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ABSTRACT

A new technique, based on virtual backpointers, is presented in this paper for local concurrent 
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I. INTRODUCTION

Linked data structures form, an integral part o f many software and database systems. Per­

forming error detection and correction to preserve the correctness o f data structures can be impor­

tant in achieving overall system reliability. Detection and correction algorithms, when used con­

currently with normal data structure access, typically degrade performance. To reduce this degra­

dation, these algorithms should not access a large number o f nodes that lie off the intended traver­

sal path. If data structure checking operations are performed in a small locality around a currently 

accessed node, and execute in constant time, then error detection and correction can potentially be 

performed concurrently with normal data structure accesses without severely degrading the sys­

tem performance. In addition, an arbitrary number of errors in the data structure may be detected 

and corrected asstuning not too many exist within a given locality.

The foundation work concerning robust data structures was performed by Taylor, Morgan 

and Black [1,2]. Several techniques have since been developed to achieve robust data structures. 

Such structures include the modified(fc) double-linked list, the chained and threaded binary tree, 

and the robust B-tree. by Taylor. Morgan and Black [1,3.4], the isomorphic binary tree by Munro 

and Poblete [5], the robust binary tree by Sampaio and Sauve [6], and the mod(2) chained and 

threaded binary tree by Seth and Muralidhar [7]. In general, global detection techniques are used 

on these data structures. Similar techniques are also used on the three pointer tree, as explained by 

Yoshihara et al [8]. Though not indicated in their paper, single error detection can be performed in 

constant time within the D-loop localities in the structure. Kuspert's separately-chained hash table 

[9], which is an application o f double-linked lists, guarantees single error detection in constant time 

through the use o f five extra fields stored in each node. The concepts o f local detectability and local 

correctability were introduced by Black and Taylor [10], and have been applied to several data 

structures, including the spiral(fc) list [10], the LB-tree [10,11], the mod(fc) list [12], the helix(fc) 

list [13] and the AVL tree [14].
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As a means o f preserving the structural integrity o f linked data structures, a new approach to 

detecting and correcting structural errors, called the virtual backpointer, is introduced in this paper. 

The virtual backpointer provides the capabilities o f structural error detection and correction as 

well as the generation o f backpointers. Two data structures are constructed in this paper using the 

virtual backpointer: the Virtual Double-Linked List and the B-Tree with Virtual Backpointers. 

The Virtual Double-Linked List requires the same amount of storage as the standard double-linked 

list from which it is derived, but possesses higher error detection and correction capabilities. The 

B-Tree with Virtual Backpointers, derived from the B-tree o f order m. requires m+4 more fields in 

each node than the standard B-tree, with the benefit that it facilitates backward traversals as well 

as error detection and correction. The Virtual Double-Linked List and the B-Tree with Virtual 

Backpointers can be shown to possess the properties o f local detectability and local correctability, 

according to the definitions of these properties introduced by Black and Taylor [10]. However, 

these definitions do not give a specific measure of the size o f the locality within which local detec­

tion and local correction are performed. The concept o f a checking window is introduced in this 

paper as a mechanism for specifically stating the size o f this locality. Detectability and correctabil­

ity within a window are presented as specific functions of the window size.

The organization of this paper is as follows. Section II presents the virtual backpointer and 

checking window concepts. In Section HI, the Virtual Double-Linked List is described and its 

detection and correction capabilities are analyzed: similarly. Section IV describes and analyzes the 

B-Tree with Virtual Backpointers. Section V  presents the results o f experiments performed with 

the VDLL and the VBT to determine the effectiveness and the time overhead o f local concurrent 

error detection and correction. Finally. Section VI provides a summary o f this work.
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H. VIRTUAL BACKPOINTERS

Linked data structures, as considered in this paper, are composed of nodes linked by pointers. 

Nodes consist o f components, where a component has a type (e.g., pointer, checking symbol, back- 

pointer) and a value. An instance mapping I  accesses the components and interprets them to obtain 

their values. If all the nodes o f a data structure contain the same number and types o f components 

in the same order, then that structure is said to be uniform. A  move from a node Nj to a node Nk is 

possible if there exists a pointer from Nj to Nk. in which case Nk is reached from Nj by following 

that pointer. Two moves are similar if the pointers for those moves are derived from the same 

types of components at identical positions within their respective nodes. A  series o f moves that 

begins at the header node(s) o f a data structure and accesses part or all o f the structure is called a 

traversal.

The errors considered in this paper are those that affect the structural information o f the data 

structure (i.e., structural components). To simplify the error detection and correction analyses, it 

is assumed that instances o f a uniform data structure reside in a node space in virtual memory, and 

that no node external to a correct instance contains information which could be interpreted as a 

pointer into that instance. This latter assumption is similar to the Valid State Hypothesis o f Tay­

lor, Morgan, and Black [2], but differs in that there is no assumption concerning identifier fields.

In this paper, Ai represents the memory address o f a node Nt in a linked data structure. Nt 

may have many pointers to other nodes, with N ^N j^y representing a desired move from Nj, fo l­

lowing a pointer, to reach a node N ^ .  The pointer value may be given directly by I  from one of 

the components o f Nj or may be a function o f the values (also given by / )  o f several components.

The virtual backpointer formally defined below can provide the address o f a parent Nparent of 

a node Nj. In the general case, a virtual backpointer may point to an ancestor Nancestor o f a node Nif 

where Nancestor is an ancestor o f Nt if there exists a series o f possible moves from Nancestor to Nj.
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Definition 1: Let Nancestor be an ancestor of Nif and be the set o f pointers in Nj. A  virtual 

backpointer. Vj, is: V| = /  (Qj. A ancestor), where /  is a function such that Aancestor = /  (Qj, Vj) = 

/ ’ (Qif /  (Qit Aancestor)). and / *  is a companion function determined by / .  In general, there may be 

vectors o f virtual backpointers. Vj = /  (Q,. A ), which, after suitable transformation by /  , point to 

vectors o f ancestor nodes X. □

The standard backpointer is a degenerate case of the virtual backpointer, with /  (Qj, Aancestor) 

= A ancestor and / * ( Q V i )  =  Vj. The virtual backpointers developed in this paper have the following 

properties. 1) V ^  is used for structural error detection and correction for a forward move 

Ni- N mv. 2) V MV provides the backpointer for a backward move NMV->Ni after transformation by 

/  , and Qi is used for structural error detection and correction. Although not considered here, the 

virtual backpointer could be generalized to a virtual pointer. In that case, the values generated by 

/  would be the addresses o f nodes which are not constrained to be ancestors o f the current node.

Virtual backpointers are used in this paper to perform error detection within a locality o f a 

specific size in the data structure. This locality is formalized as a checking window. A  checking 

window of size s is a set o f s adjacent nodes in a data structure.

DEFINITION 2: For a given move N ^N j^y in a uniform data structure, the set o f checking 

windows o f size s is: W* = {W^ 1 U Nk | W* 1 € W* 1, Nk & W f 1, and Nk is adjacent to some 

node in W ?-1}. The base case, determined by the move, is: W 2 = {W 2} = {{Nj NMV}}. □

This definition says that a window W^, for some m, is constructed by adding one more node 

Nk to the smaller checking window W f-1, such that Nk can be reached from some node in W* 1 in 

one move. Each is a set o f nodes, and all for a particular move together form a set, W 1. 

Since the data structure is uniform. W* for a given move will be isomorphic to W'* for any other 

similar move in that structure. In our discussion, two nodes of any W* will be written with a 

node’s son to the node’s right.

Example 1: Consider a forward move Ni“ >Ni+1 in a standard double-linked list (Figure 1):
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Figure 1. Checking Windows for a Double-Linked List.

w l =  (N, N1+1)

W 2 =  (W 2} =  {{N,. Ni+1)}

Wi =  (N,, Ni+1. Ni+2)

W 2 =  {NM . N,. Ni+l)

W 3 =  {W 3. W 3) =  { {Nj. Ni+1, Nl+2). {N ,.!. N,, Ni+1)}

etc. □

Structural error detection is accomplished in the two data structures o f this paper by evaluat­

ing checking predicates within a checking window. A  checking predicate performs one-error detec­

tion on the components on which it is defined. That is. it returns "True" for zero erroneous com­

ponents, "False" for one erroneous component, and either "True" or "False" for multiple erroneous 

components. If all the components which a predicate uses are available in a particular checking 

window, then that predicate is evaluable in that window. Clearly, isomorphic checking windows 

w ill have identical sets o f evaluable checking predicates. An example checking predicate is the vote 

of Black and Taylor [10]. Constructive votes generate possible values for a component under 

evaluation and. together with diagnostic votes, elect one value as the correct value o f that
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component. The component under evaluation is called the principal component, c.

The minimum number o f errors within a checking window o f size s that can mask an 

incorrect move due to an erroneous component w ill be used to evaluate the error detection capabili­

ties of the data structures o f this paper. This is similar to the concept o f changes used by Taylor. 

Morgan, and Black [2] to determine the distance between two data structure instances, in a global 

context. The differences here are first, that the distance is measured within a fixed-size checking 

window, and second, that no global information is used in the determination of the distance.

Definition 3: For a given move MV in a uniform data structure and a specific checking win­

dow W f, the local distance o f the window, d^(MV), is the minimum number o f erroneous com­

ponents in W? required to mask an incorrect move due to an erroneous component, by causing all 

the checking predicates within W* to return "True" as a false indication o f a no-error condition. □

The error detectability o f a specific move and a set o f checking windows of size s can now be 

described, in terms o f this local distance.

Definition 4: For a given move MV in a uniform data structure and for the set o f windows 

W*, the detectability in a window, D* (M V), is D* (M V) = max(d^(MV)) — 1, 1 ^  j ^  | W*|. □

For a particular move, different checking windows o f the same size do not consist o f the same 

nodes. Consequently, they do not necessarily achieve the same detectability. This is the reason 

that the max function is used: for a given move, it is always possible to use the particular W* that 

gives the greatest detectability. That particular window is called W*. and its corresponding local
I

distance is d*. Isomorphic instances o f W , are used for all similar moves. For a uniform data 

structure, the parameter MV may be omitted from d?(M V) or Di (M V), when the context is clear. 

A consequence of Definition 4 is that D*(MV) = D* (M V ), if MV and MV' are any two similar 

moves in the uniform data structure.

The following theorem shows that the detectability Ds is the same for both forward and 

backward moves, if forward and backward pointers (virtual backpointers) can be paired in one- 

to-one mapping. This assumes that no special knowledge (i.e., the known addresses o f the header
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nodes) is used if the move concerns the header nodes. This theorem will be used in the determina­

tion of D*(MV) for the Virtual Double-Linked List and the B-Tree with Virtual Backpointers.

Theorem 1: In a uniform data structure, if there exists a one-to-one mapping between 

pointers allowing a move from Ni“ >Nk and pointers allowing a move from then Ds(Ni-*Nk)

= DI 0 V + N i) = D*.

Proof; Let Ni“ *Nk represent any forward move, and Nk-»N i represent the backward move. 

Because the data structure is uniform, the case where Nj-+Nk is changed by an error to Nj-+Nk. is 

isomorphic to the case where Nk->Ni is changed by an error to Nk-*Nr. Any W? constructed for 

Nj—>Nk. w ill be isomorphic to some constructed for Nk-*Nr. Thus, the W* for Ni-*Nk. w ill be 

isomorphic to the W 1 for Nk-+Nr. such that a one-to-one mapping o f isomorphic windows w ill 

exist between the members o f each W*. Since the evaluable checking predicates are identical for 

each pair o f isomorphic windows, then by Definition 3, each pair o f isomorphic windows w ill have 

the same d^(MV). Thus, by Definition 4, Di (Ni-+Nk) = D^CN^Np = D*. □

Theorem 2 shows that the detectability D*(MV) in a uniform data structure is a monotoni- 

cally non-decreasing function of the window size s. This result w ill be used to determine the 

upper bounds o f DS(M V) for the Virtual Double-Linked List and the B-Tree with Virtual Back- 

pointers.

Theorem 2: For a given move MV in an n-node instance o f a uniform data structure, and for 

all possible sets o f erroneous components in that instance, if all evaluable checking predicates used 

in W p 1 are used in where W p 1 C W^. then Di_1(M V) <  D*(MV) <  Dn(M V), 3 <  * <  n.

Proof: By Definition 2, every is constructed by adding one adjacent node Nk to a check­

ing window of size x-1: =  W p 1 U Nk. Any checking predicate in W* 1 that evaluates to

"True" w ill remain "True" in W^, because all the components used by that predicate in W* 1 retain 

their values in W p  If the addition of Nk causes an unevaluable checking predicate in W p 1 to 

evaluate to "True" in W^, this results in d^ = d p 1. However, if the predicate evaluates to "False." 

then d^ >  d p 1, since at least one other error would be required to mask the detected error. Hence,
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^  d* l. Then, max(d^) ^  maxCd^-1), and from Definition 4, D* ^  D*-1 . The upper limit o f 

detectability is trivially D*, since the checking window has reached its maximum size (it contains 

the entire structure). □

A  general approach for performing error detection in a particular uniform data structure 

using checking windows is outlined in the following discussion. For the data structure chosen, each 

possible type of move in the structure (e.g.. forward, backward) is identified. For each type, a 

representative move MV and the desired level o f detectability DS(M V) are chosen. Checking win­

dows of increasing size (starting with W^, the smallest window) are analyzed using Definitions 3 

and 4 to determine their detectabilities D*(MV) for each representative move. Once the desired 

level o f detectability is achieved, the corresponding checking window is labeled W*. It is only W* 

that is constructed for every move made when accessing instances o f this particular data structure. 

Finally, for each type of possible move, the checking predicates are identified that w ill detect 

erroneous components in W f.

The preceding steps need to be performed only once for a given data structure. For every 

move made when accessing nodes of instances o f the structure, W* can be constructed and the 

checking predicates evaluated. If all evaluable predicates return "True," then either no error has 

occurred or undetectable errors have occurred; if any evaluable predicate returns "False," then at 

least one error has been detected.

Once an error has been detected, correction may be performed. The ability to perform correc­

tion relies on the existence o f a correction procedure. Like detection, correction is performed 

within checking windows. The number of errors in the window that can be corrected is defined in 

the following.

Definition 5: For a given move MV in a uniform data structure and for the set o f windows 

W *, the correctability in a window, C* (M V), is the maximum number o f erroneous components 

that may exist in W* such that for any set o f erroneous components o f cardinality ^  C* (M V), a 

detection procedure will detect the erroneous components, and when invoked sifter the application
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of a correction procedure to W*. the detection procedure w ill correctly indicate an error-free win­

dow, guaranteeing the correctness o f the move. □

In order to obtain the desired levels o f detectability and correctability, a large window may 

be necessary. Typically, the cost o f performing error detection and correction w ill increase as the 

window size increases. By specifying the size o f the locality within which local detection and 

correction are performed, a measure of the cost o f those procedures may be made. A larger check­

ing window will, in general, have a larger set o f evaluable checking predicates and detection within 

that window will have a correspondingly greater computational cost. Similarly, the larger window 

will contain more nodes, so that the number o f nodes accessed w ill be larger.

Since errors are detected and corrected based only on information from nodes in the checking 

window, many other detectable and correctable errors may exist simultaneously throughout the 

data structure. Although the detectability D1 and correctability C* may only be one or two for 

single moves in the data structure, the total number o f detectable and correctable errors in the 

entire structure may be much greater since D* and C1 are measured relative to a checking window. 

Black and Taylor [10] were the first to introduce local detection and correction algorithms, which 

permit the correction of an arbitrary number of errors, provided the errors are in some sense 

sufficiently separated from each other. The checking window concept o f this paper provides a 

measure o f the "sufficient separation" o f errors, which is the size o f the window: for W*. the 

sufficient separation is s nodes between every error.

HI. VIRTUAL DOUBLE-LINKED LIST

The Virtual Double-Linked List (VDLL) is a uniform data structure that employs the virtual 

backpointer for local error detection and correction and for backward traversals. The VDLL 

requires the same storage space as the standard double-linked list (DLL), and retains the simplicity 

o f the DLL, since it is possible to move directly from a node to its parent, using the virtual
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backpointer.

Definition 6: A  Virtual Double-Linked List is described as follows (Figure 2). In a linked 

list data structure, let be the parent o f Nj, and Pj be the forward pointer o f the Nj, therefore 

Qi =  {P j. Let Vj =  /  ( {Pj}. A i_1) =  PjSAj.j, thus = /  ({P j. =  PjSVj, where ® denotes the

logical exclusive-or function. The VDLL is created from the DLL by replacing the backpointers in 

the DLL with virtual backpointers. Also, s header nodes N0, N_x, • • • , N_J+1 are added, where s 

is the size o f the checking window. These header nodes are assumed to be always accessible. Note 

that N _,+1 =  N^. □

A similar construction can be applied to the modified(fc) DLL family [ l ]  resulting in the 

modified(fc) VDLL structures.

Figure 2. Virtual Double-Linked List (VDLL) o f 5 nodes.
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DEFINITION 7: A  modijied(k) Virtual Double-Linked List is described as follows. In a linked 

list data structure, let Ni-k be the kth ancestor o f Nj and Pj be the forward pointer o f the Nj, there­

fore Qi =  {Pj}. Let V| = /  ( (Pi). Aj_k) =  Pj©Aj_k. thus Aj_k = /*({P i}. Vi) = P,®Vj. Also, max(k+1, 

s') header nodes are added. □

Local correction may be accomplished in the VDLL using the theoretical results o f Black and 

Taylor [10]. The linearization function as described in their theory corresponds to the forward 

traversal o f the VDLL. For each principal component c  =  Pj, there are two constructive votes (Pi, 

Vj0Aprev) and one diagnostic vote (PX©VX ?= Aj). (Nprev is the parent o f the current node Nj. and 

Nx is accessed using a candidate value.) These votes can be shown to possess the property o f dis­

tinctness, which is a precondition for their results. By the r-local-detectable and r-local- 

correctable theorems of Black and Taylor [10], the VDLL can be shown to be 2-local-detectable and 

1-local-correctable. However, local detectability and correctability in this case are not specified as 

a function o f the size o f the locality. The detectability Ds and correctability Cf, which specifically 

state the size o f the locality as the window size s. are therefore analyzed for the VDLL in Theorems 

3 and 4.

Theorem 3: The detectability Ds (M V) of the VDLL is D2(forward) =  D2(backward) = 

D2 = 1, and D* (forward) =  D* (backward) = D* = 2, Vr ^  3.

Proof: Since the VDLL is a uniform data structure and has a virtual backpointer for each

forward pointer, D* (forward) =  D* (backward) by Theorem 1. Consider a forward move Ni- +Ni+1

following Pj. Suppose that Pj is erroneous and leads to NJ+1 instead o f Ni+1. In W 2 = {Nj. Nj+1}, 
2

dx = 2: either Vj+1 or Pj+1 must be erroneous to mask the error in Pj. Assume that Vj+1 is errone­

ous (Figure 3a). In W 2 = {Nj, Nj+1, Nj+2}, d j = 2. However, in W 2 = {N j^, Nj, Nj+1}, Vj will lead 

to the detection of the error in Pj, because following the backpointer given by Vj0Pj will lead to a 

node Nk-1 instead o f Ni_1, and Pk-1 ^  Nj. Therefore, Vj must be changed to Aj+1®Ai_1 to mask the 

error in Pj.* d2 = 3.
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«-j—2

V i

A j

V i

Lj+2

Figure 3a. Analysis o f VDLL: Errors in Pif V¡. and V j+1.

Figure 3b. Analysis o f VDLL: Errors in Pi# Vj. Pj+1, and V k+2.
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Assume now that V j+1 is not erroneous, so Pj+1 must be erroneous (Figure 3b) to mask the 

error in Pt. Consider w j  =  {Nif Nj+1, Nk+2}. The Pj error w ill be undetectable if Pj+1 has been 

changed to A k+2 = Aj©Vj+1 and V k+20Pk+2 has been changed (via a change in either V k+2 or Pk+2) to 

A j+1. The remainder of the analysis is similar to the case above, and gives dx = 2, dx = 3 and 

d| = 3. According to Definition 4, D2 = 1 and D3 = 2. Since the VDLL can be changed to another 

correct VDLL by three erroneous components (node deletion), then Dn =  2, where n is the number 

of nodes in the structure. By Theorem 2, D* = 2, Vi- ^  3. □

The above proof suggests that for a forward move, W,2 = {Nit NMV} and W,3 = 

{Nprev. Nj, Nmv}, where Nprev corresponds to in the proof. For a backward move, W , = 

{Nmv, Nj} and W,3 = {Nnext, NMV, N j, where Nnext is the node reached by following Pmv®v m v  By 

using these windows, double component errors can be detected, or single component errors 

corrected (Theorem 4 below). To verify a forward move, two constructive votes are evaluated 

(Figure 4a). The first vote (Pj) yields the first candidate, and the second vote (A prev©Vi) yields the 

second candidate. If the candidates are unequal, then an error has been detected, and the move may 

be incorrect. Otherwise, the move is correct.

To verify a backward move, one constructive vote (PjSBVj) and one diagnostic vote 

(PMV ?= Aj) are evaluated (Figure 4b). If the diagnostic vote returns "False," then an error has been 

detected and the move may be incorrect. Otherwise, the move is correct.

(1) candidate x = Pt
(2) candidate 2 — A prev®Vi
(3) i f  (candidate x ^  candidate2) then
(4) Error detected
(5) else
(6) Access Nmv via candidate ̂
(7) Set Nj =

Figure 4a. Detection Steps, VDLL Forward Move.
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(1) candidate — PjSVj
(2) Access Nmv via candidate
(3 ) i f  ( P ^  ^  AP then
(4) Error detected
(5) else
(6) Set Nj =

Figure 4b. Detection Steps, VDLL Backward Move.

Figures 4a and 4b represent the steps used to detect errors between two adjacent VDLL nodes, 

accessing at most one node off the intended traversal path. For any W j, these steps constitute the 

complete detection procedure. For larger windows, the steps may be repeated between every pair 

of consecutive nodes in the window, if desired, as the nodes are added to the window: this pes­

simistic procedure would evaluate every evaluable checking predicate in the window. An optimis­

tic procedure would, for example, only verify the current move, letting later moves to check the 

other components in the window.

Table 1 gives the detectabilities D1 for the VDLL, modified(2) VDLL and modified(3) VDLL, 

compared to the DLL, modified(2) and modified(3) DLL [1], all without global counts or ID com­

ponents, for various sized checking windows. The detectabilities D* o f the modified(2) and 

modified(3) VDLL can be obtained using a similar analysis as that applied to the VDLL. The 

VDLL and modified(2) VDLL achieve greater detectability than the DLL and modified(2) DLL, 

respectively. The modified(3) VDLL achieves no greater detectability than the modified(3) DLL, 

and because o f certain pathological cases may exhibit less detection capability for small checking 

windows. It can be shown that the maximum detectability Ds for either the modified(fc) DLL or 

the modified(fc) VDLL is 3. V& >  3.

The following theorem provides the correctability Cf  (M V) for the VDLL.
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Table 1. Detectability D* 
o f Several Linked List Data Structures.

D* VDLL
mod(2)
VDLL

mod(3)
VDLL DLL

mod(2)
DLL

mod(3)
DLL

DJ 1 0 0 1 0 0
D3 2 1 0 1 1 0
D 4 2 2 1 1 2 1
D5 2 2 2 1 2 2
D 6 2 3 2 1 2 3
D 7 2 3 2 1 2 3
D8 2 3 3 1 2 3

THEOREM 4: In the VDLL. the correctability (^(forw ard) =  0; Cf (forward) =  1 V i > 2 , and 

at most one extra node is accessed for the correction of one error. Also. Cf (backward) =  0, \/s.

2
Proof: For the VDLL, the detectability D is 1. the local distance is 2 and the correctability 

C2 is 0. Similarly, the detectability D* is 2 for s >  2, the local distance is 3 and therefore the 

upper limit on correctability within a window Cf is 1. Only single error cases in W 3 are con­

sidered.

If the detection steps of Figure 4a have detected an error during a forward move following Pj, 

then the correction steps given in Figure 5 can be invoked, where the principal component c is Pj. 

Once these steps have completed, the detection steps o f Figure 4a can be reapplied to the original 

window. Assume an error is detected, i.e., the two constructive votes do not agree. This case arises 

if Pj 5* A prev©Vi; however, either Step 9 or 14 has guaranteed that this condition w ill be satisfied 

(single error assumed). This is a contradiction, so the two constructive votes must agree. There­

fore, the assumption that an error has been detected is false, guaranteeing the correctness o f the 

move. Then, by Definition 5, the correctability C* (forward) =  1.

For a backward move following Pj®Vj, the principal component is c = V i# and there is only 

one constructive vote (Vj). To correct one error there must be at least two constructive votes.
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(1 ) candidate x — Pi
(2) candidate 2 =  Vj©Aprev
(3) Access Nmv via candidate l
(4) val1 =  (Pmv® ^ mv ?= Aj)
(5) Access Nmv* via candidate 2
(6) val2 =  (Pmv'®Vmv' ?=  A^
(7) i f  {val1 = false) then
(8) i f  (val2 =  true) then
(9) Set Pj =  Vj0A ev

(10) else
(11) Uncorrectable: multiple errors
(12) else
(13) i f  (yal2 =  fa lse) then
(14) Set Vj — Pj0A
(15) else
(16) No error

Figure 5. Correction Steps, VDLL Forward Move.

Hence, the correctability C* (backward) = 0. □

For a forward move, the correction procedure executes in constant time and requires one extra 

node access. For a backward move, the worst-case error (Vj or VMV) cannot be corrected using 

only the information available in the window, and requires a global traversal for correction. It can 

be shown, however, that an error detected in P4 or PMV during a backward move can be corrected in 

constant time using only information in the window.

IV. B-TREE WITH VIRTUAL BACKPOINTERS

The B-Tree with Virtual Backpointers (VBT) o f order m is another uniform data structure 

which features the capabilities o f local error detection and correction and performing backward 

traversals without a stack, using the virtual backpointer. The underlying structure o f the VBT is 

the B-tree o f order m [15], which finds frequent application in the construction and maintenance of
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large-scale search trees. The standard B-tree has the following characteristics:

1)

2)
3)
4)

Every node contains at most 2m keys, and every node except the root contains 
at least m keys. The root contains at least one key.
Every node is either a leaf node, with no pointers to other nodes, or an internal 
node, with pointers to other internal nodes or to leaf nodes.
A ll leaf nodes appear at the same level.
An internal node with k keys will have k+1 pointers to subtrees. The k keys 
will be arranged in strictly increasing order. Keys in the i 11 subtree w ill be 
less than the l key. and keys in the i+ l th subtree will be greater than the i 
key.

Definition 8: A  B-Tree with Virtual Backpointers (VBT) o f order m is described as follows 

(Figure 6). In a standard B-tree o f order m, let Pj j be the jth pointer in node Nj (Figure 6a). Recall 

that the address o f Nj is Assume that each component requires one word of memory. There­

fore, each pointer is uniquely addressable by A jj. The VBT is modified from the B-tree in the fo l­

lowing ways.

1) A  header node N0 is created with P0 j = A 10 for 0 ^  j ^  2m. The empty VBT 
consists o f N0 with all null pointers.

2) Vj, the virtual backpointer o f Nj, is defined as Vj = Pij0©Piti® • • • © P ,^  
®AparenU where the r pointer in Nparent points to Nj. For the special case of 
the virtual backpointer from the root to the header. V x is defined on A 0 0, even 
though all P0j  point to Nx.

3) The keys of Nj. Ki P Ku , • • • . Ki;2m are arranged in a matrix (Figure 6b) and 
the key check symbols and Yj j are generated using a product code [16]:

Xij = ^  (j_1)m+1 © Kj (j_i)m+2 © • • ■ © Kj , 1 ^  j ^  2
Yy = Kj j © Ki/n+j

Kg is used to determine Xi4nt((> 1)/m)+1 and Y ^ j  modm + v  called its 
corresponding X  and Y check symbols, respectively.

4) Each node will be aligned at an address in virtual memory that is a multiple 
o f a constant, the alignment constant, which is greater than or equal to the size
of a node. □

The number o f key fields used in Nj is called county which is added for performance enhance­

ment. A leaf node may be distinguished from an internal node by all its pointers being null: an ID 

field may be used if quick identification is required. The forward move in the VBT simply follows 

a forward pointer. The backward move, Nj—̂>NMV, is accomplished by the following steps: 1) 

Amv,i is generated via V^Pj(/®Pi#1© ••• © P ^ .  2) A MV = int(AMV/alignm ent constant) X
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alignment constant. 3) NMV is accessed using AMV. A  VBT of order 2 is illustrated in Figure 6c.

Local correction may be accomplished in the VBT using the general theory of Black and Tay­

lor [10]. The linearization function required in their approach corresponds to a forward traversal 

of the VBT from header N0 to a leaf. For each principal component c =  Py there are two construc­

tive votes (Pi j, Vj©Aprev>r©Pif0® • • • ©Pi,j_i©Pifj+i© ' * * ©Pi^, • where A prcv̂  is the address o f the 

pointer Pprev r) and one diagnostic vote (V ^ P X ¿©Px j® • • • ©Px>2m© ?= A y). (Nprev is the parent o f 

the current node Nt. and Nx is accessed using a candidate value). These votes are distinct and by 

the r-local-detectable and r-local-correctable theorems of Black and Taylor [10], the VBT can be 

shown to be 2-local-detectable and 1-local-correctable.

As in the VDLL case, in order to specify the detectability and correctability as a function of 

the size o f the locality, D* and C* are now analyzed for the VBT. Using Theorem 2, the possible 

component errors that can occur in the VBT are presented in Table 2 (errors in the count field are 

covered by the fifth and sixth rows of the table) along with the number o f errors required to mask 

them. Each column o f local distances in the table uses the same checking window. W*. so that the 

m a x im u m  detectability D* in each column is computed from the minimum local distance in that 

column.

THEOREM 5s The detectability D1 (M V) of the VBT is D2(forward) =  D2(backward) = D2 = 1, 

and D* (forward) =  D* (backward) = Ds = 2 , Vr ^  3.

Proofs From Table 2, the worst error has d 2 = 2 and d. = 3, \/s ^  3. It follows from 

Definition 4 that D2 = 1 and D* = 2, Vj ^  3. □

Table 2 shows that no increase in the detectability Ds can be gained for s >  3. It can be shown 

that when moving forward Ni- +NMV. W,2 = {Nj. NMV} and W,3 = (Nprev. Nj. NMV}. When moving 

backward Ni“ *NMV, W ? = {N ^ ,  N j and W 3 = {Nnext. NMV, N j. Use o f these windows allows 

detection of double component errors, or correction of single component errors (Theorem 6 below). 

To verify a forward move, two constructive votes are evaluated (Figure 7a). The first vote (Py) 

yields the first candidate, and the second vote (VjSAp^¿©Pl>(y© * * * ©Pi,j-i©Pi,j+i© * * ' © P ^  ) yields
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Vi

Figure 6a. Node Representation, Order-2 VBT.

Ki.l * U ... K ,„ X U
K , „ +1 ^■i/n+2 ... X u

Y ,i Y u ... Y ,„

Vi — P i#P ,i©  * * * ©Pi^m®AparenU 
coun^ =  number o f key fields used in Nj

Figure 6b. VBT Virtual Backpointer and Key Check Symbols.

Figure 6c. Order-2 B-Tree with Virtual Backpointers (VBT).
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Table 2. Analysis o f Errors in the VBT.

Error Condition d,2 d,3
cU

4
A non-empty VBT becomes empty 2m+l 2m+l 2m+l
An empty VBT becomes non-empty 2m+2 2m+2 2m+2
A key or key check symbol (X , Y) becomes erroneous 3 3 3
An internal node’s non-null pointer becomes erroneous 2 3 3
An internal node’s non-null pointer becomes null 6 6 6
An internal node’s null pointer becomes non-null 6 7 7
Two o f an internal node’s pointers are exchanged 3 3 3
An internal node becomes a leaf node 3 3 3
A leaf node becomes an internal node 3 4 4

(1) candidate l =  Pj j
(2 ) candidate2 — Vj0Aprev ̂ ®P¡q© • * • ©Pij_i©P¡j+i© ' * * ©Pi¿m
(3 ) i f  {candidate 1 ̂  candidate2) then
(4) Error detected
(5 ) else
(6) Access Nmv via candidate x
(7 ) Set N, =

Figure 7a. Detection Steps. VBT Forward Move.

the second candidate. If the candidates are unequal, then an error has been detected and the move 

may be incorrect. Otherwise, the move is correct.

To verify a backward move, one constructive vote (V^0Pi>(̂ 9Pi(1® • • • © P ^ )  and one diagnos­

tic vote (PMV>r ?= Aj) are evaluated (Figure 7b). If the diagnostic vote returns "False," then an 

error has been detected and the move may be incorrect. Otherwise, the move is correct. These 

detection steps, given in Figures 7a and 7b. access at most one node off the intended traversal path, 

and may be repeated for each pair o f adjacent nodes in larger windows, just as for the VDLL.

The following theorem provides the correctability Cf (M V) for the VBT.

Theorem 6: In the VBT, the correctability (^(forward) =  0; C1 (forward) =  1 Vi- > 2  and at 

most 2m extra nodes are accessed. Also. Cf (backward) =  0, V.r >  2.
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(1 ) candidate =  V^Pj ¿©Pj x • • • © P ^
(2) Access via candidate
(3) i f  (PMV,r 5* Aj) then
(4) Error detected
(5) else
(6) Set Nj =  Nmv

Figure 7b. Detection Steps. VBT Backward Move.

Proof: Since the detectability D2 = 1. the correctability C2 = 0. Similarly, the detectability 

D* = 2 for -y >  2, and the upper limit o f correctability Cf =  1. Therefore, only single error cases in 

W,3 are considered. The error may be a key, a key check symbol, a count or a pointer. Key or key 

check symbol errors are diagnosed and corrected using the simple procedures for product codes 

[16]. Diagnosis and correction o f an erroneous count is accomplished by counting the non-null 

keys. An erroneous pointer located in N0 can be diagnosed and corrected by simple comparison, as 

there are 2m+l ^  3 identical pointers in the header. For an erroneous pointer not in N0, e.g., Py (i 

0), correction is performed after an error has been detected using the steps of Figure 7a, during a 

forward move following Py. Then the principal component is c = Py and the correction

steps in Figure 8 may be invoked.

Once these steps have completed, the detection steps given in Figure 7a can be reapplied to the 

original window. Assume an error is detected, i.e.. the two constructive votes do not agree. This 

occurs if Py ^  Vj0Aprev̂ ©Pi(y© • • •0Pij_10Pij+1© • •- © P i^ ;  however. Step 9, 18 or 20 of the 

correction procedure guarantees that this condition will be satisfied (single error assumed). This is 

a contradiction, so the two constructive votes must agree. Therefore, the assumption that an error 

has been detected is false, and the correctness o f the move is guaranteed. By Definition 5, the 

correctability Cf  (forward) =  1.

For a backward move following V^BPi((/BPifl© * • • © P ^  • the principal component is c =  V {, 

and there is only one constructive vote (Vi). However, to correct one error, there must be at least
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(1 ) candidate x = Pj j
(2 ) candidate2 =  Vj©Aprev r©P¡<0© • • * ®Pij_i©Py+i© * * * ©P\̂.m
(3 ) Access Nmv via candidate x
(4 ) vall = (V mv®Pmv,o©Pmv,i® * * ’ ®P\iV,2m ?= A,P
(5 ) Access Nmv' via candidate 2
(6) val2 = (VmV,©PMv,o,©Pmv.i ® • * * ©Pmv /̂w ' ?= Ay)
(7 ) i f  (val1 =  false) then
(8 ) i f  (va/2 =  true) then
(9 ) Set Pi j =  Vj©ApreVjr©Pi>0© • • • ©Pi,j_i©Pij+i© * * ‘ ©Pi^m

(10) else
(11) Uncorrectable: multiple errors
(12) else
(13) i f  (yal2 =  false) then
(14) fo r  k  = 1 to 2m, k ^  j do
(15) Access Nx via Pijc
(16) Perform detection on and Nx
(17) i f  (error detected) then
(18) Set Pu  = Vj0Aprev r®Pi 0© • • • ©Pu _i© • • •

®PU+1© ’ * * ®Pi,2m
(19) i f  (no errors detected in fo r  loop) then
(20) Set ^  = A preVfr®Pii6©Pu© • • • ©Pi>2m
(21) else
(22) No error

Figure 8. Correction Steps, VBT Forward Move.

two constructive votes. Hence, the correctability Cf (backward) = 0. □

The robust B-tree [4] presented by Black. Taylor and Morgan performs double error detection 

or single error correction using global techniques and requires 2m+3 extra fields in each node of an 

order-m B-tree. Taylor and Black have also developed the LB-Tree [10,11] which is 2-local- 

detectable and 1-local-correctable. Each node of an order-m LB-tree is augmented by 2m+5 extra 

fields. In comparison, the properties o f the VBT are as follows:

31) Double component errors can be detected in the VBT using W ,.

Single component errors can be corrected in constant time in the VBT using 

W,3 for an error detected during a forward move.

2)
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3) The VBT requires m+4 extra fields in each node.

4) The virtual backpointer facilitates backward traversals o f the VBT. which can 

enhance performance.

V . EXPERIMENTAL RESULTS

This section describes a series o f four experiments that provide example measurements o f the 

capabilities (behavior under multiple error conditions) and performance (time overhead) o f both 

local concurrent error detection and correction for example VDLL and VBT instances. A  model 

virtual-memory database o f VDLL and VBT instances was created and accessed by simulated data­

base routines. Written in C. the implementations were run on Sun 3/50 and Sun 3/110 worksta­

tions.

For the capability experiments. VDLLs of 50. 100. 500 and 1000 nodes and VBTs o f 100. 

1000, 10,000 and 50,000 nodes were constructed. Varying numbers o f errors were injected into the 

instance, ranging from single component errors to a maximum number o f component errors equal 

to 30% of the nodes in the instance. Each error replaced a random component value in a random 

node with a random integer, chosen from the address space o f the nodes o f the instance. In the 

VDLL, values replaced were either pointers or virtual backpointers, and in the VBT. any one of: 

pointer, virtual backpointer, key. key check symbol or count value. Once the errors had been 

injected, a fu ll traversal with local concurrent error detection (correction) was performed. The 

experiments determined the percentages o f detectable and correctable errors and the number of 

fu lly  recovered instances. It should be noted that a random distribution o f errors may not accu­

rately reflect the wide variety o f structural errors possible, due to such problems as physical 

failures or corrupted software.

In the performance experiments, VDLL and VBT instances o f 100. 1000, 10,000 and 50,000 

nodes were constructed, to characterize the time overhead required for local concurrent error
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detection and correction. The experiments assumed worst-case user behavior, to estimate the 

worst-case performance penalties. Only searches were performed, no data was read, no user com­

putation was performed between database operations, and no disk accesses were required. In realis­

tic applications o f the VDLL and VBT database environments, the inclusion o f delays due to disk 

accesses and user computations would dramatically reduce the performance overhead measured. 

The analysis o f variance method [17] was used to determine that the performance was independent 

of the database size. Linear regressions were then used to estimate the time overhead o f the algo­

rithms. The results o f the experiments are presented in the following four subsections.

A . Concurrent Error Detection Capability 

VDLL Results

The following quantities were measured for each experiment: the total numbers of injected 

and corrected errors, whether the first erroneous node on the forward traversal path (FENF) had 

been detected, and whether the first erroneous node on the backward traversal path (FENB) had 

been detected. For all cases, 100% of the errors injected, 100% o f the FENFs, and 100% o f the 

FENBs were detected. The procedure performed perfect detection even under the multiple error 

conditions o f this experiment.

VET Results

The total numbers o f injected, detected, and undetected errors were measured for each experi­

ment. For all cases, 100% o f the errors injected and 100% o f the FENFs were detected. (There are 

no backward fu ll traversals in the VBT, therefore no FENB measurement was done.)
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B. Concurrent Error Correction Capability 

VDLL Results

The results are shown in Figure 9. Each graph is associated with the VDLLs o f a particular 

size. The x-axis in all graphs displays the number of errors injected, as a percentage of the number 

of nodes in the VDLL. The y-axis displays the average percentages of the errors that were 

corrected and the VDLLs that were recovered.

0 1 2 3 4 5 6 7 8 9  10 0 1 2 3 4 5 6 7 8 9  10

Errors Injected (% nodes) 

Figure 9a. 50-node VDLL.

Errors Injected (% nodes) 

Figure 9b. 100-node VDLL.

Errors Injected (% nodes) Errors Injected (% nodes)

Figure 9c. 500-node VDLL. Figure 9d. 1000-node VDLL.
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The graphs show that the procedure can consistently correct a significant percentage o f the 

errors even when up to 10% o f the instance’s nodes may be corrupted. The instances-recovered 

curves drop off more sharply since even a single incorrect correction renders the instance unrecov­

erable. This also explains why the slope is steeper for the larger instances: even a small percentage 

of erroneous components translates into a large absolute number o f errors, only one of which 

would need to be uncorrectable to render the structure unrecoverable.

VBT Results

As in the VDLL graphs, each graph o f Figure 10 is associated with the VBTs o f a particular 

size. The x-axis displays the number errors injected, as a percentage of the number o f nodes in the 

VBT. The y-axis displays the average percentage of instances that were recovered.

The number o f recoverable instances may be much greater than indicated in the graphs, 

depending on the timing and pattern o f error formation. That is, an instance may still be recover­

able if many errors arise but at such times that only one error is encountered by a checking win­

dow at any time. In practical applications, only a small number of errors would be expected in a 

data structure instance, so that the probability o f recovery using this correction procedure would 

be very close to 100%.

C. Concurrent Error Detection Performance 

VDLL Results

The time to perform searches without (TIMEO) and with (TIME) local concurrent error detec­

tion were measured. An analysis o f variance (ANOVA) procedure [18] first determined that 

OVERHEAD = TIME/TIMEO — 1 was independent o f the database size, for our experiments. Next, 

a General Linear Models (GLM) procedure [18] determined the average value o f OVERHEAD. It 

follows from the above definition of OVERHEAD that TIME = (1 + OVERHEAD) X  TIMEO. The 

following linear relationship between TIME and TIMEO was found to have R = 0.9998, where 

0 ̂  R2 ̂  1, and R2 =  1 indicates a perfect linear relationship between the quantities measured.
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Errors Injected (% nodes) 

Figure 10a. 100-node VBT.

Errors Injected (% nodes)

Figure 10b. 1000-node VBT.

Errors Injected (% nodes) 

Figure 10c. 10000-node VBT.

Errors Injected (% nodes) 

Figure lOd. 50000-node VBT.

TEME (milliseconds) =  (1 +  1.01) X  TTMEO + (—2.70).

The equation shows that the overhead o f performing local concurrent error detection in the VDLL 

is approximately 100%. (The intercept value is at most 0.7% of the TIMEO value, and is 

insignificant when compared to the overhead of 100%.) This is an extremely conservative measure 

of the overhead, since it represents only the search computation overhead: actual database searches 

would involve disk activity, the magnitude of which would significantly reduce the detection over-
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head. An experiment to support this was performed for the VBT (see below).

VBT Results

ANOVA determined that the variation in OVERHEAD =  TIME/TIMEO — 1 was independent 

of the database size. GLM determined the following linear relationship between TIME and TIMEO, 

with R2 = 0.9844:

TIME (milliseconds) =  (1 + 4.43) X  TIMEO + (—181.58).

The equation shows that the overhead o f performing local concurrent error detection in the VBT is 

less than 450%. (The intercept value represents at most 51% o f the TIMEO value, and so is less 

significant than the overhead o f 450%.) The overhead for the VBT is greater than that for the 

VDLL, since more checking is involved at each move. However, this represents only the search 

computation overhead. By comparison, the results o f a VBT experiment which incorporated disk 

activity, but involved no user computations between database operations, gave the OVERHEAD as 

less than 10%.

D . Concurrent Error Correction. Performance 

VDLL Results

The time to perform 2000 traversals with local concurrent error detection (TIMEO) and with 

both local concurrent error detection and correction (TIME) were measured. ANOVA showed that 

OVERHEAD = TIME/TIMEO — 1 was independent o f the database size. GLM gave the following 

linear relationship between TIME and TIMEO, where R2 = 0.9996:

TIME (milliseconds) =  (1 + 0.00) X  TIMEO + (639.66).

The intercept represents the constant overhead incurred by the constant number o f corrections per­

formed (10 correction per traversal, for a total o f 20,000 for each experiment). The time per 

correction is 0.8% o f an average complete traversal in a 100-node data structure instance, showing
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the low overhead involved in local concurrent error correction in the VDLL.

VBT Results

The time to perform 2000 traversals with local concurrent error detection (TIMEO) and with 

both local concurrent error detection and correction (TIME) were measured. ANOVA showed that 

OVERHEAD = TIME/TIMEO — 1 was independent o f the database size. GLM gave the following 

linear relationship between TIME and TIMEO, where R2 = 0.9991:

TIME (milliseconds) = (1 + 0.05) X  TIMEO + (888.94).

The intercept represents the time required for 2000 corrections, and the value 0.05 represents the 

database-size dependent variable overhead, incurred by the slightly different detection procedures 

used with and without correction. The time penalty for using local concurrent error correction is 

about 5% o f the time for a complete traversal o f a data structure instance. This shows the low 

overhead for local correction in the VBT.

VI. SUMMARY

In this paper we have presented a new technique for local concurrent error detection and 

correction o f structural errors in linked data structures that is applicable to a variety o f data struc­

tures. The virtual backpointer uses the concept o f a checking window to define the locality in 

which local concurrent error detection is performed and also to specifically state the size o f that 

locality. The virtual backpointer was introduced and used to define and implement two new data 

structures, the Virtual Double-Linked List, which requires the same storage as the standard 

double-linked list, and the B-Tree with Virtual Backpointers o f order m, which requires ra+4 extra 

fields per node. It was shown that double errors are detectable using a local error detection pro­

cedure in constant time for both structures. In addition, single errors detected during forward
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moves were shown to be correctable in constant time.
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