. We want to optimize the width of
NMOS and PMOS transistors to minimize dynamic power
and delay.

Constrained parameter space is a subset of the param-
eter space, bounded by the physical constraints of the cir-
cuit. A constrained parameter space is modeled as an inter-
section of k inequalities:

P = {p | Cp ≤ b} (1)

where C and b are k× n and n× 1 matrices. For each p in
the set P , all sizing requirements of the circuit are met.

A performance (parameter) variable is a variable in the
performance (parameter) space. A performance (parameter)
state is a vector value assignment to all the performance (pa-
rameter) variables in the circuit. The relationship between
parameter and performance spaces is shown in Figure 2. An
instance of the circuit with a given parameter state corre-
sponds to a specific performance state. This can be viewed
as an onto, or many-to-one mapping f from many parame-
ter states to one performance state. We can only evaluate
mapping f point wise using numerical simulation (such as
HSPICE).

Reachable performance space is the imageQ of the con-
strained parameter space P in the performance space.

Q = {q | q = f(p) where p ∈ P} (2)

Goal region is a subset of the reachable performance space
where the performance of the circuit is within the acceptable
range, set by the designer.

Qgoal = {qgoal | Gqgoal ≤ d} (3)

where l × m matrix G defines the constraints on the goal
region.

Optimal state is any state in the goal region of the per-
formance space.

For the inverter in Figure 1, parameter space is R2 and
consists of the widths of NMOS and PMOS transistors. The
optimization goal is to minimize power, rise and fall time
delay of the circuit. Specifically, we want power ≤ 100µW
and delay ≤ 10ps. An example of the parameter state is
(wpmos, wnmos) = (4µm, 2µm). Similarly, a performance
state is a vector (p, drise, dfall) = (50µW, 5ps, 4ps).

3. THE DUPLEX RANDOM TREE SEARCH
ALGORITHM

We propose Duplex, our algorithm for optimizing analog
circuits using random trees.
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Figure 2: The relation between constrained parameter space
(left) and the reachable performance space and the goal re-
gion (right).

3.1 Random Tree Search

Random tree is a tree structure [15][14][16] that is con-
structed in the continuous space Rn. Each node in the tree
is a vector in Rn. Each node can have multiple children.
The tree is initialized by fixing its root to a specific state in
the space. The random tree is constructed incrementally.

Random trees are shown to consistently outperform ran-
dom walk based search methods such as Monte Carlo sim-
ulations for search applications [15][17][16]. Efficiency im-
provement can be credited to the data structure maintained
by the random tree algorithm during the simulation. While
growing, it samples a new state in the goal region (desired
solution set), and then determines which state is closest (in
L2-norm sense) to that sampled goal state among all of the
previously visited states in the tree. It simulates a path
between the closest state and the newly sampled state and
adds the new state to the tree. This is in contrast to the
memory-less sampling of points in the Monte Carlo based
methods.

Duplex simultaneously constructs and maintains two dif-
ferent, but mirrored (homomorphic) random trees in the per-
formance and parameter space. Figure 4 shows the parame-
ter and performance random tree growing in the parameter
and performance space. Intuitively, the performance tree is
the mirror of the parameter tree in the performance space.
Let Tq denote the performance tree and Tp denote the pa-
rameter tree. Let q(i) and p(i) denote the ith nodes in the
performance and parameter tree, respectively. Let Q∗ de-
notes the goal region in the performance space.

These trees represent different relationships. An edge in
the parameter tree indicates that the two parameter states
connected to that edge differ in exactly one variable. An
edge in the performance tree between indicates that the
corresponding states in the parameter tree are connected.
For each node p in the parameter tree, there exists a corre-
sponding node in the performance tree, and vice versa. The
corresponding node in the performance tree is computed by
simulating the circuit with the given parameters.

For the inverter circuit, each node in the parameter tree is
a two-dimensional vector p = (wnmos, wpmos), corresponding
to the width of NMOS and PMOS transistors. Each node
in the performance tree is an assignment of vector of per-
formance metrics q = (power, drise, dfall). Performance node
q is computed by simulating the inverter circuit with the
parameter vector p using HSPICE.

3.2 The Duplex algorithm

Figure 3 shows the flow of the Duplex algorithm. Du-
plex advances toward the goal region Q∗ in the performance
space. In every iteration, it navigates the performance space
to get closer to the goal region (qsample). This is the global
search step. When it finds a close enough state (qnear) to
the goal region, it looks up the corresponding mirror image
of that state in the parameter space (pnear). For the mirror
state, it finds a neighbor state by perturbing a single pa-
rameter in the mirror state (pnew). This local step in the
parameter space is the action the algorithm takes based on
the guidance from the performance space. A performance
state corresponding to the neighbor state is added in the
performance space (qnew). The algorithm continues until it
reaches an optimal state in the performance space.

3.3 Global search steps in performance space
Duplex biases the search by growing the performance tree

toward the goal region. In every iteration, it uniformly sam-
ples the goal region to find a candidate optimal state qsample.
Duplex’s objective in this iteration is to get closer to qsample.
It finds the closest state as per Euclidean distance in the
performance tree from qsample. It uses the KD-tree algo-
rithm[14] for efficient search of the tree in the performance
space. For this qnear, it then looks up the corresponding
state in the parameter space and finds pnear.

3.4 Local coordinated steps in the parameter
space

In this phase, Duplex’s objective is to find a state pnew
in the parameter space that is a neighbor of pnear and its
image qnew will be closer to the goal region. It perturbs
exactly one parameter in the parameter state pnear to ob-
tain a new neighbor state pnew. There are three reasons
why duplex only perturbs a single parameter (coordination)
at each iteration: Firstly, optimizing a circuit with multi-
ple parameters can be done by iteratively optimizing single
parameters in rotation, as in the coordinated descent algo-
rithm [12]. Secondly, for circuit design, explaining the re-
sults of the learning algorithm is very valuable. By using
coordinated steps instead of the gradient, Duplex is able to
use reinforcement learning and compute the sensitivity of
performance metrics to parameters. Finally, some parame-
ters might not have significant impact on the performance
metrics. By coordinating one parameter at a time, we can
find these less significant parameters and i) avoid perturbing
them in the future and ii) report them to the designer.

Duplex uses a reinforcement learning algorithm [13] to
determine which parameter variable (pj ∈ pnew) to perturb.
It uses an annealing learning rate [12] to determine how
much to perturb the jth parameter in pnew.

3.4.1 Reinforcement learning
Since we treat the circuit as a blackbox, the gradient infor-

mation is not available. Without the gradient, analytically
computing an optimal local step is not possible. Instead,
Duplex relies on the history of the previously taken steps to
learn what is the best step in future. Duplex keeps a his-
tory of how influential each parameter is in getting closer to
the goal region. Every parameter state pnear has a reward
vector Q associated with it, that is initialized to all ones at
the root of the parameter tree. After each iteration, Q is
updated, depending on whether changing the jth parame-
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ter resulted in the corresponding performance state getting
closer to the goal region or not.

The new neighbor state pnew differs by the parent param-
eter state only in parameter j, so we compute the reward
vector according to Equation 4.

Q(pnear, j)← Q(pnear, j) + γ(‖qnew, Q∗‖ − ‖qnear, Q∗‖)
(4)

where ‖.‖ is the distance from the performance state q and
the goal region and γ is the discount rate. Next time the
parameter state p is chosen, Duplex uses weighted uniform
sampling on Q(p) to select the parameter i.

The reward vector is inherited only by children states of
a parent state. Reward vectors on two different paths do
not influence each other. This is necessary to avoid mak-
ing global mistakes in the random tree. Therefore, even if
one branch of the tree is stuck in a local minima, the other
branches are not affected.

3.4.2 Annealing learning rate
The learning rate α in Duplex is set such that initially we

search the space, then we converge toward the optimum
state. Duplex determines the length of each step, the extent
to which the new parameter state should differ from the
parent state, according to a learning rate α. Initially the
length of the steps are very high (the search phase), but as
we get closer to the optimum state, we anneal (gradually

lower) the length of each step in order to converge toward
the optimum.

The learning rate depends on the step length of the parent
state, and a parameter K, and the initial step length α0

specified by the user.

αpnew =
α0

1 +K × αpnear
(5)

The sign of the step length is chosen randomly. Duplex adds
or subtracts the value of αpnew to the jth parameter in the
parameter state vector. In Duplex, unlike other learning
algorithms, the learning rate is dependent on the depth of
the tree and not the number of iterations. After determining
which parameter to change and how much to change that
parameter, Duplex generates the new parameter state pnew.

3.5 Generating the new performance state
From the neighbor state pnew, Duplex generates the new

performance state by using a numerical simulator like HSPICE
to evaluate the sampled parameter. The values of the perfor-
mance metrics (gain, bandwidth etc.) form the state vector
of qnew. The pair (pnew, qnew) is added to the parameter
and performance trees respectively and the reward vector
for pnew is updated.

3.6 Other outputs: Pareto distribution and sen-
sitivity analysis

After reaching the goal region, the algorithm generates
the Pareto surface of the design space. Let S denote the set
of performance states in the goal region. Duplex computes
the Pareto set by gathering all the corresponding parameter
states to the set S. It infers the mixture distribution of the
Pareto set using variational Bayesian inference [12].

Duplex also analyzes the sensitivity of each performance
metric j to each parameter i. It records the result in the
sensitivity variable ssij . Duplex traverses the random tree
to determine the number of times a parameter has changed
and the extent to which it has changed. In a manner sim-
ilar to covariance computation, the relative change in the
performance due to a parameter is of interest.

Let fj,q denote the value of performance metric j at state
q. At each iteration, if changing parameter i results in



change in fj,q, we record the difference in variable δqnew,i,j :

δqnew,i,j = |fqnew,j − fqnear, j| (6)

where qnear is the parent state of qnew. So δq,i,j is the dif-
ference of performance j between the new state q and it’s
parent when we change parameter i. Duplex updates the

sensitivity matrix according to ∆sij = | δq,i,j
fj,q
|.

sij =
∑
q

|δq,i,j
fj,q
| (7)

After termination, Duplex normalizes each row (j) in the
sensitivity matrix s.

3.7 Termination and complexity analysis
The objective of Duplex algorithm is to reach a goal re-

gion. The Duplex algorithm will terminate when it finds
sufficient optimal states in the performance tree within the
goal region, or if it has reached the maximum number of
iterations1.

Duplex’s approach toward search is a twofold: 1) Global
search in the performance space, where it searches for the
nearest visited state and biases the search toward the goal
region, and 2) local search in the parameter space, where
it takes the best action from the given parameter state ac-
cording to the past simulation history. In comparison to
the local search, global search typically provides significant
efficiency improvement; However it is very expensive and
does not scale beyond 100 dimensions. In duplex, we only
perform global search in the performance space, which typi-
cally is very small (to the order of tens of dimensions). Since
the dimension of performance space is usually very small (in
comparison to the parameter space) search in the perfor-
mance space is very efficient. In our implementation, we
used KD-tree data structure [14] as our database for clos-
est state search queries. Therefore, the complexity of search
for Duplex is O(n ×m × log(n)) where n is the number of
iterations and m is the number of performance metrics.

The Duplex algorithm, unlike conventional search meth-
ods such as simulated annealing, does not get stuck in local
minima of the performance space. Even if some branches
of the random tree do get stuck in local minima, the al-
gorithm simultaneously grows other branches outside the
minima and converges toward the global optimum. There-
fore, the probability of finding the optimum state goes to
1 as times goes toward infinity. This is based on the prob-
abilistic completeness propertu of the random tree search
algorithm [14].

4. EXPERIMENTAL RESULTS
In order to show the effectiveness, efficiency and scalability

of Duplex algorithm we used three case-studies: 1) a CMOS
inverter, which we used as a proof-of-concept and to ana-
lyze the Duplex algorithm, 1) an operational amplifier cir-
cuit (from [10]), which we used to demonstrate the efficiency

1Duplex is, in a certain sense, a search algorithm for high-
dimensional continuous spaces. Thus, it is technically dif-
ferent from other optimization techniques such as simulated
annealing or gradient descent. Unlike optimization meth-
ods, Duplex does not try to optimize an objective function
after reaching the goal region and meeting the performance
requirement of the circuit. Although search algorithms can
be used as an optimization algorithms and vice-versa.

Figure 5: Schematic of a two-stage operational amplifier.

of the algorithm and to show that our algorithm does not
get stuck in local minima, and 3) a system-level post-layout
charge-pump PLL circuit, which we used to demonstrate
Duplex’s scalability and practicality for high-dimensional
system-level circuit.

We use the Duplex algorithm to explore the performance
space of a two-stage operational amplifier with frequency
compensation [10] as shown in Figure 52. The opamp cir-
cuit has many parameter and performance variables, demon-
strating the scalability and efficiency of the Duplex algo-
rithm. The circuit was designed in 65nm library and the
supply voltage was 1.2V . The main objective is to meet the
bandwidth requirement of the circuit. There are 7 design
variables in the circuit (the capacitor Cc, the bias current
Ibias, and the width of transistors W1,W3,W5,W6 and W8.
The other parameters can be calculated from these param-
eters. Let λ = 30nm. The length of all transistors are set
to Lmin = 10λ to meet an acceptable output resistance and
intrinsic gain.

Table 1: Performance specification for the opamp circuit and
the result of circuit optimization. Duplex determines the
optimum value for the parameters and performance metrics
of the circuit.

Performance metric Performance Spec. Optimum Value
set by. computed
designer by Duplex

Power < 0.5mW 0.4763mW
Phase margin > 45◦ 109◦

Gain margin > 5dB 11.22dB
DC gain > 30dB 76.59dB

Slew rate > 10 V
µsec

55.65 V
µs

Bandwidth > 2GHz 5.766GHz

We executed Duplex to optimize the parameters in order
to meet the specifications. We designed the circuit in the
same process, used the same performance specification and
applied the same inputs as [10]. It took approximately 20
minutes and 857 HSPICE simulations to perform the opti-
mization and generate 100 optimal states within the goal
region on a Windows machine equipped with a Core-i5 pro-
cessor and 16GB memory to optimize the opamp circuit.

2We selected the same opamp case-study as [10] in order to
compare Duplex with the state of the art.
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The majority of the time was spent on HSPICE simulation
and the Duplex’s performance overhead was negligible.

[10] reported 4625 SPICE simulations to compute the op-
timal design. In comparison, Duplex finished in 857
HSPICE simulations, demonstrating a 81% more per-
formance efficiency than [10]. Furthermore, Duplex
improved the quality of the optimization results by
increasing the circuit’s bandwidth to 5.7GHz, up to
250%, in comparison to [10] where they reported the
optimized bandwidth of 2.2GHz. Notable, the opamp
design demonstrates how Duplex escapes getting stuck in
local minima.

Figure 6 shows how Duplex simultaneously explores the
parameter and performance space and avoids the local op-
tima. On the left, Figure 6a shows the circuit’s bandwidth
w.r.t. size of transistors M1 and M3, assuming other pa-
rameters are set to optimal value. Let w1 and w3 denote
the width of transistor M1 and M3, respectively. Due to
symmetry, size of transistors M2 and M4 are equal to M1

and M3, respectively. There is one global maximum, located
at (w1, w3) = (590λ, 30λ), However there are multiple local
maxima throughout the space. The objective of Duplex was
to maximize bandwidth without getting stuck in local max-
ima. We set the initial state at w1, w3 = (300λ, 60λ) and
executed Duplex. Figure 6b shows the contour plot of the
bandwidth. We rendered the parameter tree over the con-
tour plot to show how Duplex explores the parameter space.
Even though a few branches in the parameter tree
grow toward the local maximum at (250λ, 20λ), Du-
plex used the performance tree to grow toward the
global optimum and successfully converged toward
the global maximum.

As the algorithm got closer toward the goal region, the an-
nealing step length caused Duplex to take smaller steps and
remains within the goal region. As a result, many of samples
were generated within the goal region. At each iteration,
Duplex only changed one parameter, making all edges in the
parameter tree parallel to the w1−w3 axis. Hence, many of
the states where the w1 or w3 were unchanged are not shown
in the projected figure. In order to increase the bandwidth,
Duplex aggressively increased the size of transistor M1. The
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Figure 7: The convergence rate w.r.t. number of iterations
for the Duplex algorithm for the inverter case study. Our
algorithm converges very fast toward the optimum design
from any initial state. Duplex is not sensitive to the choice
of initial state.

opamp’s unity-gain bandwidth can be approximated as [10]
wc = gm1

Cc
. This suggests that the bandwidth can be in-

creased by transconductance of the first stage, which in turn
can be achieved by sizing up the input transistors M1 and
M2. Bandwidth can also be increased by reducing the com-
pensation capacitor Cc or increasing the bias current Ibias.
Duplex automatically performed all of these optimizations
in order to meet the specification.

We use the CMOS inverter from Figure 1 to demonstrate
a few outputs of Duplex. The inverter is designed in 65nm
process.

Fig. 7 shows the visually weighted regression plot for con-
vergence rate for the Duplex algorithm for the inverter case
study. We measure error as the minimum distance from ev-
ery step in the performance tree toward the center of the goal
region. We executed Duplex for 100 independent runs with
a random initial state and draw the overlapping convergence
plots in the visually weighted regression plot. We also draw
the average of all the convergence plot as the expected con-
vergence rate. As shown in the convergence figure, Duplex
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quickly converges toward the goal region in the performance
space. Fig. 7 highlights two facts about the Duplex algo-
rithm. 1) Duplex converges exponentially fast toward the
goal region and 2) Duplex is very stable with respect to the
choice of the initial state

In our experiment, we uniformly sampled the parameters
for the initial (root) state in the parameter space, which is
the reason for high error variance in the beginning. On the
other hand, toward the end of the algorithm the variance
in error is low because Duplex converges to the optimum
results regardless of the choice of the initial state.

4.1 Performance to Parameter Sensitivity
We visualize the performance to parameter sensitivity ma-

trix sij using a bipartite sensitivity graph as shown in Fig-
ure 8. The left side of the sensitivity graph denotes the
parameters of the circuit (such as width of transistors or
bias current) and the right side denote the performance met-
ric measured by the Duplex algorithm (such as bandwidth,
power and gain). The thickness of each edge between a pa-
rameter and performance node denote the sensitivity. Due
to the lack of space, we only showed the partial graph of the
most important nodes and leave out the rest.

Each row of the sensitivity matrix is normalized. Hence,
for each given performance metric, one parameter has an
edge of thickness 1.0, denoting the most influential param-
eter to that performance, and the other parameters have
values between [0, 1]. For the opamp circuit, the sensitivity
graph implies bandwidth depends on the bias current ibias,
compensation capacitor Cc and the width of transistors M1

and M8. This observation supports our bandwidth analy-
sis earlier. Similarly, the gain is very sensitive to the width
of transistor M1 and sizing of the current mirror M8, and
the bias current. However, the gain is not sensitive to the
compensation capacitor. We also observed that the biasing
current was the most sensitive parameter in the design.

4.2 Pareto distribution inference
To compute the Pareto distribution, we collect the param-

eter samples that results in acceptable performance from the
circuit. Figure 9 shows the Gaussian mixture distribution of
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Figure 9: Distribution of the optimal parameters for the
opamp circuit. Duplex computes the Pareto set as a mixture
Gaussian distribution by inferring the distribution of the
samples in the goal region. Pareto surface is computed from
the CDF of the pareto distribution. We use the mean of the
distribution as the optimum state.

those samples for the opamp circuit, projected to W5, Ibias
plane, where W5 is a width of transistor M5 and Ibias is the
bias current. The mean of the Pareto distribution indicates
the optimal value of the parameter. Furthermore, we can
generate more optimal design parameters from the Pareto
distribution and predict the yield for the circuit.

4.3 Optimizing the PLL circuit
The Charge-Pump PLL (CP-PLL) [19][18] is one of the

key building blocks in many analog IPs and SoCs. The PLL
can be used in various applications such as clock synchro-
nization and jitter mitigation.

We used a low-noise 1.6GHz CP-PLL circuit as a system-
level example to demonstrate Duplex’s scalability. The schematic
of the CP-PLL circuit is shown in Figure 10 [19]. The CP-
PLL circuit consists of five blocks: Phase detector, a charge-
pump circuitry, a loop filter, a voltage controlled oscillator
(VCO) and a frequency divider, arranged in a feedback con-
figuration [19]. The circuit has 131 CMOS transistors. The
circuit is designed using TSMC 0.18um process, using sup-
ply voltage 1.8V . The reference clock was set at 200MHz.

The first block in the CP-PLL circuit was the phase detec-
tor circuit. The phase detector compares the clock produced
from the VCO with the reference clock and produces an er-
ror signal proportional to the phase difference between its
inputs. The phase detector block was implemented using a
NOR gate, hence it was balanced but not very power effi-
cient. We minimized the total power dissipation of the phase
detector while maximizing the gain Kd. We set the width
of the transistors in the NOR gate as a parameter.

The charge pump was a set of symmetrical current sources.
Transistors M21, . . . ,M26 supply the pump-up current to the
loop filter. It consists of an input differential pair M21M22,
current mirror load M29, output current source M28, and
pull-up transistors M31M32. A similar circuit is used to
generate the pump-down current. We set the size of the in-
put differential transistors pairs as a parameter for duplex in
order to make the charge-pump circuit fully balanced. Af-
ter the charge pump block, there was a filter to remove the
high-frequency components of the signal introduced by the



Phase 
Detector

Charge
Pump

Loop 
Filter VCO

Frequency 
Divider

Vin Vout

feedback loop

CLK

CLK

Reset

Reset

Q’

Q’

PD_down

PD_up_n
CLK_VCO

CLK_REF
(200MHz)

Phase Detector

NOR

DLatch

DLatch

NOR
Charge
Pump

LPF_in

LPF
out

R1 R2

R0

C0
C1 C2

VCO

Divide by 2Divide by 2Divide by 2

NOT

Loop filter

Frequency (1/8) divider

VCO output
(1.6GHz)

M30

Ib

M27

M16

M25M26
DNpDNp

M29

Ismall

M17

M15

M20

M28

M23

M31 M32

M21M22

M24 Ib

UPn UPp

vdd

gnd

Ipump

Charge Pump Circuit

VCO circuit

Charge Pump PLL circuit

Figure 10: Schematic of a post-layout charge-pump PLL circuit.

phase detector circuit. The loop filter was implemented as
a simple RC network and consisted of three resistors and
capacitors that created a three-pole one-zero network [18].
The CP-PLL’s stability was largely dependent on the value
of capacitor C1, and the bandwidth was dependent on the
value of resistor R1. After duplex optimization, the algo-
rithm determined the optimum value for capacitor C1 was
48pF and for resistor R1 was 54kΩ.

The voltage controlled oscillator (VCO) [18] was supposed
to produce a clock at 1.6GHz. The input stage consists of
M4, . . . ,M7 transistors which are used as varactors for fre-
quency tuning. M1, . . . ,M3 offers negative conductance to
fulfill the oscillating pre-conditions. R0 and R1 are parasitic
resistance of L0 and L1. The output frequency of the VCO
depends on the value of mmult. The algorithm was optimiz-
ing the bias voltage of the VCO circuit. For the VCO circuit,
we ensured the gain of the circuit was more than 25Meg

V
. The

output of the VCO passes a series of 2:1 dividers, reducing
the frequency from expected 1.6GHz to 200MHz[18].

We optimized the PLL design such that it would meet the
operating frequency of the PLL at 1.6GHz while optimizing
the performance of phase detector gain and power and the
VCO gain and phase noise. We executed duplex for 350 it-
eration which took approximately 13 hours. The algorithm
found multiple configurations that satisfied the performance
requirements of the CP-PLL circuit. Table 2 shows the re-
sult of the optimization.

5. RELATED WORK
Analog circuit optimization has been extensively studied

in the past [1][2][20][11]. Classic techniques relied on generic
optimization techniques (such as simulated annealing) to op-
timize the circuit’s performance [1][2][4][20].

Recently, researchers used computational intelligence tech-
niques to speedup circuit optimization [8][9][7]. [10][11] op-
timizes the circuit by discretizing and exploring the state
space. In [10], the authors optimize an operational ampli-
fier, which we used in Section 4. Other specialized opti-

Table 2: Result of Duplex optimization of the CP-PLL cir-
cuit. Duplex determines the optimum value for the param-
eters and performance metrics of the circuit.

Perf. metric Perf. Spec. Opt. Val.
set by. computed
designer by Duplex

PD Gain Kd > 1uA/Deg 1.16uA/deg
Frequency 1.6GHz ± 0.01 1.6025GHz
VCO PhaseNoise < −60dB@60K −96.25dB@60K
VCO gain > 25MEG/V 39.1MEG/V
PD Power < 20mW 12.85mW

mization techniques have been employed to address circuit
optimization [6] with added objectives, such as yield [4][10]
or technology migration [7].

In summary, we presented a technique for efficient op-
timization of performance metrics in analog circuits. Our
technique is significantly faster than state-of-the-art and gives
insights about the circuit like sensitivity analysis. It also
simplifies the computation of the Pareto optimal surface sig-
nificantly. Our tree based optimization algorithm does not
get stuck in local minima. The dual performance/parameter
space search helps make the algorithm efficient and stay fo-
cused.
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