
January 1987 UILU-ENG-87-2202
ACT-74

COORDINATED SCIENCE LABORATORY
College o f Engineering
Applied Computation Theory

SIZE-TIME
COMPLEXITY OF
BOOLEAN NETWORKS
FOR PREFIX
COMPUTATIONS

G. Bilardi
F. P. Preparata

UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN

Approved xor Public Release. Distribution Unlimited.

UNCLASSIFIED
E C U H t T Y C L A S S I F I C A T I O N O F T H IS PA GE

REPORT DOCUMENTATION PAGE
¡1*. R E P O R T S E C U R I T Y C L A S S I F I C A T I O N

Unclassified
lb . R E S T R I C T I V E M A R K I N G S

None
12*. S E C U R I T Y C L A S S I F I C A T I O N A U T H O R I T Y

N/A_________________________
[2b. O E C L A S S I F I C A T I O N / D O W N G R A O f N G S C H E D U L E

N/A _____________________ _____

3. D I S T R I B U T I O N / A V A I L A B I L I T Y O F R E P O R T

Approved for public release;
distribution unlimited

I A. P E R F O R M I N G O R G A N I Z A T I O N R E P O R T N U M B E R (S)

UILU-ENG-87-2202 (ACT-74)
5. M O N I T O R I N G O R G A N I Z A T I O N R E P O R T N U M 8 E R (S)

N/A
[6 * . N A M E OF P E R F O R M I N G O R G A N I Z A T I O N

Coordinated Science Lab
University of Illinois_____

j6b. O F F I C E S Y M B O L
(If applicable}

N/A

7a. N A M E O F M O N I T O R I N G O R G A N I Z A T I O N

National Science Foundation

|Sc. A O O R E S S (City. State and ZIP Code)

1101 W. Springfield Avenue
Urbana, Illinois 61801

7b. A O O R E S S (City. State and ZIP Code)

1800 G. Street, NW
Washington, DC 20550

| Sa. N A M E O F F U N O I N G / S P O N S O R I N G
O r g a n i z a t i o n National

Science Foundation
O F F I C E S Y M B O L
(If applicable)

N/A

9. P R O C U R E M E N T I N S T R U M E N T I D E N T I F I C A T I O N N U M B E R

DCI-8602256 and ECS-84-10902
¡3c. A O O R E S S (City. State and ZIP Code)

1800 G. Street, NW
Washington, DC 20550

10. S O U R C E O F F U N O I N G N O S .

1 1 T ! T L $ (include Security Classification). "Size-Time Complexity
[of Boolean Networks for Prefix Computations"

P R O G R A M P R O J E C T T A S K W O R K U N I T
E L E M E N T N O . NO. NO. N O .

N/A N/A N/A N/A
12. P E R S O N A L A U T H O R (S)

G. Bilardi and F.P. Preparata
I 13«. T Y P E O F R E P O R T 13b. T I M E C O V E R E D 14. D A T E O F R E P O R T (Yr.. .Wo., Day) 15. P A G E C O U N T

1 Technical F R O M T O January 1987 16
I 16. S U P P L E M E N T A R Y N O T A T I O N

N/A
11 7. C O S A T I C O O E S

,, Fife L O G R O U P 1 SUB. GR

18. S U B J E C T T E R M S (Continue on reverie if necessary and identify by block number)

prefix problem, boolean networks, cycle-freedom

19. A B S T R A C T iContinue on reverie if necessary and identify by block number)

The prefix problem consists of computing all the products x ^ . . .x_. (j=0,... ,N-1), given
a sequence x = (Xq ,x ,̂ ... ,xN_-̂) of elements in a semigroup. In this paper we completely
characterize the size-time complexity of computing prefixes with boolean networks, which are
synchronized interconnections of boolean gates and one-bit storage devices. This complexity
crucially depends upon a property of the underlying semigroup, which we call cycle-freedom
(no cycle of length greater than one in Cayley graph of the semigroup) . Denoting by S and T
size and computation time, respectively, we have S = 0((N/T) log(N/T)), for non-cycle-free
semigroups, and S = 0(N/T), for cycle-free semigroups. In both cases, T [f2(logN), 0(N)] .

120. O I S T RI S U T I O N / A V A i i_A 81 L l T Y OF A 8 S T R A C T

I U N C L A S S I F ì E D / U N L I M I T E D X . S A M E AS SPT. ~ O T IC U S E R S □

21. A B S T R A C T S E C U R I T Y C L A S S I F I C A T I O N

Unclassified
22a. N A M E OF R E S P O N S IB L E ¡ N O l V l O U A L 22b. T E L E P H O N E N U M B E R

!Include Area Code,
22c. O F F ICE S Y M B O L

NONE
DD FGRM 1473, 83 APR E O r i O N DF 1 J A N 73 IS O B S O L E T E . UNCLASSIFIED

SIZE-TIME COMPLEXITY OF BOOLEAN NETWORKS FOR PREFIX COMPUTATIONS

G. Bilardi1 and F.P. Preparata2

ABSTRACT

The prefix problem consists of computing all the products XqXi ...Xj (/ = 0,...,iV — 1), given a
sequence x = (x0,xi,."7*xV-i) of elements in a semigroup. In this paper we completely characterize
the size-time complexity of computing prefixes with boolean networks, which are synchronized inter­
connections of boolean gates and one-bit storage devices. This complexity crucially depends upon a
property of the underlying semigroup, which we call cycle-freedom (no cycle of length greater than
one in the Cayley graph of the semigroup). Denoting by S and T size and computation time,
respectively, we have S = 0((iV/T) log(iWT)), for non-cycle-free semigroups, and S = 0(N7T), for
cycle-free semigroups. In both cases, T 6 [Q(logN),0(N)].

1. Introduction

The prefix problem consists of computing all the products x0x ^.jcj (j — 0,...,iV —1), given a

sequence x = (x0̂ i,...^ iv-i) of elements in a semigroup. Prefix computations occur in the solution

of several significant problems such as carry-look-ahead addition [BK82], the evolution of finite-

state machines [LF80], linear recurrences [K78], digital filtering [BP86b], various graph problems

[KRS85], sorting in bit-models of computation [CS85, BP85], and others.

The prefix problem has been extensively investigated in the boolean-circuit model, where the

computation is carried out by an acyclic network of combinational gates. Various complexity meas­

ures such as size, depth, width, and their trade-offs have been studied in this context [LF80, F83,

CFL83, S86]. Algorithms for the EREW-PRAM model have been proposed in [KRS85].

In this paper we study the complexity of computing prefixes with boolean networks, which are

synchronized interconnections of boolean gates and one-bit storage devices. Relevant measures are

computation time T and size S, defined as the total number of components (combinational and

sequential) in the network. Our model of computation is essentially the same as the aggregate of

[DC80], from which it differs only in the input/output conventions. Both models afford the study of

the role of sequential logic in circuits, and allow the consideration of circuits of size sublinear in the

^Department of Computer Science, Cornell University, Ithaca, NY 14853. Research supported in part by NSF Grant
DCI-8602256.

^Coordinated Science Laboratory, Departments of Electrical and Computer Engineering and of Computer Science,
University of Illinois at Urban a-Champaign, IL 61801, USA. Research supported in part by NSF Grant ECS-84-10902.

2

input size. Results on boolean networks have also interesting implications for other models of

parallel computation such as fixed interconnections of processors and VLSI circuits [T80].

We have found that the size-time complexity of the prefix problem is determined by a property

of the underlying semigroup, which we call cycle-freedom. We call a semigroup cycle-free if its Cay­

ley graph has no cycle of length greater than one and non-cycle-free otherwise. Our results, which

completely characterize the size-time complexity of the prefix problem, are encompassed by the fol­

lowing theorem, which summarizes Theorems 3,4, and 5.

Theorem 1. The size-time complexity of the prefix problem on a boolean network is

S = 9({N/T) log(N/T)), for non-cycle-free semigroups, and is S = 0(iV/T), for cycle-free semi­

groups. In both cases, T 6 [S2(logN),0{N)].

For non-cycle-free semigroups, the upper bound can be achieved by known constructions based

on binary-tree networks, or twisted-reflected-tree networks [LF80, BK82, BP86b], whereas the

lower bound (Section 3, Theorem 3) is less obvious, and is based on arguments of computational

friction [BP86a]. For cycle-free semigroups, the lower bound is based on a trivial input/output

argument, while the upper bound is achieved by a rather sophisticated algorithm (Section 4,

Theorem 5) executed by a tree-connected network.

It may be interesting to contrast Theorem 1 with the result of [CFL85] that there are

constant-depth, polynomial-size (unbounded fan-in) boolean circuits to compute prefixes for a semi­

group, if and only if the semigroup is group free, an attribute stronger than cycle free.

A result completely anologous to Theorem 1 could be stated for the area-time complexity of

prefix computation in the VLSI model [T80]. Indeed, since a VLSI circuit is the layout of a boolean

network, size-time lower bounds for the latter immediately translate into area-time lower bounds

for the former. In general, area is larger than size due to space occupied by wires. However, the

circuits considered in this paper can be laid out so that the total wire area is of the same order as

the size, hence they are area-time optimal as well as size-time optimal.

3

2. Definitions and Problem Statement

A finite semigroup is a pair <A ,*> where A = J is a set s ẑe s an(̂ ' an associ~

ative binary operation on A, which we call product. We denote by xy the product of elements x,y€A.

A finite monoid is a finite semigroup with a distinguished element e, called the identity, such that

xe — ex — x, for all x€A. Any semigroup can be easily transformed into a monoid by the addition

of an element with the properties of the identity.

For a sequence x = (x0,xl ,...,xiv -t)€ A iV, the sequence of prefixes of x is defined as y =

(y0,ylf...Jiv-i)» with yj = x0x t ... Xy. The prefix problem consists in computing y from x. In the

study of the complexity of the prefix problem, an important role is played by the Cayley graph

G(A) = {AJE) of A, containing for each ordered pair (x,y) an arc of the form (x,xy), labelled by y.

It is easy to see that each node of G(A) has out-degree s, that the labels of the self loops of a given

node always form a subsemigroup of A, and that G(A) is transitively closed.

We call a semigroup cycle-free (CF) if the only cycles in its Cayley graph are self-loops, and

non cycle-free (NCF) otherwise (we avoid the term "cyclic" here, since it has a different established

meaning in group theory). We shall see that cycle-freedom is the crucial property of a semigroup in

determining the complexity of the prefix problem. Among CF semigroups, of particular interest are

insertion semigroups, characterized by the following property: for all x,y,z,w€A,

xyz = xy => xwyz — xwy. (1)

We now give examples of semigroups that belong to the various classes introduced above. If

any element x€A different from the identity has an inverse x ~1 such that xx 1 = e, then (.e,x,e)

forms a nontrivial cycle in G(A) and A is NCF. As a corollary, all groups are NCF.

All abelian CF semigroups are also insertion semigroups. An instance of abelian CF semi­

group is given by the set A = fO,l,...,s — 1/ with respect to the operation threshold-(s — l) addition

denned as xy = minix-i-y, s -1) . The prefix operation on this semigroup represents the cumulative

sum of the sequence x with the value (s —I) replacing each larger value.

4

Further examples of insertion semigroups are all semilattices, where the semigroup operation

is commutative and idempotent. Examples of semilattices are the set of the 0-1 vectors of length n

with respect to component-wise OR (AND), and the set of the first s nonnegative integers with the

MINIMUM (MAXIMUM) operation.

An interesting insertion semigroup that is not a abelian is the set of the rankings of n items

with respect to the operation of rank concatenation, which plays an important role in VLSI sorting

[CS85, BP85, BP86a]. Identifying the n items with the integers from 1 to n, a ranking is an

ordered partition of the set {1,2, . . . » n}, that is, a sequence of disjoint sets whose union equals {1,2,

. . . , ft}. Intuitively, all the elements in a given set have the same rank, and have rank higher

than those in the next set. The concatenation of two rankings u = (ui,U2,—,uf>) and

v = (vi,v2,...,uq) is uu = (wi,u}2,...,w,,) with Wj equal to the subsequence of the nonempty terms of

(Uj n v i , u j n v 2, —, Uj n uq).

Yet another class of semigroups is that of strongly cycle-free (SCF) semigroups defined by the

property that, for all x€A, the set of solutions y of the equation xy — x is either empty or is A

itself. In the latter case, x is a left zero of A. The prefix problem for SCF semigroups degenerates,

in the sense that arbitrarily long input sequences are not of interest. Indeed, for j greater than the

length of the longest simple path of G(A), output y7 is guaranteed to be constant with j (and equal

to some left zero of A).

To exclude this uninteresting case, and without any substantial loss of generality, all semi­

groups in this paper are assumed to be monoids.

3. Lower bounds

A boolean network is a directed graph with the following types of nodes: (1) input nodes, with

in-degree zero and out-degree one; (2) output nodes, with in-degree one and out-degree zero; (3)

combinational nodes, each labelled by a boolean function of one or two input variables, with in­

degree equal to the number of input variables, and out-degree one or two (to allow fan-out); (4)

one-bit storage nodes, with in-degree one and out-degree one or two.

5

The notions of computation of, and of function computed by, a boolean network can be formal­

ized as done in [DC80]. Here we appeal to the intuitive meaning of these notions, and just discuss

the input/output protocol, since it slightly differs from that of [DC80]. We assume that each input

[output] variable of the problem is assigned one input [output] node and one input [output] time.

Two variables can be assigned the same node, but only at different times. Only one node and one

time are assigned to a given variable (unilocal, semellective protocol), and this node and time are

independent of the input value (place-determinate, time-determinate protocol).

Clearly, when solving the prefix problem by a boolean network, a specific binary encoding of

the semigroup elements must be chosen. Since our present aim is to study the dependence of the

complexity of the prefix problem upon the length N of the input sequence, and not its dependence

on semigroup size or representation, we assume that the bits that encode a given semigroup vari­

able are input (or output) all at the same time. We call an input/output protocol with this property

word-instantaneous, in analogy with the term word-local introduced in [Th80].

The following result is a simple consequence of the bounded fan-in assumption and of the fact

that, in a semigroup which is not SCF, yj = xqXi -.jcj is a true function of x9rx\

Proposition 1. For any boolean network that solves the prefix problem of size /V for a non-SCF

semigroup, the computation time satisfies the bound T = Q(log ¿V).

Our lower bound for the prefix problem is based on the mechanism of computational friction

developed in [BP86a] as a generalization of arguments previously applied to binary addition in

[J80] and [B81]. Computational friction, so denoted in the context of a fluidodynamic analogy for

VLSI computations, is a phenomenon that slows down the flow of information from input to output

nodes below the rate allowed by the number of I/O nodes, and therefore, when present, yields lower

bounds stronger than the trivial ST = 12(N) bound. Two phenomena contribute to the appearance

of friction: (i) A fixed fraction of the information carried by each wavefront of input variables is

transferred to the output variables, and (ii) this information must be stored within the network for

a time logarithmic in the wavefront size since, for bounded fan-in, functional dependence imposes a

6

delay between reading the inputs and computing the outputs. These phenomena can be precisely

analyzed and lead to the quantitative bounds embodied by the following theorem, a more general

version of which is proved in [BP86a].

Theorem 2. Given a computational problem P with a set X of input variables and a set Y of output

variables, let U be a subset of X such that for any partition U t of U there exists a collection

WX,...,WT of disjoint subsets of Y (not necessarily a partition) satisfying the following properties:

(1) Each variable in W, is functionally dependent upon Q(|£/,|) variables of (/,.

(2) The values of the variables in X — U can be selected so that, for each t — 1,2,...,T the vari­

ables of Wt carry Q(|£/,|) bits of information about Ut.

Then for any word-istantaneous boolean network that solves P , size and time satisfy the bound

S = Q((\U\/T) \og(\U\/T)). (2)

We now have the tools to prove the following result.

Theorem 3. For any word-istantaneous boolean network that solves the prefix problem of size N

for a NCF semigroup A , size and time satisfy the bound

S = Q((AT/T) logUV/D). (3)

Proof. We show that Theorem 2 can be applied, with X = {xq,x x,...,x N- i}, Y = {y o J b -J .v - i / . and

U = /x1,X3,...,x2t + i,.../ containing all odd-indexed input variables. Given a partition U X,...,Ur of U,

let us define the disjoint subsets of Y

Wt={yj:j is among the [j(//|/2] largest fe’s such that .

(1) Clearly each yj in Wt is functionally dependent upon all the x(’s with i^ j , and there are at

least = £2(|t/J) of them in U,.

(2) By assumption, the Cayley graph of A has a cycle of length S 2, and hence a cycle of length

exactly two, that is, there are four elements a,b,c,d€A (not necessarily all distinct, but with

a^ b), such that ac — b and bd —a. Consider the input sequences for which .to — o,

x^{c,d,cd} for i ^ 1, and satisfying the following two properties: (i) If y , . ! = 6, then x! = d\

7

(ii) If yt_ i = a and i is even, then xt = cd. These properties guarantee that the even-indexed

outputs are all equal to a, and the odd-indexed outputs can be either a (if the corresponding

input is cd) or 6 (if the corresponding input is c). In conclusion, each of the [|i/J/2| variables

of W, carries one bit of information about Ut. Then Equation (3) follows from Equation (2),

considering that|t/| = 0 (N). □

The previous argument cannot be extended to cover CF semigroups; in fact, in the next sec­

tion we shall describe networks for prefix computation in CF semigroups that violate bound (3).

Indeed, the low information content of the output suggests the absence of friction. More

specifically, let A be CF. A sequence y = (yo, -^ v - i) of prefixes corresponds to a generally non­

simple path of length N in G(A). Let fA be the minimum number of bits required to describe a sim­

ple path in G(A), and let lA be the number of arcs of the longest such path (the height of G(A)).

Then, an arbitrary path of length N can be described with O ifA + /A logiV) bits, O ifA) for the

underlying simple path and 0 (logiV) to specify the length of each of the O il,*) runs of self-loops.

Therefore, 0 (logiV) bits are sufficient to describe the output prefixes on a CF semigroup, whereas

Q(iV) are necessary for NCF semigroups.

4. Upper Bounds

In this section, we present three algorithms for the prefix problem, which are respectively

designed for general semigroups, for CF semigroups, and for insertion semigroups. We first

describe some general features of the three algorithms, and then present their specific details.

The algorithms are executed by a network having the structure of a binary tree K with w

leaves. Leaf nodes perform input/output operations, while internal nodes perform data processing.

Each node is bidirectionally connected to its parent and its offsprings.

The input sequence x = is segmented into N/w wavefronts of width w , where

1 iV/log N (for ease of discussion, we assume that N is a power of two). The £-th wavefront is

denoted x, = (x[U;,x [m; + 1,...,jc(i + 1)„,_ i), where l = 0,1,...¿V/u;- 1 . The wavefronts are sequentially

fed to the network, with xW!+J input at the j -th leaf (See Figure 1). A fixed wavefront is processed

8

• • •
XN-w XN-w + l x N-l

Figure 1. Input protocol for prefix computation on a binary-tree network,

by the network in two phases: an ascending phase (consisting of one input step and logu; processing

steps), when information flows from leaves to root, and a descending phase (consisting of logw pro­

cessing steps and one output 3tep), when the direction of the flow is reversed.

Let the level of a node V, denoted leueUV), be the number of edges on the path between V and

the root of K. For each of the algorithms described below, a step takes time 0(1) (independent of

jV). Moreover, a given step on a given wavefront is carried out by a single level of nodes, so that

the network can be pipelined at a constant rate. Clearly, processing of the N -term sequence is com­

pleted in N/w ■+• 2 log w + 2 steps, and hence in T — 0(N/w),

More subtle is the use of storage at each node, which determines the global size of the net­

work. A fixed wavefront is processed by a given level twice: once during the ascending phase, and

then again - 2level(V)+l steps later - during the descending phase. (For uniformity of presenta­

tion, we assume that the root too processes a wavefront in two (contiguous) steps, although these

actions are obviously combinable into a single step.) In the interval of time between the two steps

(one in the ascending phase, the other in the descending phase) performed by nodes of a given level

on the same wavefront, some information relative to that wavefront must be stored at the nodes.

As we shall see, the algorithms for CF semigroups are more size-efficient than the ones for general

9

semigroups exactly because less information is explicitly stored at the nodes. Correspondingly, the

correctness of these algorithms is less immediate to establish.

4.1 General Semigroups

Binary tree K emulates in a straightforward manner the behavior of the well-known prefix

network described in [LF80, BK82, BP86b] and called "twisted-reflected-tree" in [BP86b]. The algo­

rithms are best explained as follows.

A given internal node V of K determines a segmentation of the input sequence x as x

= ctofioalfii...aN/w- i p N/w- i , where fiofii... is the subsequence of x which is input by the successive

wavefronts to the leaves of the subtree rooted at V (a0 may be empty). For a given sequence x, let

x denote the product of its terms. Each is further segmented as /?, = fij'P j", where /?', and / ? / '

are input at the left and right subtrees of V, respectively.

Referring to the j -th wavefront, during the ascending phase internal node V computes

3̂ = Pjfi'j from the values and /?'j received from its offsprings. In addition, the root (for which

all the a’s are empty) maintains a state <7 initialized to e (the monoid identity) and updated as

<r: = afij. During the descending phase, nonroot node V must receive from its parent the prefix

y = ao/3o - « 7- i A - i a 7; if V has stored /? / , then it can provide the correct prefixes y and y/J/ to its

offsprings.

Below we describe in detail the actions of each node. We use a comma to separate con­

currently executable actions, and a semicolon to separate actions to be sequentially executed. The

ASCENDING PHASE substep below is thought of as preceding the DESCENDING‘ PHASE sub­

step, although various degrees of concurrency are realizable. Note that, for correct synchronization,

each internal nodeV uses a queue (called /T-queue) capable of storing 2level(V) + l semigroup ele­

ments (the fij). In addition, each nonroot node has three cells to store the elements to be forwarded

in the next step; note that, for the root, one of these elements, fij, is "forwarded" to the root itself.

The contents of all cells are initialized to e, the monoid identity. In summary, the generic step runs

as follows:

10

Generic Step

ASCENDING PHASE
begin forward /? to parent, [root: <t: = <t̂8,]

/?': = term received from left child,
/?": = term received from right child;
insert /S' into /3'-queue;
0: = 07T

end

DESCENDING PHASE
begin forward y to left child,

forward yd' to right child;
y: = term received from parent; [root: y: = cr;]
extract 5' from ¡3'-queue;
compute yd'

end

The algorithm is readily implemented by endowing the module of a node with a semigroup

multiplier and a queue capable to store {2level{V) + 1) = 0(log w) semigroup elements. Thus, the

total size of the network is S = 0(w logu;) (ignoring the dependence upon the semigroup size and

operation). Therefore we have:

Theorem 4. The size-time complexity of the prefix problem on a boolean network is

s = 0m / T) log(N/T)), for T^[Q(logN),0{N)].

For NCF semigroups the bound of Theorem 4 is optimal, as shown by Theorem 3. For

T = Q(log N), the time lower bound of Proposition 1 is achieved. For T = 0(iV), the obvious S =

12(1) lower bound is achieved.

4.2 Cycle-Free Semigroups

As we have already noted in the concluding remarks of Section 3, the information content of a

sequence of prefixes in a CF semigroup is only logarithmic in the length of the sequence. This fact

indicates the possibility of reducing the amount of information relative to a given wavefront that

the network has to store in the ascending phase for completing processing in the descending phase.

11

The memory requirement in the algorithm of Section 4.1 comes from the necessity to store at

each node V the product ft' forwarded by the left child for (2level{V) + l) steps. In the steady state,

this implies the simultaneous storage of data relative to (2 level{V) + 1) wavefronts. On the other

hand, if yfij = y, the prefix is constant for all leaves of the subtree rooted at V for "the j -th output

wavefront: in this case just y must be passed to both offsprings. Therefore a record of (fi, 7 ')

must be kept from the ascending phase only for those values of j for which y fij^ y , a situation that

in a CF semigroup can occur at most lA times.

How can this condition be tested in the input phase if y is yet unknown? The following

scheme is proposed to answer this question. The root of K maintains a state a initially set to e and

updated as <x = <T0 , as in the previous algorithm. Each remaining internal node V of K constructs

during the ascending phase a history tree H {V) of depth at most l\ as follows. Each vertex of H{V)

is labelled with an element of A and is either active or inactive; each arc is labelled either by a, or

by fij, where j = 0,1, . . . (N/w — l). Initially, H (V) consists of its root, labelled by the identity e.

The general j -th step consists of two substeps: the first for processing (i.e., guessing) a,, the second

for processing (i.e., observing) jSj. Let a vertex u of H (V) labelled a be active at the beginning of

the first substep: the offsprings of u are a set of vertices labelled by /aa7:a76A,aaty^a /, where the

arc from a to act, is labelled a/, u remains active if, for some aJt aa7 = a. The second substep is

analogous, except that an active u labelled by a has an offspring only if <2/8, 5* a. In this case, a

record of /8y is kept at u. In other words, a vertex v of H{V) keeps record only of a transition in

G(A) caused by an input /?, as the pair (/3,',/3,"). For each V in K, H{V) has 0 (s A) vertices.

When processing the j - th wavefront in the ascending phase, the history tree H(V) can be

updated at V in time dependent only upon the semigroup size and operation.

When constructing the 7-th wavefront in the descending phase, each nonroot internal node V

traces its history tree under the control of labels provided by its parent and of labels stored in

H {V). Specifically, each instance ao/So^i^i... corresponds to a unique path in the history tree: a, is

implicitly provided by the parent in the form of the product a0/ 3 o . p i c k e d up, if nonempty,

12

at the node reached by a^Q...aj. V is now in a position to pass the appropriate terms to its

offsprings.

In summary, the generic node V of K performs the following actions:

Generic Step

ASCENDING PHASE
begin forward ¡3 to parent, [root <r: = <r/?,]

f3': = term received from left child,
f3": = term received from right child;
update H(V)\
(3: = fi'fi"

end

DESCENDING PHASE
begin forward y to left child and y/T to right child;

y: = term received from parent; [root y: = cr;]
in H{V) move pointer to vertex u labelled y among children

of current vertex (and obtain /?',/?"));
sft(A,A)then in H(V) move pointer to (unique) child of u

labelled y fl 'p ” ;
store y and y(31

end

Finally we note that K consists of 0 {w) modules, each of size independent of N. Computation

is completed after 0(N/w) steps both for the input phase and the output phase, and, again, the

time used by each step is independent of N. The above construction yields:

Theorem 5. For a CF semigroup A the prefix computation for an iV-term sequence can be done in

time T and size S, with S = 0{N/T), for T 6 [fì(logN),0(N)].

4.3 Insertion Semigroups

The above result holds for any CF semigroup and is clearly optimal. However, for the very

important case of insertion semigroups the tree module need not be as complicated as outlined

above. Each internal node V of K still contains a semigroup multiplier, and a queue with 21 \ cells,

each capable of storing a semigroup element; an additional cell stores the node state stateiV).

13

Initially, for each V in K, state(V): = e. Nonroot internal node V performs the following

actions:

Generic Step

ASCENDING PHASE
begin forward /? to parent,

fi': = term received from left child,
¡3": = term received from right child;
if state{V) ft ̂ state{V) then

begin state(V): = state{V) /$;
insert into queue

end;
P-- = P 'P "

end

DESCENDING PHASE
begin forward (y/„,/?/J to left child and (y«,/?«) to right child,

(y,/?): = terms received from parent;
(/?',/?"): = next pair in queue;
if = p 'fi" then

begin {yLtfiL): = (y,P'\ (yr ,Pr): = (yfi',P");
extract (fi'JH") from queue;

end
else (yL,pL): = (yr ,Pr)’- = (y,e)

end

Lemma. The above scheme correctly computes the prefix sequence for insertion semigroups.

Proof. The decision whether to retain or not the pair (/?',/?") in the queue at node V rests on the

condition state{V)f$& stateiV) or, equivalently, (for the j-th step) ftofii—P j We

must show that this condition is implied by

<*oP9<*iPi~Pi-iatjPj * _ ijij-ictj.

Indeed fa-.-Pj-iP j = 0 O...fij-i implies 0 O = p Qa l. . . p by the insertion property (1)

and therefore a o / ? o — ao/?o—a ,- D

We can therefore conclude:

Theorem 6. For an insertion semigroup A, the prefix computation for an iV-term sequence can be

done in time T and size S with S = 0{N /T) for T€ [S2(\ogN),0{N)]. The memory used by each

14

nonroot module is 0(1 \ • logs) bits, where s = JA| and is the height of the Cayley graph of A.

Proof. Indeed, the result S = 0(N/T) follows from Theorem 5. Each nonroot module has a queue

of 2lA cells, each with [log2s] bits. □

5. Open Problem s

In this paper, we have considered the computation of the prefixes of an N — term sequence of

semigroup elements on boolean networks. We have completely characterized the size-time complex­

ity of the networks as a function of N.

The major outstanding problem is the investigation of the dependence of network complexity

upon semigroup size and operation. For example, in Theorem 6 we have shown that, for the impor­

tant case of insertion semigroups, the upper bounds of Theorem 5 can be considerably improved.

However, the construction of prefix boolean networks which are optimal also with reference to semi­

group size remains an open problem.

15

6. Acknow ledgem ent

We are indebted to D.E. Muller for his valuable suggestions.

[B81]
References

G.M. Baudet, "On the area required by VLSI circuits,” in H.T. Kung, R. Sproull, and G.
Steele (eds.) VLSI Systems and Computations, pp. 100-107, Computer Science Press,
Rockville, MD, 1981.

[BK82] R.P. Brent and H.T. Kung, ”A regular layout for parallel adders,” IEEE Transactions on
Computers, vol. C-31, n. 3, pp. 260-264, March 1982.

[BP85] G. Bilardi and F.P. Preparata, 'The influence of key length on the area-time complexity
of sorting,” Proceedings I.CAJL.P., (Ed. W. Brauer) Nafplion, Greece, Springer-Verlag,
pp. 53-62, July 1985.

[BP86a] G. Bilardi, and F.P. Preparata, "Area-time lower-bound techniques with applications to
sorting,” Algorithmica, vol. 1, n. 1, pp. 65-91, 1986.

[BP86b] G. Bilardi and F.P. Preparata, "Digital filtering in VLSI,” Proceedings of Aegean
Workshop on Computing (Eds.F. Makedon et al.) Loutraki, Greece, Springer-Verlag, pp.
1-11, July 1986.

[CFL83] A.K. Chandra, S. Fortune, R. Lipton, "Unbounded fan-in circuits and associative func­
tions," Proceedings of the 15th Annual Symposium on Theory o f Computing, Boston,
MA, pp. 52-60, April 1983.

[CS85] R. Cole and A. Siegel, "On information flow and sorting: New upper and lower bounds
for VLSI circuits,” Proceedings 26th Annual Symposium on the Foundations of Computer
Science, Portland, OR, pp. 208-221, October 1985.

[DC80] P.W. Dymond and S.A. Cook, "Hardware complexity and parallel computation,"
Proceedings 21st Annual Symposium on the Foundations of Computer Science, Syracuse,
NY, pp. 360-372, October 1980.

[F83] F.E. Fitch, "New bounds for parallel prefix circuits," Proceedings 15th Annual ACM
Symposium on Theory of Computing, Boston, MA, pp. 100-109, April 1983.

[J80] R. B. Johnson, 'The complexity of a VLSI adder," Information Processing Letters, vol.
11, n. 2, pp. 92-93, October 1980.

[K78]
[KRS85]

D.J. Kuck, The structure o f computers and computations, New York: Wiley, 1978.
C.P. Kruskal, L. Rudolph, M. Snir, "The power of parallel prefix," IEEE Transactions on
Computers, vol. C-34, n. 10, pp. 965-968, October 1985.

[LF80] R.E. Ladner and M.J. Fischer, "Parallel prefix computation," Journal of the ACM, vol.
27, n. 4, pp. 831-838, October 1980.

[S86] M. Snir, "Depth-size trade-offs for parallel prefix computation," Journal of Algorithms,
vol. 7, no. 2, pp. 185-201, June 1986.

[T80] C.D. Thompson, "A complexity theory for VLSI," PhD. Thesis, Department o f Computer
Science, Carnegie-MelUm University, August 1980.

