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Abstract

A method of finding the roots of a polynomial over a finite field
is presented. The proposed method uses a small table to help reduce the com-
putational complexity.

This method is applicable to algebraic decoding techniques,
particularly toward the computation of error locations. The stored table

approach 1is attractive due to its high speed.
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I. Introduction

The purpose of this paper is to present methods to find roots of
polynomials over GF(2n). A particularly important application of this work
is in the decoding process of BCH codes, a class of cyclic codes in which

the generator polynomial g(x) is the polynomial of least degree for which

m m +1 m +d-2
(o} [0} )
a jot y o mmjQ@

are roots, mQ an integer and a is an element in GF(pm).1,2

The decoding procedure can be reduced to the process of solving

the equation

. Jj+tm -1
e(ad) = E YIXi °© =S5, =1,2....2t,

where the error pattern e(xX) 1is described by values Y. and location X_, and
i i

the locations given in terms of an error-location number or¥1 for the jth

symbol .~
The error location polynomial a(x) is defined as a(xX) = Xt +
alxt_1 +...+at = EI (x-Xi) . Presently, there are methods to find a , a ,
i= 1 A
cees from S®, SN, . S~t and to calculate the values Y~ if the values

of X~ are known.

However, Tfinding the values of X+, i.e., the roots of a(x) =0

still poses an immediate important problem.

Of the available methods to handle this problem, two results will



be discussed and used as comparison to this work. One is in the work of
2

Berlekamp, Ramsey, and Solomon and more recently, with the additional

material, in Berlekamp’s Algebraic Coding Theory.3 A brief summary is as

follows:

(1) If the given polynomial f(x) is not an affine polynomial, i.e.,
i
f&x) M E -u, L., u e GF(pm),
i

then, iFf possible, multiply f(xX) by a suitable factor to transform
f(xX) into an affine polynomial A(x). If this is not possible,
then use the algorithm in [2] to obtain an affine multiple of f(X).
(ii) Find the roots of the affine polynomial by solving m simultaneous
equations over GF(p),
(iii) Substitute these roots in f(x) to determine which are the roots of

fQ) .

A more recent work is that of Chien, Cunningham, and Oldham.4 The results,

briefly, are:

(i) The given polynomial is transformed to a standard form.
(ii) The polynomial in standard form is factors conceptually.
(iii) Coefficients of the factors are found with the aid of a stored table.
The goal of this paper is to give a more efficient alternative to the
methods mentioned above for polynomials of degree 3. The methods will avoid
the need for an affine polynomial and maintain the size of the table at a
minimal. For GF(2 ) where n is an even integer, the methods presented are
efficient and easy to manipulate. When n is odd, the efficiency is still

comparable to the other methods if n is not large.



Il. Basic Theory
Suppose, over GF(2 ), n an even positive integer, it is given that
2
fx) = x3+px +gx+r =0,

where p, q, r are elementary symmetric functions of the roots 3, 3», 3"

of f(x). Then,

Si + 82 + B3 =P €))

B1B2 + B1B3 + B2S3 = q @

NINPNZ = " (3)
Using a method from the theory of equations, first define the functions

$and 7 by
P= 3" + ooR + w23» @
Z = 31+ w232 + w3" ®)

where ® ~ 1 is a cubic root of unity.
Now, perform the following operations on equations (1), (4), and
®):
() Add equations (1), (@), and B)
(ii) Add equations cozp, <> and £

(iii) Add equations ap, @2@, and £

These operations will give, respectively,

3L P+ £+ C
N =P+ S+ o (6)

3N =p+ @+ aC



The roots of f(X) , then, can be found if #£and E are known. Now, it can

easily be shown that

H =p +q Q)
3 3 _
P+ £ =pg+r ®
Equations (7) and (8) give
« V. + (pg+r)S3 + (p2+q)3 = 0 ©

3
Since (9) is a second degree equation in £ , it follows that the only

roots of the equation must belong to

= {elements with multiple 3 exponents}

It should also be noted that (9) has solutions if and only if f(xX) has
solutions. (@ can be solved with the aid of a table constructed from
the elements of K™ It will consist of the sums S and products P of
elements of K*. Although the table will be large if the field is large,

an algorithm will be provided to shorten the table considerably.

I11.  An Example
Consider
(x +a)x+ a*HN(x +an) =xN+ aMxM + anx + =0
4
over GF(2 ). Here,
p—ot14 . 14 3

q=a
. 8 42 . .3 203 _ 6
pqg ¥ r=a", (° *aq 5 =

I
£

Substituting in (9 gives



Table 1: Stored Table for GF(2 )

A P

1 a3 e 12 1 a3 + 12 a10
2 a6 a9 1 a6 + ag a5
3 1 ® a3 a3 1+ a3 al4
4 a6 12 a3 a6 + 12 a4
5 1 a6 a6 1 + a6 13
6 a9 . 12 a6 a9 + 12 a8
7 1 a9 a9 1 + ag a7
8 a3 a6 a9 a3 + a6 a2
9 1 12 alZ 1+ 12 11
10 a2 & at? 3+ 2 a

The procedure for using Table 1 is as follows:
. _ i, 2 3 6 -
(i) Look for the rows in which (p +q) = a appears in column p.
(Rows 5 and 6)
g

(ii) Check to see if pg+tr = a , appearing in column S, is in the same row

g
as a - (It does in row 6)

ain) If both (p +@) and pg+r = are in the same row, there are
solutions for £3 and they appear in column A and in the same row
as (p2+q)3 = a6 and pg+r = a8. In this example,
r3 9 12

4
Thus, £ = pa3 or ya , y a cubic root of unity. (In practice, it is suggested
2

that y = 1). Take £ = a*. Then &= = an. Substituting in (6) gives



J4_+ 14 aS = a
14 9
a + a = a
14 + a4 + 8;3: 10
which are the roots of the original equation. It can easily be seen that

in the solution of (9), the size of the table is a major problem. For
example, the table for GF(24) requires 10 entries whereas GF(ZJS would
contain 210 entries.

For the solution of (9), an algorithm will now be presented to

shorten the size of the table and to obtain the solution more readily.

IV. An Algorithm Over GF(2n) With a Reduced Table
We shall now present a method for reducing the table. This

/

method applies to all GF(2 ). GF(2 ) will be used as an example.

(i) Find the rows in which the element 1 appears under column p.
(Rows 1 and 2)
(ii) Using only these rows, factor out the term with the lowest

exponent listed under B.

a> ¥ a‘ = éLZl+§')
a6¥a9 :thgj

(iii) Make a permanent correspondence between 1+al and the element

in the same row under S.

1+a9x A~ N a10

Denote the set of elements which corresponds to the set {l+al}



* * .5 in
by Sn. Thus, §F ={a , a }

The newly constructed tables have the obvious advantage of being much smaller
than the old ones. For comparison, the old table for GF(2n) has

72n-h
2n-1

-1
entries, whereas the new one has 2n-4 The new tables
vV 2

for GF(24) and GF(2") are listed in Table 2.

Table 2: Reduced Tables for GF(24) and GF(2®)

GF(24) sS4 1+al
a10 a7
5 14
a
K
GF(26) 36 1+al
a61 a58
59 53
a a
a18 a9
a55 a43
31 16
a a
a36 a18
1 a42
47 23
a a
9 45
a a

a62 32



V. Algorithm for Using New Table

() Find al = - yyz—— . must be an element Iin S . If i S*,
(p2+q)3/2

then (9 has no solutions.

(ii) Find the corresponding element to al in the table. Suppose that

element 1is . Find
2, .3
will be one of the solutions for ., The other is ~ K
VI. Another Example
o] c o 17 9 /Q Q
(x+a)(x+a )(x+a )=x+a x +a x+a =0 over GF(2 ). Here,
, 3 2~ .3 23.3 6
pag¥r = a  , P+ =(a ) =a

(@ becomes (E%2 + a3£3 +a6 =0. Applying algorithm, find

a' = —aj] =1& S*'B
a
42 n
From table, 1 < = a . Thus,
3 2. X3 6
K =2 agﬁ ang (P bl A a®®
43 k 24
a a a
_ 23
N
Take E = a®. Then j>:§8 = a1
a
61:a17+a15+a8 - a
- a17 + a57 + a29 - a5
17 36 50 _ 2
63 =2 * * =a
VII. The Case Where n is 0Odd

Thus far, the field has been restricted to GF(2n), n an even integer



This is done because of the need for a cubic root of unity different from

1. To make the theory adaptable for the cases when n is odd, it is noted

that GF(2n) is a subfield of GF(2m) if and only if n|m. Thus, if n is

odd, transform the existing equation in GF(2n) into an equation in GF(22n).
In doing so, the disadvantages are the additional time spent,

increase in the size of tables, and the need to find the correct mapping.
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