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Moment of inertia about transverse axes

Semi-major axis of ellipse

Unit vectors

Polar moment of inertia

Eccentricity of orbit

Universal gravitational constant

Angular momentum vector

Orbital inclination; angle measured from earth's polar 

axis to orbital angular velocity vector 

Unit vectors in inertial coordinate system 

Mass of the earth

Components of gravity gradient moment

Radius from center of earth to center of satellite

Radius of earth

Orbital period

Time

Coordinate axes

Argument of perigee in orbital plane

Spin axis error angle for equatorial orbit (small)

Spin axis error angle for polar orbit 

Gyro spin axis inclination 

Coordinate transformation angle

Angle between gyro spin axis and orbital angular velocity
vector



Gravity gradient precession coefficient 

Right ascension of gyro; angle measured west-to-east in 

earth's equatorial plane from the vernal equinox to the 

line of nodes between gyro and earth equatorial planes 

Argument of satellite in orbital plane 

Right ascension of orbit

Angular velocity vector of gyro precession 

Orbital angular velocity vector 

Gyro spin axis vector

Denotes unit vector
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A gyroscopic satellite has been proposed for a test of the 

general theory of relativity1’2 in which the gyro "drift" rate to be 

measured is less than seven seconds of arc per year. The Coordinated 

Science Laboratory has proposed a simple passive gyroscope which uses 

sunlight reflected from mirrors to provide optical data to determine 

the spin axis orientation. The gravity gradient torque acting on 

the satellite is one of several extraneous disturbances which can cause 

spurious precession of the gyro spin axis. In this paper, general equa 

tions for the precession of a gyro satellite in a regressing orbit are 

derived. These equations may be used to specify the tolerances for 

initial spin axis and orbit alignments which enable an accurate measure­

ment of the relativity effect.

1. Gravity Gradient Moment

The gravity gradient moment is given by ref. 5 for the fixed 

orbit configuration shown in Fig. 1. Two coordinate systems are shown,

system [2] fixed to the body spin axis, m , and system [ 3] fixed to thes
orbital plane, or to the orbital angular velocity vector, u) . The x

“ o * 2
axis is the line of nodes between the orbital (x3 - y3 ) plane and the 

equatorial (x£ - y2) plane of the orbiting gyro. The gravity gradient 

moment components in the body axis system given in ref. 5 are

= " “T" (C-A) sinG cosG sin2 a> t ̂ 
x2 r j o

•w _ 3 GM . A.“ " 9 q (C-A) sin 0 sin 2œ t 
y2 ° (1)

M 0
/
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Fig. 1 Planes of gyro equator and orbit; 
coordinate systems [2] and [3].
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where M is the mass of the earth and R is the distance between the centers

of the satellite and the earth. 0 is the angle between the vectors u) and— s
ty , and varies only because of precession of uu . In the general case o — s
the satellite's orbital plane will regress about the earth's polar axis

• 6
at the rate of Q degrees per year and will produce an additional change 

in 0 .

The geometry involved in the general case of interest for

regressing orbits is illustrated in Fig. 2. An earth-based coordinate

system is fixed with z along the earth's north pole and x along the
o  o

line of vernal equinox (i.e., the line of the nodes between the ecliptic 

and the earth's equatorial plane). The yQ axis completes an orthogonal 

right-handed system and therefore, lies in the earth's equatorial plane. 

Systems [2] and [3] bear the same relationship to each other as shown in 

Fig. 1. A new coordinate system, [1], is shown with z][ also along the 

gyro spin axis, but with x^ along the line of nodes between the earth's 

and gyro's equatorial planes. This is the most logical system to observe 

gyro motion with respect to the earth. The moment given for system [2] 

can be transformed through angle T1 to system [1] by the transformation

COST] -sinTl 0

sinT] cos'd 0

0 0 1

The moment components in system [1] are now given by
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Verna!
Equinox

Orbit and gyro frames related to inertial 
system; coordinate systems [0], [1], [2], [3].

Fig. 2
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M = cosT) M  - sinTI M 
X1 X2 y2

M = sinTI M + cosj) M Vi 1 x„ 1

M = M = 0 . 
Z1 Z2

Substituting the values for M  and M givesx,

3GM / .v . a a . 2M = - i (C-A) cosTl sinG cosG sin u) t
X1 R3

+ o ^  (C-A) sinTI sinO sin 2o) t 
2 R3

3GM 2M = - — —  (C-A) sin'll sin9 cosG sin u) t
*1 R3

- ~  ~  (C-A) cosTl sinG sin 2y) t 
2 R3

(2)

(3)

CosG, cost] sinG, and sinT] sinG will now be found as functions of i, fl, 

£, and cp. From Fig. 2, the gyro spin axis unit vector is given as

ô)g = sinÇ sincpî - sin£ coscpj + cosÇk,

and the orbital angular velocity unit vector is

to = sini sinüí - sini cosQj + cosilc.

Therefore, cosG = 0)g • &

(4)

(5)

= sini sinÇ cos(Q-cp) + cos i cos Ç (6 )

From Fig. 2 a unit vector a^ is defined along x^:

a^ = coscpi + sincpj.
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From Fig. 2 it is seen that the x2 axis is the line of nodes between

the gyro equatorial plane and the orbital plane. Therefore, the x^

axis is normal to both u) and aj , and a new vector along x0 may be
s o  z

defined:
a_ =  a) X d) = sinG a .
— 2  o s  2

Now

or

• ¿2 = a2 cosTl = sin® cost]

cos'll sinG = ä, • d) X 1 i o a).

Also it can be seen that

= - sini cos£ cos(Q-cp) + cosi sin£ . (7)

a1 x a2 = a2 sin*n d>g 

= sinG sinxi a)
or

sinT] sinG uj = x (d)Q X d)s)

= (ä-, • a) ) d) - (ä-, ’ a) ) d) . i s o  I o s

But,

therefore,

h  ' “s = ° ’

sinTl sinG = - (ä- • d) ) • i o

Substitution of the vector components yields

sinji sinG = - sini sin(Q-cp) (8)

Equations (7) and (8) can now be substituted into the moment equations 

(2) and (3):
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3 GM---- (C-A) sini sin(Q-cp) sin 2cjl) to (9)

GM 2M = 3  —  (C-A) sini sin(Q-cp) cosG sin uo t y, „3 T oyl R

3 GM+ ---- (C-A)[sini cosÇ cos(Q-cp) - cosi sinÇ] sin 2uo to ( 10)

M  = 0 . ( H )
Z1

These equations give the gravity gradient moment for a given 

set of orbital parameters, i and Q, and gyro spin direction £ and cp.

2. Precession

The precession rate cd of coordinate system [1] can be found 

from Euler's dynamical equation

By inspection of Fig. 2, the components of uj in system [1] are written

H + oj x H = M. (12)

(JO = 9  sin Ç
yi

u) = cp cos Ç .
Z1

Since the coordinate axes of system [1] lie along the principal axes 

of the body, the angular momentum vector H and its derivative are given as
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and

H
X1

H
y l

H
Z1

H

H
Z1

= A 6

= A cp sin 6 

= C(u)s + cp cos €)

= A g

= A(cp sin £ + cp £ sin 6 )

= C(ojg + cp cos £ - cp £ sin £).

Upon substitution of these components
. . .  -2A£ + C(Dg cp sin £ + (C-A) cp sin £ cos

(2A - C) cp £ cos £ + Acp sin £ - CtD £s

C(uos + cp cos £ - cp £ sin £)

into Eq. (12) we have

€

(13)

The angular rate of the gyro, u) , typically is more than ten orders of

magnitude larger than cp or £. As will be seen later, cp and £ are of the 
• 2 -2order of cp or £ . Therefore, Eqs. (13) may be simplified by neglecting

all terms on the left-hand side which do not contain the factor u) . Nows
it can be seen that

cp = sin £ s
(14)

(15)

u)g = cp £ sin£ - 9 cos (16)
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Substituting Eqs. (9) and (10) into (14) and (15) gives

cp = 3GM
R V & )  a -

. 2ini cot £ cos(Q-cp) - cos i]cos0 sin u^t

+ 2 sin 'e sin(Q"cP) sin (17)

€ = 3GM
r3 k m (?r){sini sin(fi-cp) cos 0 sin u) t

- — [sini cos £ cos(Q-cp) - cosi sin £] sin 2(Dot} (18)

where cos0 is given by Eq. (6).

Assuming that i, Q, £, and cp change much less rapidly than
~  'Vt, average rates cp and £ may be found by integrating over one orbital

period
'V 1 r . cp = 7 cpdt

Ç = -   ̂ édt. 
o

For an elliptical orbit, the radius R from the center of the earth is

R = a(l-e )
1 + e cos(Y-°0

where a = semi major axis of the ellipse 
e = eccentricity
Y = a) t = argument of the satellite o
0i = argument of perigee.

Also, Kepler’s law of areas provides the relation

R2i = JG& a(l-eJ)
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therefore,
dt _ dt t dY _ _____ dY______
R3 R R2 dt JGM a(l-e2) R

Now, integration of (17) over one orbital period becomes an integration 

from 0 to 2tt in Y:

cp = 3 GM C-A 
JGM. a(l-e2) Ca)s

{[sini cot 6 cos(il-cp) - cosi]cos0

2 tt

1 T 2
a(l e^)T Sdn  ̂+ e (cos ^ cos 0i + sin Y sin 60]dY

2 tt

sin i sin(Q-cp) 
sin £ a(l-e2)T t sin Y cos Y[1 + e(cos Y cos & + sin Y sin &)]dY}.

The first integral yields t t ,  and the second integral vanishes. Equation 

(18) is integrated similarly, and the resulting time averages are

cp = A[ slni cot £ cos(Q-cp) - cos i]cos0 (19)

£ = A[sini sin(i3-cp)]cos0 (20)

where the gravity gradient precession coefficient is defined as

3 GM C-A
2 a3(l-e2)3/2 < V

The orbital period T, has been eliminated by the equation

T = 2 tt a 3/2

«/GM
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Equations (19) and (20) may be integrated with respect to time for any 

i(t) and Q(t) to give cp and £ as functions of time, cp and £ are both of 

the order of A, and therefore, this quantity must be small (specifically,

« 1 )  for the foregoing derivation to be valid. Furthermore, the time
“s
derivatives of (19) and (20) show that cp , £, and therefore (jDg are of the

r y 2  O»' 2order cp or £ , as assumed previously.

3. Special Orbits

The relativity drift rate of the gyro spin axis will be 

largest when the spin axis lies in the orbital plane.^ Therefore, two 

cases of special interest are an equatorial orbit and a polar orbit, 

because either of these orbits will allow the gyro spin axis to lie in 

the orbital plane for an extended period of time. For each of these 

special cases, Eqs. (19) and (20) may be simplified and integrated 

directly, as will be seen.

A. Equatorial Orbit

For an equatorial orbit, the inclination i will be assumed 

small so that
sin i «  i , 
cos i 1.

Also, it is assumed that

where 6^ is a small angle between the spin axis and the x^ - y^ plane,

as shown in the sketch.
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1 zo

Now,

From Eq. (6)

TTsin £ = sin(~ + 6 ) = cos 6 « 1
l e e

TTcos £ = cos(—  + 6 ) = -sin 6 «  -62 e e e

cos 0 = sin i cos(fi-cp) -6 cos i .

(21)

(22)

Since i is also a small angle,

cos 0 ^  i cos (Q-9 ) -6 . (23)

Substituting Eqs. (21) to (23) into Eqs. (19) and (20) results in the

r? r 2 2 2cp = - M i cos (Q-9 ) + i 5g cos(£>9 )

(Q-9 ) - 6e]

£ = sin 2(0-9 ) ■ i sin(Q-9 )~J .

+ i COS1

.2

following
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Since i and 6^ are both small, cp is larger by at least one order of

magnitude than £, and may now be simplified by dropping the higher order

terms in i and 6 :e ^
c p « A [ 6e - i cos (Q—cp) ] . (24)

For near equatorial orbits, Q changes at the rate of 6 to 9 revolutions 

per year. Therefore, Eq. (24) indicates that the average rate of change 

of cp is proportional to 6^, the angle between the gyro spin axis and the 

earth's equatorial plane. Setting Cl = + Clt, Eq. (24) can be inte­

grated with respect to time to give A9 *

Acp = A {6 - i e
s sin fit . . \ (cos fit-1cos(Q -  cp) --:--- + sin(Q -  cp) --- *----

° fit ° Qt * ] } ' •
ttBy arbitrarily setting Q - cp = — , this simplifies to

Acp ■  A [ ô e  +  ™  6 t ) ] t  • ( 2 5 )

From Eq. (25) it is seen that for large valuer of fit, Acp is proportional

to 6 . e

B. Polar Orbit

A true polar orbit (i.e., i = -j) is required for a nonre­

gressing orbit plane. The nodal regression rate of the orbit line of 

nodes is given in ref. 6 by

where J = 

the earth's

cos 1 , (26)

1.082 x 10 is the coefficient of the second harmonic term in 

gravitational potential. (A more exact equation for nodal
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regression, also given in ref. 6, contains terms three orders of magni­

tude smaller than Eq. (26) and will not be required in this analysis.) 

The right ascension of the orbit line of nodes will now be written 

Q = Q + Qt, where Q is the value of Q at the time of injection into 

orbit. Figure 3 shows a typical configuration for a near polar orbit

right after injection. Here, 6 is an error angle between the initialP
orbit line of nodes and the projection of the gyro spin axis on the 

earth's equatorial plane. It will be seen that the gravity gradient 

precession depends on this angle and on the regression rate, Q.

From Fig. 3 it can be seen that

and, therefore,

Now,

Q - c p  = Qt + ^ - 6  .2 P

cos(Q-cp) = sin(6p - Qt) 

sin(Q-cp) = cos (6 - Qt) .

Also, assuming that i = —  + i', where i' is

clination, we have
cos 9 = sin £ sin(6 - Qt) -

a

i

small error

cos £.

in orbital in-

Equations (19) and (20) now become

9 = A cos £ sin2(6_- Qt) - i' sin(6 - Qt)sin£
. , 2- l cos £

€ = sin £ sin(26p- 2Qt) - i' cos £ cos(6^- Qt)J

(27)

(28)
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Fig. 3 Initial conditions for polar orbit.
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These equations may be integrated with respect to time to give Acp and 

AG as functions of time:

t ■ĵ cos £ 1 - -cos 
201

„„ sin 20t cos 26 ~~— ~— ~
P 20t J

+  2 i «  c ° s _ 2 £  
sin G cos 6 ('1-cos Qt\L P v- Qt y

- s m sin Otl .»2 06 — ---- - - i cos
P Ot J J

(29)

AG = 2 t i  s in  G sin 26 sin 20t

cos 26 (*P V  20t

P 20t

1 - c o s  2 0 t "

„. . _r . . /"1-cos OtN . „ sin Ot2i cos G sin 6 ( — — r---- + cos 6L P V  Ot J P Ot
n Ot \
> J J *

(30)

If £ is allowed to vanish, these equations may give misleading

results. In particular, Eq0 (29) implies that A9 increases without

limit as £ -> 0. However, it must be remembered that cp and, therefore, A9»

are undefined if £ = 0 because the gyro spin axis becomes coincident with

the z - axis, as can be seen in Fig. 3. o
It will be seen later, that for practical purposes, the nodal 

regression rate, O, should be less than 45 degrees per year and, therefore, 

Eq. (26) indicates that for 400-700 mi orbits, i* must be no larger than 

1° or .017 radian. Consequently, for such slow regression rates, Eqs. (29) 

and (30) may be simplified by dropping the terms containing i ?. The 

simplified expressions are
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1-cos 2Qt 
2Qt (31)

Ĵ sin 26 sin ̂ 2Q,t 
P 20t c o s

1 - c o s  2 Q f \  t

2fit yJ5 (32)

Some typical curves are plotted in Figs. 4 and 5 to show the 

variations of A9 and A€ as functions of the initial misalignment angle, 

6 , and the nodal regression angle, Qt. In these curves, the nondimen- 

sional parameters A^p/At cos£ and A€/At sin£ have been plotted. These 

curves illustrate the need to keep the nodal regression rate and 6^ as 

small as possible to avoid large values of gravity gradient precession.
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Fig. 4 Gravity gradient precession for regressing polar 
orbit; normalized equatorial plane component vs. 
regression angle.

Fig. 5 Gravity gradient precession for regressing polar orbit;
normalized component in plane of earth’s pole and gyro 
spin axis vs. regression angle.
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