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Abstract : We propose a novel technique for solving the VLSI layout problem. The strategy is to 

recursively interconnect a set of modules, in conformity with the design rules. The basic step con

sists of merging a pair of strongly-connected modules. An optimal algorithm for routing around 

two modules, and variations thereof, are presented: the running time is O(nlogn) where n is the 

total number of terminals. The whole layout is provablv wirable with three conducting layers.
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1. Introduction

Despite the remarkable recent progress in VLSI research, much is still to be done to fu lly  take 

advantage of the resources in the VLSI environment. The efficiency of new techniques must be 

evaluated against the inherent limitations of VLSI.

A (digital) circuit is viewed as a computation map, that is, a set of (concrete) modules which 

have unalterable geometric shapes (each being itself an interconnection of active devices), and a set 

of nets, each of which specifies a subset of points, called terminals, on the boundaries of the 

modules. Circuit layout (or simply, layout) consists of an embedding of the computation map in a 

grid graph and of defining the precise conductor paths (external to the modules) necessary to inter

connect the terminals as specified by the nets (grid layout). The second step of the circuit layout 

process, called wiring, is the conversion of the grid layout to an actual configuration of wires in a 

three-dimensional grid, with a bounded (small) number of planes in the third dimension.

The measure of the quality o f a given solution to a layout problem is the efficiency with 

which the corresponding computation map can be laid out in conformity with specific design rules. 

Prevalent criteria of optimality are minimum area (or space) and minimum wire length (implving 

minimum signal delay).

Following a common approach, we partition the problem into simpler subproblems, the 

analysis of each oi which (conceivably) provides new insights into the original problem as a whole. 

In this framework, the objective is to view the layout problem as a collection of subproblems; each 

subproblem should be efficiently solved and the solutions of the subproblems should be effectively 

combined.

In the two-step placement-routing approach the layout process is carried out as follows: The 

first step consists oi finding a (good) placement of all the modules in the grid and the second step 

consists of interconnecting the terminals as specified by the nets. A well-known fact is the consid

erable difficulty ol various subproblems introduced by this technique. Indeed, channel routing — 

the simplest of the arising subproblems is intractable (NP-complete) [Sz] even in the powerful
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knock-knee layout mode [Sa]. Thus, it is important to seek an alternative approach to the layout 

problem.

We propose a radically different technique for the layout problem — a match-and-combine 

approach. The strategy is to combine a pair of strongly connected modules (which are called a 

matched-pair). Repeatedly applying this basic step produces a simple computation map (e.g. a map 

containing only one module) that can be trivially laid out. We shall elaborate on the new tech

nique in the following sections.

Now we give a synopsis of this paper. Section 2 gives a formal description of the match-and- 

combine technique. In Section 3, a fundamental problem — routing around a rectangle — and vari

ations of it, is discussed. Next, a problem essential to the method — routing around two rectangles 

- -  is analyzed. Finally, appropriate extensions are discussed.

2. Layout Algorithm

A circuit, represented as a computation map, is an interconnection of modules. The connec

tions between two modules can be conceived as a "force" acting to bind them. Current layout 

methods either make use of this fact implicitly (e.g. partitioning techniques for placement) or 

adopt this idea, in the placement phase, when confronted with a pair of strongly connected modules 

(e.g. see [CHk.R]). We propose a systematic approach to the layout problem based on this intui

tively sound principle.

In a more abstract lormulation, a computation map can be represented by a weighted 

(hyper-) graph, called a computation graph, whose vertices correspond to the modules and whose 

edges correspond to the connections among the modules; the weight of an edge represents the 

number of connections in the associated computation map.

The intuitive formulation of the match-and-combine technique, to which we have alluded, is 

summarized as follows; Consider a computation graph in which two vertices v, and Vj are strongly 

connected (the weight w^ on the edge (v jf Vj) is large) and each is weakly connected to other ver-
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tices (the weights w ik and Wjk on the edges (v,. vk) and (v r vk). respectively, for k ^  i.j are small 

with respect to w^), as shown in Figure 1. We can collapse (and thus, sim plify) the previous com

putation graph into one with one less vertex by combining v; and Vj into Vjj, or equivalently, by 

pasting Mj and Mj, in the corresponding computation map. to obtain M^. The two vertices and 

Vj are said to be a matched-pair.

Figure 1. Simplifying a computation graph (w ;j>  > w ik+ w jk).

Remark: I he qualitative condition (w^ > > w ik + w jk) for combining two vertices can be expressed 

more formally; lor instance, we could stipulate that wx and Vj can be combined if w M ^ /3(wik + 

Wjk). for a suitable /3 > 0.

The above step, is carried out as long as there exist matching pairs. When there remain no 

such pairs, we obtain a disconnected computation graph (if w^ is below a threshold value Amax then 

Vj and Vj are treated as if they were disconnected) each of whose components is one of the follow 

ing types:

a) loose: A vertex disconnected from the rest.

b) tight: A clique formed by a set of vertices, so that for any edge e connecting pairs of vertices 

of the clique we have weight(e) ^ Amin (a threshold to be selected).

Each tight component can be reduced to a loose one by successively matching and combining the 

vertices involved in the clique. This is an algorithmic formulation of the intuitive basis of the
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technique. At some point there remains a collection of loose components, whose layout is trivial.

To efficiently apply the match-and-combine technique we must be able to understand and 

solve various problems involving one or two modules. These problems will be discussed in the fo l

lowing sections.

3. Routing Around One Module

The problem of routing around one module (R IM ), both as a subproblem of the match-and- 

combine technique and as a basis for understanding more complex problems, is of central impor

tance. We shall first analyze a simple version of RIM and then describe extensions thereof. 

Hereafter, we consider routing of two-terminal nets.

The problem of routing around a rectangle (R1R) is formulated as follows: Given a rectangle 

]R, interconnect the terminals on the boundary of 1R in the layout domain (i.e. the grid external to 

IR) as specified by a set of (two-terminal) nets.

The layout area A is the area of the smallest grid rectangle enclosing the whole lavout. The 

goal is to find a layout with the minimum-area enclosing rectangle. Denoting by n the total 

number ol terminals, an O(n^) time algorithm was proposed by LaPaugh [L] and, more recently, 

Gonzalez and Lee [GL] have presented an efficient but very complex algorithm, running in O(nlogn) 

time.

We shall now present a very simple and fast technique (also asymptotically running in 

O(nlogn) time) to solve an arbitrary instance of R1R. In addition, the algorithm is extensible to 

solve a number of related problems (e.g., the problem of routing around two rectangles), as we shall 

demonstrate.

The four corners of the rectangle IR are labeled NW, NF., SW, and SE and the four sides are 

labeled T.B.L. and R, with obvious meanings as illustrated in Figure 2. Each net is classified as an 

SjSo-net with Sj,S2 € {T.B.L.R}, where S! and S2 are two (not necessary distinct) sides of IR.
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Let (h + h0) and (w + w0) be the height and the width, respectively, of the grid rectangle 

enclosing the layout, where h0 and w 0 are respectively the height and the width of IR. Thus, the 

goal is to minimize the area A »  (h+h0) (w + w 0).

The first terminal of a (two-terminal) net Nj is the one closest to the SW corner in a clockwise 

scanning ol the boundary of IR, starting from SW. As discussed in [L], it suffice to assign a direc

tion to each net Nj : a clockwise direction, D(j) = CW or a counterclockwise direction, DCj) = CCW.

The direction is defined by the wire realizing the net from its first terminal to its second (other) 

terminal. Once the directions are known for all nets, the actual layout can be obtained by employ

ing a channel assignment algorithm (e.g., see [HS]).

A net with both terminals on same side or on adjacent sides of IR is called a local net: other

wise, a net (with both terminals on opposite sides of IR) is called a global net. The following is due 

to LaPaugh and can be easily proved.

Theorem 1 [L] i There exists an optimal layout with all the local nets having a minimal-corner 

assignment, that is, an assignment passing around the minimum number of corners

of IR.
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In conformity with our definition of first and second terminal of a net, the minimal-corner assign

ment corresponds to assigning a CCW direction to LB-nets and a CW direction to the rest of the 

local nets.

. Thus, it remains to consider the global nets: the top-bottom TB-nets and the left-right LR- 

nets. Each TB-net increases the width w (and each LR-net increases the height h) by exactly one 

unit independently of the direction assigned to it: thus, we can process TB- and LR-nets indepen

dently, since the routing of a TB-net does not affect the final width (and similarly the routing of an 

LR-net does not affect the final height). Next, we describe an algorithm to optimally lay out TB- 

nets. It is clear, due to the symmetry, that exactly the same algorithm can be employed to 

optimally lay out LR-nets.

We focus our attention on the top (T ) and the bottom (B) of IR and consider only nets with at 

least one terminal on T or B. The columns (of the unit grid) are numbered left-to-right from 0 to 

ct, at any stage of the execution of the algorithm. The maximum number of nets which cross at 

any point of the open interval (c,c+Z) and have already been assigned a direction is called the used 

capacity of (c,c+Z) and is denoted by u(c,c+Z), for 0 ^  c < c+1 ^ ct. To simplify the notation u(c) 

denotes u (c,c+ l).

Each TB-net, regardless of its direction, must pass around exactly two corners of IR; in this 

sense, the two directions (CW  and CCW) are symmetric, that is, one is not preferred over the 

other. A closer look at each TB-net reveals an asymmetry, however, which suggests the assignment 

of a direction. Intuitively, a barrier is an open interval (c,c+Z) of high density, that is, we have 

both u (c -l)  < u(c,c+Z) and u(c+Z) < u(c,c+Z). If the assignment of a direction to a net causes this 

net to cross a large barrier, then a high price (in terms of the final height) must be paid.

More formally, for each net Nj, at any stage of the execution of the algorithm (on T or on B) 

we define the left barrier as the pair (lb (j).L (j)). where:

lb (j) = u(0,tj) and L(j) = max|c | u(c—1) = lb(j) and c ^ tj} ,
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where tj is the column containing the terminal of Nj on T+. The right barrier (rb(j).R (j)) for N, is 

analogously defined (see Figure 3):

rb(j) = u(tj,Ct) and R(j) = min{c|u(c) = rb(j) and tj ^ c}.

Figure 3. The left and the right barriers o f Nj.

A net Nj with lb(j) ^  rb(j) (either on T or on B) is called an unstable net. Without loss of 

generality consider the set of yet unassigned nets 77= {N^......... Njkl on T with lb(j.) < rb(j;)

.....k)- Clearly, all members of rj have a common right barrier but they do not necessarily

have identical left barriers. We call balancing the following task:

1. Select Nj 6 r\ with bs ^ b,. (i = 1.....k).

2. Assign the CCW direction to Ns. that is. D(s) = CCW.

3. Update the barriers alter the assignment of a direction to \ s.

The balancing task is repeated until there are no more unstable nets*. We refer to the lavout 

produced by the balancing task as the greedy layout. For brevity, we say that a net N has been 

assigned to mean that N has been assigned a direction.

Lemma 1: The assignment of the unstable nets in the greedy layout is optimal.

1" Similarly, il Nj has a terminal on B. this terminal occurs in column bj. 
t Note that an initially unstable net may change its status as an etfect o i  the balancing task.
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Proof. Consider an optimal layout of IR. In this layout let Nj be the ith net to which a direction 

D(i) has been assigned in the balancing phase and let D (i) be its direction in the given optimal lay

out, for 1 ^  i ^ k. Assume the assignments of N j......... Nj_j in the optimal layout and in the

greedy layout agree, this is certainly true, by virtue of Theorem 1, for i = 1. Our objective is to 

modify the optimal layout, without losing optimality, by changing the assignment of Nj to make it 

agree with its assignment in the greedy layout. In this process, as we will see, we may have to 

change the assignment of another net Nj such that j > i (this inequality is crucial). We remove the 

wire, connecting the two terminals of Nj, from the optimal layout. We use the superscript * to 

denote the variables of this layout, e.g., u (c,c+Z) denotes the used capacity of the open interval 

(c.c+O in this layout. Without loss of generality let D(i) = CCW, that is, Nj has been given the 

CCW direction in the greedy layout. If D*(i) = D(i) then the claim holds. So assume D*(i) ^  D(i), 

that is. D*(i) = CW.

* *
Case 1) lb (i) < rb (i): We change the direction of N,, thereby decreasing the height on the 

top by one unit and (in the worst case) increasing the height on the bottom by one unit; thus the 

height ol the new layout is not larger than the height ol the optimal layout. The new layout is 

there! ore optimal and the direction oi Nj in this layout agrees with its direction in the greedy lay

out.

An optimal layout of IR A new optimal layout
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Case 2) lb (i) ^  rb (i): After the completion of the (i-l)th  step of the balancing phase (right

before Nj is assigned) let 7)j = {N^......... Nik} be the set of yet unassigned nets on T with

lb(ij) < rb(ij) for j = 1 k. Clearly Nj G 7)j and b, ^ b,. for j = 1.....k. We will show that there

exists another net Nj (with j > i, that is, a net to be assigned later by the greedy algorithm) contri- 

buting only to lb (i) -  lb(i) and not to u (R (i)) -  u(R(i)).

*  *  J|C

Since lb (i) ^  rb (i) ^  u (R (i)) and lb(i) < rb(i) = u(R(i)) then there are more nets (assigned 

after Nj) contributing to lb (i) — lb(i) than there are nets contributing to u (R (i)) — u(R(i)). 

Clearly all these nets belong to 7), since their terminals on T is to the left of R(i). Let Nj be one of 

these nets with the rightmost terminal on T. Since Nj € 7)j then bj <  bj (a decision made in the 

balancing phase). We claim that changing the directions of Nj and Nj, and thus making the direc

tion of Nj to agree with the one assigned in the balancing phase, does not increase the height. Since 

bj < b,, the height on the bottom does not increase (in fact, it may decrease). On the top, one of the 

lollowing two subcases may occur.

Subcase 2a) t, < tj : Clearly the height does not increase on the top. In fact all the used capa

cities remain the same and the used capacity of (tj.tj) on T and the used capacity of (b,,bj) on 

B decrease.

Subcase 2b) t, > tj : Changing the direction of Nj and Nj increases u (tj,t,) by two units. We 

must guarantee rb (i) + 1 ^  u (tj.tj) + 2.
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Before the balancing phase Changing the direction of Nj and Nj

Clearly rb(i) > u(tj.t,) (otherwise, rb(i) ^  lb(i)). All the nets that contribute to u (tj.tj) — u(tr tj) 
*

also contribute to rb (i) — rb(i) because Nj was chosen to be the net (in 7), — Nj) with the rightmost
* * % * 

terminal on T. So rb (i) -  rb(i) ^  u (tj.tj) -  u(tJ,t1) and thus rb (i) ^ u (tj.tj) + 1. We conclude

rb (i) + 1 ^ u (tj.tj) + 2. □

Each unassigned net Nj at the completion of the balancing phase is called a stable net. that is. 

rb(j) = 1 b(j): assume, there are s stable nets. These nets increase the final height by at least s units. 

I he stable nets can be optimally laid out, employing the pair-up technique devised by Baker[B]. 

The strategy is to match the nets (Nj and Nj are matched if tj < t, and bj < bj). A pair of matched 

nets increases the height by exactly 2 units (one unit on 1 and one unit on B). If Sj matched pairs 

are found then s2 = s — 2sj nets must pairwise cross, that is, denoting them as Nj , ... , Ns , we 

must have tj < • < ts? and bj > • • • > bS2- These nets can be laid out using at most s2 + 1

tracks, and thus, the contribution of stable nets is at most 2(sj) + s2 = s + 1, and, it is easy to con

struct examples that require s + 1 unite (e.g.. s nets that cross). The preceding discussion gives us 

the following result.

Lemma 2: The pair-up technique produces an optimal layout of stable nets.

We now give a formal description of the layout algorithms.
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procedure LAYOUT (TB);

begin w hile there exists an unstable net do

begin i f  there exist a net Nj with lb(j) < rb(j) on S then (* S e {T.B}*)

begin rf:= set of nets in [0 , R(j)];

Ns: = a member of rj with the leftmost terminal on"S;

(* if S = T then S = B and vice versa *)

DCs) = CCW

end

else begin Nj := a net with lb(j) > rb(j) on S; 

rj:= set of nets in [L(j) , c j ;

Ns: = a member of 7) with the rightmost terminal on~S;

DCs) = CW

end

end

i f  there exists any stable net then PA1RUP

end.

Thus, an arbitrary instance of R1R can be laid out as follows:

procedure LAYOUT-RECT;

begin ASGN (local nets);

LAYOUT (TB);

LAYOUT (LR);

CHANNEL-ASGN;

end.

Theorem 2: LA'i OUT-RECT produces an optimal layout for an arbitrary instance of R1R in 

O(nlogn) time, where n is the number of terminals.

(*minimal-corner assignment *) 

(^balancing and 

pairing *)

(^algorithm of [HS]*)
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Proof: From Theorem 1, Lemma 1, and Lemma 2 we obtain that the layout produced by 

LA\ OUT-RECT is optimal. Minimal-corner assignment and balancing cost one unit of time per 

net, assuming that the terminals are presorted (in O(nlogn) time). It is easy to see that PAIRUP 

takes O(nlogn) time [B]. □

We now introduce three extensions of R1R. The preceding algorithm can be easily modified to 

solve these problems in O(nlogn) time; moreover, it can be shown that the layouts are two- or 

three-layer wirable.

Problem 1: Given a rectangle IR, interconnect a set of terminals, placed anywhere in the layout 

domain external to IR but including the boundary of IR, as specified by a set of (two-terminal) nets. 

At least one terminal of each net is on the boundary of IR.

Problem 2: Given two isothetic rectangles lRin and IR0Ut, where IR0Ut encloses IRin, interconnect a set 

of terminals, located on the feasible boundaries (as shown below). The feasible boundary are the 

set ol points on the boundary of IRin and IR0Ut that can be connected to at least one point in IRin by 

means of a vertical or a horizontal line segment.
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IR

feasible boundary

This problem was also solved by Suzuki-Ishiguro-Nishizeki [SIN] by viewing the problem as a 

multicommodity flow, it is not clear how many conducting layers are needed to wire the layouts 

produced by their technique (probably four).

Problem 3. Given a polygon P, interconnect a set of terminals located on the "feasible" boundary. 

The feasible boundary consists of the set of points on the boundary of P that can be connected, by 

means of a vertical or a horizontal line segment, to the boundary of a grid rectangle IR external to P 

without crossing the boundary of P.

feasible boundary

Remark: The entire boundary of the modules arising in practice (e.g., an L-shaped module), is feasi

ble.

4. Routing Around Two Rectangles

Problems involving two modules are o f fundamental importance in the match-and-combine 

technique. Here, we analyze the simplest of all, which is easily extensible to more general prob-
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lems.

The problem of routing around two rectangles (R2R) is formulated as follows: Given two 

vertically aligned rectangle IRj and IR2 with equal widths (possibly different heights) interconnect a 

collection of terminals on their boundaries in the layout domain (the grid external to both IRj and 

IR2) as specified by a set of (two-terminal) nets; the two rectangles can slide vertically with respect 

to each other (IRj is conventionally above IR2).

For a restricted case of R2R, Chandrasekhar and Breuer [CB] have devised an algorithm that 

produces an optimal-area layout when certain types of nets are excluded. Recently. Baker [B] 

presented a 1.9 approximation algorithm with the goal of minimizing the perimeter of the final lay

out. Both techniques adopt the Manhattan layout mode.

Here, we present an algorithm for R2R which is a generalization of the technique described in 

Section 3. To reduce the wasted area, we shall aim to minimize the total height (h), the width of 

IRj (w j) and the width of IR2 (w 2) instead of minimizing the area of the enclosing rectangle, as 

shown in Figure 4. Doing so. produces _J~—shaped modules having an area no more than that of 

the minimum-area enclosing rectangle. Thereafter, we use such shapes, instead of a rectangle, as a 

building block.

- W ]

-e----------w 2----------------

a. Minimizing the enclosing rectangle b. Minimizing h, w j, w 2

Figure 4

The sides of each rectangle are labeled as previously described, subscripted as the rectangle: 

for example L2 means the left side of IR2. Let IR12 be an auxiliary rectangle enclosing 1R: and IR-> as
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shown in Figure 5. First we project all the Bj terminals on T2 (or vice versa); at the completion of 

the assignment phase an optimal channel router (see [PL]) will be employed to lay out the channel 

between and T2. A net with terminals on the same side or on the adjacent sides of IRj, IR2* or 

JR]2 is called a local net. L]R2-nets and L2Rj-nets are called cross nets. The rest of the nets are 

called global nets.

Layouts of the local nets and the cross nets are trivial. The local nets are laid out using 

minimal-corner assignment (see Theorem 1) and the cross nets always pass through the center- 

channel (between Bj and T2); a simple variation of Theorem 1 verifies the optimality of this assign

ment. It remains to consider the global nets. L jRj-  and L2R2-nets are laid out by employing 

LAYOUT(TB), described in Section 3. The rest of the global nets (T iT 2 .TjB2.T2B2) are laid out by 

a modified version of the balancing and the pair-up technique, as we will describe next.

For convenience, we call the channel above Tj the top-channel (T ), the channel between Bj 

and T2 the middle-channel (M ), and the channel below B2 the bottom channel (B). To simplify the 

notation, we refer to T jT2-nets, T2B2-nets, and T!B2-nets as TM-nets, MB nets, and TB-nets,

respectively, as shown in Figure 6.

-
T*!

—

u IR1 R1

B,

t 2

1-2 ir2 R2

b2

Figure 5. Routing Around Two Rectangles
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top (T)

middle (M )

bottom (B)

Figure 6. Labeling the Global Nets

From an optimal layout in which a TB-net N, passes through M, we can obtain a different (but still 

optimal) layout in which Nj does not pass through M. If a net N, has a terminal on T,M. or B, this 

terminal occurs at column tj.m,, or bj, respectively.

Consider a net Nj on T with rb(j) > lb(j). Let t)tb = {N ..... N; } and t)tm = {N. .....N; } be
’■'l Jk Jk~r-1 Jm

respectively the set of TB and the set of TM unassigned nets in [0 , R(j)]. The nets in 7)tb are called 

unstable if one of the following two conditions is satisfied (symmetric cases are omitted).

I 'Ttb I > | 'Htm |

2) | T7tb I = I 'Htm | and rb(j) > lb(j)+l 

We call m-balancing the following task:

1) Select Ns € t)tb with bs ^ bj. (i = l,...,k).

2) Assign a CCW direction to Ns, that is, D(s) = CCW.

3) Lpdate the barriers.
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The m-balancing task is repeated until there are no more unstable nets. We refer to the layout pro

duced by the balancing task the greedy layout.

Lemma 3. The m-balancing task produces an optimal layout of unstable nets.

Proof: As in the proof of Lemma 1. consider an optimal layout of IR. In this layout let Nj be the 

ith net to which a direction D(i) has been assigned in the balancing phase and let D (i) be its direc

tion in the given optimal layout, for 1 ^ i ^ k. Assume the assignments of N j......... in the

optimal layout and in the greedy layout agree; this is certainly true, by virtue of Theorem 1, for 

1 ~ 1* Our objective is to modify the optimal layout, without losing optimality, by changing the 

assignment of Nj to make it agree with its assignment in the greedy layout. In this process, as we 

will see, we may have to change the assignment of another net Nj such that j > i We remove the 

wire, connecting the two terminals of Nj, from the optimal layout. We use the superscript * to 

denote the variables of this layout, e.g.. u (c,c+Z) denotes the used capacity of the open interval 

(c,c+Z) in this layout. Without loss of generality let Nj be a TB-net and assume D(i) = CCW, that 

is, X, has been given the CCW direction in the greedy layout. If D*(i) = D(i) then the claim holds. 

So assume D (i) ^  D(i), that is, D*(i) = CW.

* *
Clearly lb (i) ^  rb (i). otherwise, the result follows by virtue of Lemma 1 (case 1). Recall 

that X, was assigned if one of the following two conditions was met;

Case 1) | 7)TB | > | t)tm |:

Since lb (i) ^  rb (i) ^  u (R(i)) and lb(i) <  rb(i) = u(R(i)) then there are more nets in

T̂B LJ Vtm (assigned after XTi) contributing to lb (i) — lb(i) than there are nets contributing
*

to u ( R( i)) — u(R(i)). Since t)tb > t)tm then at least one of these nets must be a TB-net. Let 

Xj be one ol these TB-nets with the rightmost terminal on T. Since Nj € t)tb then b; <  bj (a 

decision made in the m-balancing phase).

Case 2) | t)tb | = | r)TM | and rb(i) > lb (i)+ l:

Since lb (i) ^  rb (i) ^  u (R (i)) and lb(i)+l" < rb(i) = u(R(i)) then there are (at least) two 

more nets (assigned after X'j) contributing to lb (i) — lb(i) than there are nets contributing to
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u (R (i)) — u(R(i)). Since 7)xb = 7)tm then at least one of these nets must be a TB-net. Let N; 

be one of these TB-nets with the rightmost terminal on T. Since Nj € 7)tb then bs < bj (a deci

sion made in the m-balancing phase).

As it was proved in Case 2 of Lemma 1. we can change the direction of Nj and N, while maintaining 

optimality. Thus the greedy layout is optimal. □

Each unassigned not Nj at the completion of the m-balancing task is called a stable net and 

must satisfy: lb(j) = rb(j), lb(j) = rb (j)+ l, or lb(j) = rb(j)— 1. Assume, there are s stable nets. 

These nets increase the final height by at least s — 3 units. We can employ the pair-up technique to 

lay out stable TB-, TM-. and MB-nets independently. As discussed before, the total height is 

increased by s units. Thus, the final layout is within three units from the optimal; in fact, we can 

construct examples (a crossing as discussed in Section 3) in which these three units are required. 

This means the pair-up technique is existentially optimal.

Lemma 4: The pair-up phase produces an optimal layout of stable nets.

We refer to the m-balancing and pair-up of TB-. TM-, and MB-nets as m-LAYOUT.

instance ol R2R can be laid out as follows:

procedure LAYOUT-2RECT,

begin ASGN (local nets);

ASGN (cross nets); 

LAYOUT (L jR j); 

LAYOUT (L2R2); 

m-LAYOUT (TB.TM.MB); 

CHANNEL-ROUTER;

end

An arbitrary

(*minimal-corner assignment *)

(* middle-center assignment *)

(* see Section 3 *)

(* see Section 3 *)

(* as described in Lemma 3*)

(* algorithm of [PL] *)

Theorem 3: LA Y OUT-2 R ECT produces an optimal layout for an arbitrary instance of R2R in

O(nlogn) time, where n is the number of terminals.
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Proof: From Theorem 2, Lemma 3, and Lemma 4 we obtain that the layout produced by

LA\ OUT-2RECT is optimal. As discussed in Theorem 2, minimal corner assignment and LAYOUT 

algorithms can be done in O(nlogn) time. Assignment of cross nets and mLAYOUT cost one unit of 

time per net, total of O(n) time. The algorithm of Preparata-Lipski used in the last step runs in 

O(n) time [PL]. □

The preceding algorithm can be easily modified to solve extended versions of R2R. These 

extensions correspond to the problems discussed at the end of Section 3.
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