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Abstract

A method of finding the roots of a polynomial over a finite field 

is presented. The proposed method uses a small table to help reduce the com­
putational complexity.

This method is applicable to algebraic decoding techniques, 

particularly toward the computation of error locations. The stored table 

approach is attractive due to its high speed.
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I. Introduction

The purpose of this paper is to present methods to find roots of 

polynomials over GF(2n). A particularly important application of this work 

is in the decoding process of BCH codes, a class of cyclic codes in which

the generator polynomial g(x) is the polynomial of least degree for which
m m +1 m +d-2o o o

CL j  0t y 9 m m j CL

are roots, mQ an integer and a is an element in GF(pm).1,2

The decoding procedure can be reduced to the process of solving 
the equation

. j+m -1
e(aJ) = E Y1Xi ° = Sj , j = 1,2.... 2t,

where the error pattern e(x) is described by values Y. and location X , andi i
the locations given in terms of an error-location number or̂ ”1 for the jth 
symbol.^

The error location polynomial a(x) is defined as a(x) = X t  +  

t-1 ta1X +...+at = n (x-Xi) . Presently, there are methods to find a , a , 
i=l 1 ^

..., from S^, S^, . S^t and to calculate the values Y^ if the values
3of X^ are known.

However, finding the values of X±, i.e., the roots of a(x) = 0  

still poses an immediate important problem.

Of the available methods to handle this problem, two results will
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be discussed and used as comparison to this work. One is in the work of
2Berlekamp, Ramsey, and Solomon and more recently, with the additional

3material, in Berlekamp’s Algebraic Coding Theory. A brief summary is as 
follows:

(i) If the given polynomial f(x) is not an affine polynomial, i.e.,

i
f(x) ^ E -u, L., u e GF(pm),

i
then, if possible, multiply f(x) by a suitable factor to transform 

f(x) into an affine polynomial A(x). If this is not possible, 

then use the algorithm in [2] to obtain an affine multiple of f(x).

(ii) Find the roots of the affine polynomial by solving m simultaneous 

equations over GF(p),

(iii) Substitute these roots in f(x) to determine which are the roots of 

f (x) .

A more recent work is that of Chien, Cunningham, and Oldham.4 The results, 
briefly, are:

(i) The given polynomial is transformed to a standard form.

(ii) The polynomial in standard form is factors conceptually.

(iii) Coefficients of the factors are found with the aid of a stored table.

The goal of this paper is to give a more efficient alternative to the 

methods mentioned above for polynomials of degree 3. The methods will avoid 

the need for an affine polynomial and maintain the size of the table at a 

minimal. For GF(2 ) where n is an even integer, the methods presented are 

efficient and easy to manipulate. When n is odd, the efficiency is still 

comparable to the other methods if n is not large.
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II. Basic Theory

Suppose, over GF(2 ), n an even positive integer, it is given that

3 2f(x) = x + p x  + q x + r  = 0,

where p, q, r are elementary symmetric functions of the roots 3^, 3^, 3^ 
of f(x). Then,

Si + 82 + B3 = P (1)

B1B2 + B1B3 + B2S3 = q (2)

^1^2^3 = r' (3)

Using a method from the theory of equations, first define the functions
<f> and Z by

cj) = 3^ + oo32 + w23^ (4)

Z = 31 + w 232 + w3^ (5)

where co ^ 1 is a cubic root of unity.

Now, perform the following operations on equations (1), (4), and
(5):

(i) Add equations (1), (4), and (5)
2(ii) Add equations co p, oj«J>, and £

2(iii) Add equations cop, co <J), and £ 

These operations will give, respectively,

3-L = P + <f> + Ç 

3^ = P + 4> + coÇ

3^ = p + oo<J> + co2Ç
( 6 )



The roots of f (x) , then, can be found if <f> and E, are known. Now, it can 

easily be shown that

Ar 2 
H  = p + q (7)
3 3<p + £ = pq + r (8)

Equations (7) and (8) give

« V  + (pq+r)S3 + (p2+q)3 = 0 (9)
3Since (9) is a second degree equation in £ , it follows that the only 

roots of the equation must belong to

= {elements with multiple 3 exponents}

It should also be noted that (9) has solutions if and only if f(x) has 

solutions. (9) can be solved with the aid of a table constructed from 

the elements of K^. It will consist of the sums S and products P of 

elements of K^. Although the table will be large if the field is large, 

an algorithm will be provided to shorten the table considerably.

III. An Example 

Consider

(x  + a ) (x  + a~*) (x  + a ^ )  = x^ + a^^x^ + a ^ x  + = 0
4over GF(2 ). Here,

14 14 3p-ot , q = a , r  = a and
, 8 / 2 , .3 . 2n3 6pq + r = a , (p + q) = (a  ) = a .

Substituting in (9) gives
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Table 1: Stored Table for GF(2 )

A P

1

2

3

4

5

6

7

8 
9

10

3 12 3 12 10a • a 1 a + a a

6 9 6 9 5a • a 1 a + a a

3 3 3 141 • a a 1 + a a

6 12 3 6 12 4a a a a + a
6 6 6 131 • a a 1 + a a

9 12 6 9 12 8a * a a a + a a
9 9 9 71 • a a 1 + a a

3 6 9 3 6 2a • a a a + a a

12 12 12 111 • a a 1 + a a
3 9 12 3 9a a a a + a a

The procedure for using Table 1 is as follows:
2 3 6(i) Look for the rows in which (p +q) = a appears in column p.

(Rows 5 and 6)
g

(ii) Check to see if pq+r = a , appearing in column S, is in the same row
g

as a . (It does in row 6)

(iii) If both (p +q) ̂  and pq+r = are in the same row, there are
3solutions for £ and they appear in column A and in the same row

2 3 6 8as (p +q) = a and pq+r = a . In this example,

r3 9 12t, = a or a
3 4Thus, £ = pa or ya , y a cubic root of unity. (In practice, it is suggested

2
that y = 1). Take £ = a^. Then <J> = = a^. Substituting in (6) gives
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,14 + 14a + 3a = 3a
14 + 9a + 8a = 5a
14 + 4a + 13a = 10a

which are the roots of the original equation. It can easily be seen that

in the solution of (9), the size of the table is a major problem. For
4 ftexample, the table for GF(2 ) requires 10 entries whereas GF(2°) would

contain 210 entries.

For the solution of (9), an algorithm will now be presented to 

shorten the size of the table and to obtain the solution more readily.

IV. An Algorithm Over GF(2n) With a Reduced Table

We shall now present a method for reducing the table. This
n  /

method applies to all GF(2 ). GF(2 ) will be used as an example.

(i) Find the rows in which the element 1 appears under column p.

(Rows 1 and 2)

(ii) Using only these rows, factor out the term with the lowest

exponent listed under B.

3 , i2 3,- 9.a + a = a (1+a )
6 , 9 6/ 3,a + a = a (1+a )

(iii) Make a permanent correspondence between 1+a1 and the element
in the same row under S.

,, 9 y N 101+a ^ ^  a
1+a3 ̂ --------> a5

Denote the set of elements which corresponds to the set {1+a1}
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*  * 5 inby S . Thus, S. = {a  , a }. n 4
The newly constructed tables have the obvious advantage of being much smaller 

than the old ones. For comparison, the old table for GF(2n) has
7 2 n- h

entries, whereas the new one has
2n-l -1 2n-4

V 2
The new tables

for GF(24) and GF(2^) are listed in Table 2.

Table 2: Reduced Tables for GF(24) and GF(2^)

GF(24)

GF(26)

*
S4 l+a1

10 7a a
5 14a a

■k
S6 l+a1

61 58a a
59 53a a
18 9a a
55 43a a
31 16a a
36 18a a

421 a

47 23a a

9 45a a
62 32a a
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V. Algorithm for Using New Table

(i) Find a1 = — y-yz---  . must be an element in S . If i S*,
( p 2 + q ) 3 / 2

then (9) has no solutions.

(ii) Find the corresponding element to a1 in the table. Suppose that

element is . Find .
2, ,3

will be one of the solutions for , The other is ^  —  .k

VI. Another Example
o c o 17 9 / Q Q

( x + a ) ( x + a  ) (x+a ) = x + a  x + a  x + a  = 0  over GF(2 ) .  Here,

, 3 , 2^ .3 ,23.3 6pq+r = a , (p +q) = ( a ) = a

3 2 3 3 6(9) becomes (£) + a £ + a  =0. Applying algorithm, find

i  a i c *  a = —  = 1 e S.  . J 6a
From table, 1 <- 42 ^-> a . Thus,

. 3 0/ , 2. x3 6k a 24 ,
a anda =

a
43

(p +q) _ a_
k 24 = a45
a a

23^ i 8 . a 15Take E, = a . Then <j> = — = a
a
8

61 =
17 15 8a + a + a = a

17 57 29 5
32 = a + a + a = a

63 =
17 + 36 50 2a a + a = a

VII. The Case Where n is Odd

Thus far, the field has been restricted to GF(2n), n an even integer
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This is done because of the need for a cubic root of unity different from 

1. To make the theory adaptable for the cases when n is odd, it is noted 

that GF(2n) is a subfield of GF(2m) if and only if n|m. Thus, if n is 

odd, transform the existing equation in GF(2n) into an equation in GF(22n).

In doing so, the disadvantages are the additional time spent, 

increase in the size of tables, and the need to find the correct mapping.
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