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ABSTRACT
This paper also appears in the Proceedings of the Fifth International Conference on Machine Learn­
ing, Ann Arbor, Michigan, June 1988.

The multiple explanations problem is central to explanation-based learning from imperfect 
theories. In this paper, we present a new approach called active explanation reduction to deal with 
this problem. Active explanation reduction involves the purposeful alteration of the world to gen­
erate new information. This new information will cause some of the explanations to become incon­
sistent with reality, thereby eliminating them from further consideration. Active explanation 
reduction may also be viewed as experiment design. This paper presents a theory of experiment 
design which is based on the principle of refutation. The theory describes three strategies for 
designing experiments - elaboration, discrimination and transformation. The theory and an experi­
ment engine - an implementation of the theory - are illustrated using a detailed example which 
involves constructing explanations from intractable theories. The relation of the multiple explana­
tions problem to the imperfect theory problems is also described. Finally, active explanation reduc­
tion is evaluated based on four criteria - completeness, efficiency, tolerance of unavailable data and 
feasibility.

* This research was partially supported by the Office of Naval Research under grant N-00014-86-K-0309. 
’ University of Illinois Cognitive Science/Artificial Intelligence Fellow.



ACTIVE EXPLANATION REDUCTION:
A n  A p p ro ach  to  th e  M u ltip le  E x p la n a tio n s  P roblem

I INTRODUCTION

Explanation-based learning [DeJong86, Mitchell86] is a powerful learning technique which 
involves 1) constructing an explanation for why a given example is an instance of the goal concept 
and 2) generalizing the explanation to obtain an operational goal concept. The construction of the 
explanation is a knowledge-intensive process requiring a complete and correct domain theory. 
However, such perfect domain theories are rarely available in practice. Consequently, the success of 
explanation-based learning hinges on the construction of explanations from imperfect domain 
theories [Dietterich86, Mitchell86. Rajamoney87].

One of the important problems due to imperfect domain theories is the multiple explanations 
problem: the explanation construction process yields a set of incompatible explanations for why the 
given example is an instance of the goal concept. A standard explanation-based learning system 
cannot handle the multiple explanations problem. Such systems either rely on a single explanation 
or on multiple, but equally-valid, explanations from the domain theory. Any selection results in a 
different, but correct, generalization. For multiple valid explanations, the selection of an arbitrary 
explanation will not have major implications on the learning process. Multiple incompatible 
explanations pose a difficult problem. The system cannot arbitrarily select an explanation since 
selecting the wrong explanation will have profound implications on its subsequent problem solving 
and learning behavior. Nor can it generalize all the explanations because then the problem solving 
component will have a difficult time selecting the correct generalized rule.

The multiple explanations problem is central to explanation-based learning from imperfect 
domain theories. Multiple explanations can be due to:

(1) Incomplete Domain Theories: The explanation constructor is forced to make assumptions due 
to insufficient knowledge. Each assumption can result in a distinct explanation.

(2) Intractable Domain Theories: The explanation constructor makes approximations to make the 
explanation construction process tractable. But an explanation based on approximations can 
correspond to multiple explanations from the exact theory leading to problems during the 
refinement of the approximations.

(3) Incorrect Domain Theories: The domain theory may have incorrect generalizations which can 
result in multiple explanations.

Consider, for example, a robot that is operating in the real world. Since it is impossible to 
completely specify the state of the world, it has to operate under incomplete information. Suppose 
it observes a string increasing in length attached to a wall. In this case, it may come up with a 
number of explanations for the increase in length of the string: l)  The string is hot and is 
expanding. 2) The string is growing with time like children do. 3) The string is elastic and is being
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pulled. If it were to arbitrarily select an explanation, then it mav conclude incorrectly that all 
strings age and may never learn about elastic strings. Or if it generalizes all the explanations, then 
when it has to increase the length of a string it may decide to use the first generalized rule. In 
which case, it may decide to heat the string.

One human method to combat multiple explanations is to actively interact with the 
environment. The interactions yield new data from the world which may eliminate some of the 
explanations. Even when there are relatively few explanations, active pruning may be desirable. 
Humans often perform cheap tests to head off undesirable possibilities. They heft a snowball 
several times before throwing it or test the swimming pool temperature with a toe before diving in.

This paper proposes a method called active explanation reduction as a partial solution to the 
multiple explanations problem. Active explanation reduction involves the purposeful interaction 
with the world in such a way that observable behavior will dictate which of a number of 
incompatible explanations corresponds to reality. This process can be looked upon as conducting 
experiments in the world. The outcome of these experiments provide additional data which, 
provided the experiments are suitably chosen, will be inconsistent with a number of explanations. 
These explanations can then be eliminated from further consideration.

Central to active explanation reduction is the issue of experimental design. The experimental 
design process must have several important features. First, it must be complete; if there is a way 
to tease apart different explanations the design system should find it. Second, it must be tolerant of 
unavailable data. Third, it should be efficient. Each experiment should evenly divide the 
explanations so that significant information is acquired regardless of the experiment's outcome. 
Fourth, it should be practical. Lighting a match is not a reasonable way to tell whether a nearby 
barrel contains water or gasoline.

This paper presents a theory and an implementation of experiment design. The theory 
describes three strategies for designing experiments - elaboration, discrimination and 
transformation. The theory and an experiment engine - an implementation of the theory - are 
illustrated using a detailed example.

II ACTIVE EXPLANATION REDUCTION

Active explanation reduction is a technique for finding the explanation that is consistent with 
reality from a given set of candidate explanations. Figure 1 illustrates the major components of an 
active explanation reduction system. Active explanation reduction involves the following steps:

[a] Hypothesis Identification

This step involves the identification of the hypotheses underlying the explanations. The 
explanation constructor may have made assumptions about the state of the world and 
generated explanations based on each hypothesis. For example, in the case of the robot and 
the string, the robot hypothesized that the string may be elastic, or is being heated, or is 
growing. If no hypotheses were made or if the hypotheses are difficult to isolate then the 
entire explanation is treated as a hypothesis.
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Figure 1: The block diagram for the active explanation reduction system.

[b] Experim ent Design

Experiments are designed to test the hypotheses directly or indirectly by testing their 
ramifications. One of the ramifications of a hypothesis is the original explanation itself. 
Experiments yield new information from the real world. The next section describes in detail 
the experiment design process.

[c] Explanation Refutation

The information obtained from the experiments can be used to reject hypotheses and the 
explanations that were constructed based on those hypotheses. A hypothesis is rejected if it 
entails ramifications not consistent with the results of the experiments.

A. Strategies fo r Experim ent Design

There are three strategies for designing experiments to refute hypotheses:
[a] Elaboration:

In a given domain, there are usually some quantities that are easily measurable. In 
elaboration, the quantity to be measured is selected according to the ease with which it can be 
measured. Hypotheses that predict values for the quantity that are not compatible with the 
measured value can be immediately refuted. This strategy does not guarantee that the designed 
experiment will refute a hypothesis since all the hypotheses may support the observed value or 
may not make any predictions regarding the value of the quantity. Elaboration does not involve 
comparing hypotheses during the design of experiments since it is costly. Consider the robot and 
the string example. Elaboration would recommend noticing the color of the string since it is easily
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measurable. But since none of the hypotheses predict a change in color of the string, the 
experiment will not refute any of the hypotheses. On the other hand, if a set of hypotheses 
predicted different changes to the level of water in a container, then elaboration would successfully 
eliminate some hypotheses since it would recommend noticing the change in the level.

[b] Discrimination:

In discrimination, a quantity is selected only if its measurement will help in the refutation of 
hypotheses. Two values are said to be discriminable if a measurement can distinguish between the 
two values. Discrimination involves the measurement of a quantity which satisfies two criteria: 1) 
A number of hypotheses should predict different and incompatible values for the quantity. 2) 
These values should be discriminable. A quantity that satisfies these two criteria is called a 
discriminant. A discrimination experiment is guaranteed to refute hypotheses if the values of the 
discriminant can be grouped into sets of discriminable and mutually incompatible values and each 
set has at least one hypothesis that predicts a value from that set. Discrimination is more effective 
than elaboration, but may be much more expensive.

[c] Transform ation:

It may not be possible to identify the correct hypothesis even after the space of measurable 
quantities for the scenario has been exhausted. Transformation of scenarios is a powerful technique 
for experiment design. It involves modifying the original scenario in a well-specified manner, such 
as. changing the values of the properties of the components of the scenario (changing the 
concentration or amount of a solution), replacing components (replacing a container with a heat- 
insulated container) or re-organizing the manner in which the components are put together 
(separating two containers originally connected by a pipe). The techniques of elaboration and 
discrimination can then be used on the new scenario to refute hypotheses. There are three 
important consequences of creating a new scenario:

(1) Divergence of values: Hypotheses that previously predicted identical or indiscriminable 
values for a quantity may predict different or discriminable values in the new scenario. 
Consider an example where the level of the water in a container is observed to be constant. 
This may be explained by two hypotheses: there are two equal flows - a flow of water into 
the container and a flow of water out of the container or there are no flows. If the scenario is 
transformed into one in which one of the pipes attached to the container is made bigger (by 
opening an attached valve wider) then each hypothesis predicts different and discriminable 
values for the level of the water in the container. If the first hypothesis is true and there is a 
flow of water through the pipe, then this flow will be increased in the transformed scenario. 
The two flows will no longer be balanced resulting in a change of level of the water in the 
container. However, the transformation will have no effect if the second hypothesis is true. 
The prediction in this case is that the level of water will remain constant.

(2) Emergent observations. Quantities that could not be previously observed or measured 
become observable or measurable in the new scenario. Consider, for example, tracing an 
unknow’n path of flowing water. If a dye is added to the original water, then the color changes
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in the water will enable the path to be traced.

(3) D ifferential discrim ination: Differential discrimination involves the measurement of a 
quantity that satisfies the following two criteria: l)  There are a number of hypotheses that 
predict the same value or indiscriminable values for the quantity in the original and the 
transformed scenarios. 2) The manner in which the value or indiscriminable values was 
reached in the transformed scenario is different and discriminable. The observations may be 
reached much faster or more of the observed behavior may occur in the same time span as 
compared to the other scenario. Thus differential discrimination involves the discrimination of 
the second order behavior of a quantity across two scenarios. Consider the example of the 
robot and the string. Suppose the original scenario is transformed into one in which the robot 
is pulling the string with a specified force. The hypothesis that claims that strings grow with 
time would predict the same increase in the length of the string in the two scenarios. 
However, the hypothesis based on the elasticity of the string would predict a greater increase 
in size in the second scenario due to the additional force exerted by the robot. Elaboration 
would recommend observing the change in the length of the string (since it is easy to 
measure). The experiment would result in the refutation of one of the two hypotheses 
depending on the observations made when the experiment was performed.

B. A Domain-Independent Experim ent Engine

An experiment engine has been developed based on the model of experimentation described 
above. The inputs to the experiment engine are:

(1) A set of hypotheses.

(2) An inference engine that accepts a hypothesis and a scenario and returns a set of predictions 
supported by the hypothesis for the given scenario.

(3) Domain-dependent knowledge: There are two major sources of domain knowledge:

[a] A set of predicates that describe the quantities of the domain that can be measured or 
observed, the values that are discriminable, the parameters of a scenario that can be 
transformed etc.

[b] A set of scenario transformation operators. A scenario transformation operator constructs a 
new scenario from a given scenario. It can change the quantities of some of the components 
of the scenario eg. the concentration of a solution, the components of the scenario eg. replacing 
a solution by a different solution or the manner in which the components are organized eg. 
isolating two containers which were previously connected by a pipe. These operators endow 
the experiment designer with the ability to construct new scenarios.

The experiment engine uses elaboration, discrimination and transformation to design 
experiments. Transformation of scenarios is viewed as a planning problem. The initial state is the 
given scenario and the goal state is a transformed scenario in which there is a discriminable new 
observation, divergent values or discriminable first order or second order behavior. The plan is a 
sequence of transformations resulting in a scenario satisfying the goal criterion. Both a weak
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method planning strategy (Breadth-First Search) and a knowledge-intensive strategy (based on 
Qualitative Process theory [Forbus84]) have been implemented.

Ill REPRESENTATION OF THE DOMAIN THEORIES

Domain theories are represented using Forbus’ Qualitative Process theory [Forbus84]. 
According to this theory, changes in the world such as boiling, cooling, heating, etc. are due to 
processes. A process is composed of five pieces of information: individuals - a set of objects 
participating in the process; preconditions and quantity conditions - a set of conditions that must be 
true for the process to be active and relations and influences - a set of statements about the world 
that are true if the process is active. QP theory provides a language for representing domain 
theories based on processes. Qualitative Process Engine (QPE) [Forbus86] is an implementation of 
QP theory. It serves as the explanation constructor for the active explanation reduction system and 

the inference engine for the experiment engine.1 QPE provides a description of the behavior of the 
input scenario based on the specified domain theory.

Information required for elaboration and discrimination are supplied by predicates such as: 
(easily-measurable (?change amount ?liquid) Scenario) 

where "Scenario" refers to a class of scenarios for which this predicate is applicable. In QP theory, 
the values for changes to quantities such as temperature, pressure, concentration etc are represented 
qualitatively as increase, decrease, constant or unknown. The predicates supplied to the experiment 
engine are expressed in these values. For example, the information required by discrimination is 
supplied in the form of a predicate:

(discriminable (increase amount ?liquid) (decrease amount ?liquid) Scenario).

For domains represented by QP theory, the experiment engine is supplied with a set of 
transformation schemata. These schemata are general-purpose transformations on scenarios and are 
indexed by the type of the hypothesis. This is an example of a knowledge-intensive (but not 
domain-specific) strategy used by the experiment engine in preference to the default breadth-first 
search strategy. Some of these transformations are:

(1) If a process is hypothesized to cause an observation then transform the scenario into a new 
one in which one of the preconditions of the process is negated.

(2) If a process is hypothesized to cause an observation then transform the scenario into a new 
one in which the rate of the process is increased.

(3) If a hypothesized process entails an unobservable effect then transform the scenario into a 
new one in which the unobserved effect can be observed.

(4) If two processes are hypothesized to balance a quantity then transform the scenario into a one 
in which the rate of one of the processes is increased and the other rate is not increased.

1 QPE will be integrated with the active explanations reduction system soon. Currently, the explanations are directly 
provided to the system.
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IV MULTIPLE EXPLANATIONS FROM INTRACTABLE THEORIES

The multiple explanations problem can arise when dealing with the intractable theory- 
problem. Doyle [Doyle86] describes an approach to the intractable theory problem. In his 
approach, the domain theory is described at different levels of approximation. The most detailed 
description of the theory is intractable. Each higher approximate theory is more tractable than the 
lower detailed theories. The problem solver uses the most approximate theory during problem 
solving. When it fails, it obtains an explanation for the failure from the more detailed theories and 
uses this explanation to refine the approximate theory. The approximate theories reflect the level of 
detail required by the problem solver and, at the same time, are tractable. However, his approach 
makes a critical assumption - there is only one explanation from the detailed theory corresponding 
to the failure. This is not valid in most cases. In general, there will be a number of explanations for 
the failure and it will be necessary to identify the correct explanation to correctly refine the 
approximate theory.

A. A Detailed Example

This example describes the multiple explanations problem due to intractable theories and is 
from the domain of chemistry. The initial domain theory of the system includes processes for heat 
flow, electricity flow and chemical reaction. The approximate theory has a naive notion of a 
chemical decomposition reaction shown in figure 2. The detailed theory breaks this up into three 
different processes: 1) Catalytic decomposition - a catalyst, not changed by the reaction, is required. 
The rate of the reaction depends on the amount of catalyst in contact with the decomposing 
substance. 2) Heat decomposition - heat is required. The rate of the decomposition depends on the 
rate at which the heat is supplied. 3) Electrical decomposition - an electric current is required. The 
rate of the reaction depends on the magnitude of the current that is passed through the solution.

Suppose the task is to produce a large quantity of oxygen - a substance that is in great 
demand in industry. However, initially the problem solving system does not have a method for 
producing oxygen. It is then shown a scenario where oxygen is produced from water (figure 3). 
The explanation constructor tries to explain the generation of oxygen using its naive theory of 
chemical decomposition (figure 2). In this case, it fails since it knows that under normal conditions 
water does not decompose into hydrogen and oxygen. It then explores the more detailed theory 
(figure 2) and finds three different explanations (figure 4) corresponding to the known types of 
decomposition reactions: 1) the decomposition is due to the heating of water, 2) the decomposition 
is due to the electric current, or 3) the decomposition is due to the presence of platinum which 
served as a catalyst.

Note that simple-minded approaches to the multiple explanations problem will not work. 
Suppose the learning system selects an arbitrary explanation and uses that to form a new process. 
If it has made the wrong choice, for example, using the catalytic decomposition explanation instead 
of the correct electricity decomposition explanation, then the problem solver will try to generate 
oxygen by adding platinum to water and will fail. Alternatively, suppose the learning system uses 
a conjunction of the hypotheses to form the new generalized process. Then the problem solver will
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Naive Decomposition:
Individuals:

?substance ?productt ?product2 
Preconditions:

(decomposes ?substance) 
Quantity Conditions:
Relations:

rate Q+ amt(?substance) 
rate Q - amt (îproductl) 
rate Q - amt(?product2) 

Influences:
amt(?product1), rate] 
amt(îproduct2), rate] 
amt (îsubstance), rate]

Heat Decomposition:
Individuals:

îsubstance ?heat-flow 
?product1 ?product2 

Preconditions:
(decomposes-with-heat ?substance) 

Quantity Conditions:
(> (temp îsubstance)

min-decomposition-temp)
Relations:

rate Q+ amt (îsubstance) 
rate Q - amt (îproductl) 
rate Q - amt(îproduct2) 
rate Q+ rate ( Î  neat-flow)

Influences:
1+ [amt ( îproduct 1 ), rate] 
l+[amt(îproduct2), rate]
I-[a m t(îsubstance), rate]
I-[heat (îsubstance), rate]

Catalytic Decomposition:
Individuals:

îsubstance îcatalyst 
îproduct 1 îproduct2 

Preconditions:
(decomposes-with-catalyst

îsubstance îcatalyst) 
Quantity Conditions:
Relations:

rate Q+ amt(îsubstance) 
rate Q - amt ( îproduct 1) 
rate Q - amt(îproduct2) 
rate Q+ contact-area

(îcatalyst îsubstance)
Influences:

l+[amt(îproduct1), rate] 
l+[amt(îproduct2), rate]
I-[am t(îsubstance), rate]

Electricity Decomposition:
Individuals:

îsubstance îelectricity-fiow  
îproductl îproduct2 

Preconditions:
(decomposes-with-electricity

îsusbstance)
Quantity Conditions:

(active îelectricity-fîow) 
Relations:

rate Q+ amt (îsubstance) 
rate Q - amt (îproductl) 
rate Q - amt(îproduct2) 
rate Q+ rate (îelectricity-fiow) 

Influences:
l+[am t(îproductl), rate] 
l+[amt(îproduct2), rate]
I-[am t(îsubstance), rate]

Figure 2. The two different theories used by the explanation constructor. The naive decomposition 
reaction corresponds to three different reactions in the detailed theory. The heat decomposition 
reaction requires a heat flow to provide the heat. The catalytic decomposition reaction requires a ca­
talyst. The electricity decomposition reaction requires a direct electric current through the solu­
tion. According to QP theory notation. MQtyl Q+ Qty2" means that Qtyl is directly qualitatively 
proportional to Qty2. that is. Qtyl is increasing monotonically with Qty2. "1+ Qtyl Qty2M means 
that Q tyl is directly influenced by Qty2. The direct influences of Qtyl are specified only in the 
processes that cause Qtyl to change.
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Switch

Figure 3. The scenario describing the observed production of oxygen. There are two active processes 
- a heat flow from a gas burner and an electricity flow through water from an external battery.

be able to generate oxygen but will fail for other products in which the original substance is 
destroyed by heating or mixing with platinum. Besides, the problem solver will do unnecessary 
work trying to achieve goals such as generating a heat process and obtaining platinum. Integrating 
all the hypotheses together using a disjunctive precondition is not a satisfactory solution either. 
Each process has characteristics that are not shared by others - for example, heat decomposition 
reaction predicts that the decomposition will proceed faster if the rate of heat supplied is increased 
and this is not true in the case of the electricity decomposition reaction or the catalytic 
decomposition reaction. Therefore, it is crucial that the learning system isolate the correct 
explanation.

The explanation constructor gives these three explanations to the active explanation reduction 
module. The active reduction explanation module retrieves the three hypotheses that the 
explanation constructor made about the nature of the decomposition of water - it is 1) catalytic 
decomposition 2) heat decomposition or 3) electrical decomposition. These hypotheses are tested by 
the experiment engine. All the predictions obtained from the inference engine for the given scenario 
(the original scenario) are supported by the three hypotheses. Direct elaboration and discrimination 
fail. The experiment engine now tries to transform the scenario. The experiment engine needs to 
know' if one of the three decomposition reaction processes is active and is causing the generation of 
the product. Suppose the heat burner cannot be turned off but the heat supplied can be increased or
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decreased. The first transformation strategy described in the section 3 cannot be applied to the heat 
flow process because experimentation does not have the capability to construct a scenario with any 
of the preconditions of the heat flow process negated. Instead, it uses the second transformation 
strategy which is based on the rate of the decomposition. It transforms the scenario to a new 
scenario in which the heat from the burner has been increased. The inference engine now predicts 
that under the heat decomposition hypothesis oxygen will be generated at a faster rate in the new 
scenario as compared to the old scenario since the rate of the decomposition depends on the rate at 
which the heat is supplied. However, under the other two hypotheses both these rates will be the 
same since the decomposition rate is not affected by heat. Differential discrimination on the new 
scenario and the original scenario will recommend comparing the rate at which oxygen is generated 
in each scenario. When they are determined to be the same the heat decomposition hypothesis is 
refuted.

The experiment engine is then left with two hypotheses: the catalytic decomposition 
hypothesis and the electrical decomposition hypothesis. The transformation strategy previously 
used can be reapplied to the catalytic decomposition process. The rate of this reaction depends on 
the surface area of contact of the catalyst with the reactants. The transformation strategy will 
suggest a new scenario in which the surface area of contact between water and platinum is

(increase am t oxygen)
(1+ (am t oxygen) catalytic-decomposition-rate)

(active catalytic-decomposition)
(decomposes-with-catalyst w ater platinum )

:Hypothesis

(increase am t oxygen)
(1+ (am t oxygen) heat-decomposition-rate)

(active heat-decomposition)
(decomposes-with-heat water)

:Hypothesis
(greater-than (temp water) (min-decomposition-temp water)) 

:Premise
(increase am t oxygen)

(1+ (amt oxygen) electricity-decomposition-rate)
(active electricity-decomposition)

(decomposes-with-electricity w ater)
:Hypothesis

(active electricity-flow)
< explanation 1 >

Figure 4: The three explanations based on catalytic decomposition, heat decomposition and electrical 
decomposition of water.
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increased - for example, by breaking the original platinum pieces into several smaller pieces or by 
using a larger piece. Under this transformation, the catalytic decomposition hypothesis will predict 
that oxygen is generated at a faster rate in the second scenario. However, the electrical 
decomposition hypothesis will predict that the two rates will be the same. An experiment based on 
differential discrimination will recommend comparing the rates at which oxygen is produced in the 
two scenarios. When they are determined to be the same the catalytic decomposition hypothesis is 
refuted.

As it happened, the system chose the first two experiments based on the catalytic and heat 
decomposition hypotheses (since it had no a priori information about which of the three hypotheses 
is more likely). The electrical decomposition hypothesis could also have been tested by 
transformation and discrimination. Based on the first transformation strategy described in the 
previous section, the original scenario can be transformed into a new scenario in which one of the 
preconditions of the electrical decomposition process is negated. Suppose, the original scenario is 
transformed by turning off a switch thereby breaking the path of the electric current. Then the 
electric decomposition hypothesis will predict that the amount of oxygen will not change - that is, 
no more oxygen will be generated.

Thus, the experiment engine found that the decomposition reaction is due to the electric 
current. Doyle’s approach and explanation-based learning can now be used to incorporate the 
generalized version of the explanation into the naive theory. In addition, the system has learned 
through experimentation that water decomposes when an electric current is passed through it - 
domain-specific information which it did not have previously.

V EVALUATION OF THE ACTIVE EXPLANATION REDUCTION TECHNIQUE

Experiment design is the central theme behind active explanation reduction. The experiment 
design system is evaluated based on the four criteria proposed earlier: l) completeness 2) efficiency 
3) tolerance of unavailable data and 4) feasibility.

Completeness
The experiment design system will find an experiment to discriminate between two 
explanations, if it exists, if 1) The predicates supplied to the system are complete and correct - 
all quantities that can be observed or measured are known to the system. 2) The 
transformation operators or the transformation strategies, if supplied, cover the space of 
scenarios that can be constructed. 3) The inference engine provides all the predictions that are 
possible for the given scenario. Completeness can be sacrificed for efficiency by 1) using a 
heuristic search or beam search for the transformation of scenarios and 2) examining only a 
selected set of predictions from the inference engine.

Efficiency
The experiment design system will produce the fewest experiments if for each experiment it 
selects those quantities to measure and those transformations to make that will lead to a 
maximum number of hypotheses being refuted. However, this will require a priori
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information about how the world is going to behave. Instead, during discrimination, if there 
are many quantities that can act as discriminants, the system selects the discriminant which 
will divide the hypotheses equally. This will lead to a maximum number of hypotheses being 
refuted if all of the observations are equally likely. Transformation can be made efficient by 
using a good transformation strategy that proposes transformations that yield discriminable 
behavior. For example, the transformation strategy that constructs new scenarios by negating 
conditions of a process when the process is hypothesized to cause an observation yields 
discriminable predictions about the observed quantity.

Tolerance of unavailable data
The experiment design system should be capable of constructing other experiments if the 
present experiment fails to yield any information. If the system is complete and another 
experiment exists then the system will find it. Redundancy can also be built into the 
transformation strategy. For example, if negating the precondition is not feasible, then the 
system can construct a new scenario in which the rate of the process is varied.

Feasibility
The experiment design system should propose only those experiments that are feasible or 
practical in the real world. The predicates supplied to the experiment design system 
determine which experiments are feasible. Since, the two basic techniques, elaboration and 
discrimination, will construct experiments to measure quantities based on these predicates, if 
they are correct then the experiment is feasible. Transformation also uses the supplied 
predicates to check if the proposed scenario construction is feasible. For example, while 
constructing scenarios to vary the rate of the process, the system checks whether the 
parameter to be varied, such as the dial on the gas burner, is manipulable in the required 
manner.

VI RELATED WORK

The current work shares a superficial similarity with the BACON system of Langley 
[LangleySl]. While both propose experiments to gain crucial missing information, BACON does not 
do so in the context of a qualitative model of the world. Similarity with the later systems of 
NGLAUBER [Jones86] and STAHLP [RoseS6] are deeper but less obvious. The purpose of these 
systems is theory formation and refinement and, therefore, their processing is initiated by rather 
different world situations. There are also important differences in internal processing. NGLAUBER 
uses a data-driven clustering algorithm to generate rules for observed data, and STAHLP does not 
perform experiments but rather relies on minimizing a cost function to decide among competing 
conjectures. A more recent discovery system, IDS [Nordhausen87], also proposes experiments to 
gather data. However, the experiments are motivated towards the discovery of new phenomena 
and, unlike our system, are not directed towards the refutation of well-formed hypotheses. Also, 
our experimentation design system is based on a theory of experiment design that includes 
elaboration, discrimination and transformation. Carbonell and Gil [Carbonell87] have recently 
proposed a system that learns new preconditions and postconditions for STRIPS-like operators by
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experimentation. Their experimentation involves comparing states of the world to identify 
differences. Again, unlike our system, their experiment design is not based on the refutation of 
hypotheses and a theory of experiment design. Our approach is also related to the determinations of 
[Russell87]. Whereas, Russell assumes the presence of examples to find which disjunction leads to 
the generalized concept, our experiment design system automatically generates such examples.

VII DISCUSSION

We have outlined a method to cope with multiple explanations which arise in the normal 
process of explanation construction from imperfect theories. The approach, called Active 
Explanation Reduction, would be invoked by an explanation-based learning system confronted with 
multiple incompatible explanations. When invoked, the system identifies measurements which 
would serve to disambiguate among the postulated alternatives. The system then proposes 
experiments by which these measurements can be obtained. A major portion of the research 
contribution addresses the problem of experimental design.

Active explanation reduction is a general technique that has been used to deal with problems 
in machine learning and qualitative reasoning. Apart from the intractable theory problems, it has 
also been used to deal with multiple explanations due to incomplete and incorrect theory problems. 
The explanations in these cases are based on hypothesized revisions to the imperfect theory and the 
active explanation reduction technique identifies the correct revised theory. Active explanation 
reduction has also been applied to problems within qualitative reasoning tasks such as envisionment 
and measurement interpretation. Such tasks are swamped by a large number of possibilities due to 
the ambiguous nature of qualitative reasoning.»Experimentation is used to obtain the information 
required to eliminate those possibilities that are inconsistent with reality, thereby making the 
reasoning tasks more tractable.

Continuing research includes the construction of a model of theory refinement to deal with 
the incomplete and incorrect theory problems based on Forbus' QP theory [Forbus84j. The 
resulting system has a similar motivation to STAHLP [Rose86] but is experimentally oriented. 
Qualitative reasoning, and QP theory in particular, rely on an accurate description of all the 
processes of a domain. If the theory is flawed - for example, a process is missing, a precondition is 
incorrect, or an influence is missing then discrepancies may arise between predictions of the model 
and observations of reality. In general there will be many different changes to the theorv that 
remove the anomaly. Each change may result in a distinct qualitative theory. The resulting 
theories form a set of ambiguous hypotheses. We are extending the ADEPT system [RajamoneySS] 
to integrate our notions of active explanation reduction to experimentally determine which of the 
various hypotheses correspond to reality.


