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Abstract

Tests of the accuracy of approximate solutions of the 

Boltzmann equation for rarefied gas flow problems under conditions of 

strong deviation from thermal equilibrium have been developed by using 

the Nordsieck-Hicks Monte Carlo method of evaluating the collision 

integral. We have made and interpreted the tests for three approximate 

solutions for shock waves: Mott-Smith, 6-moment, and Navier-Stokes.
In particular we have studied the collision integral for three 

approximate solutions, the distribution of errors of the solutions in 

velocity space, their relative inaccuracies at different positions in 

the shock, and certain moments of their distribution functions and 

collision integrals that are not calculable analytically.
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Introduction

TWo methods have been described in the literature for obtaining 

approximate solutions of the Boltzmann equation for rarefied gas flow 

problems under conditions of strong deviation from thermal equilibrium:

( ) finding velocity distributions whose lower order moments satisfy 

the Boltzmann transport equations; and (2) replacing the collision 
integral in the Boltzmann equation by an expression that approximates 

the integral and solving the resulting simpler "substitute" equation 

for the velocity distribution function. In the moment method only 

a limited number of properties of the distribution function are correct 

and they depend on arbitrarily chosen moments. As to the second 

method, the relation between either the microscopic or macroscopic 

properties calculated from the solutions of the substitute problem and 

those of the actual problem is not clear. Thus, for example, the 

representation of the collision integral by the BGK model for conditions 

far from thermal equilibrium is yet to be studied. Because of these 

uncertainties involved in the approximate solutions, the need for 
evaluating their accuracy has long been recognized.

There is no analytical solution of the Boltzmann equation 

for strong shocks. Attempts have been made to test the approximate 

solutions for a strong shock wave by examining the agreement between 

some macroscopic properties calculated from the solution, such as 

density and temperature profiles, and those determined by experiments; 

however, these comparisons give very little information concerning 

the accuracy of the approximate distribution functions. Agreement of



2

such lower order moments is not an adequate measure of the departure 

of approximate solutions from exact solutions. Techniques have also 

been suggested for measuring directly the distribution functions, but 

such techniques have not been applied to flow within a shock wave. 

Even if we are able to check some of the pertinent properties of a 

theoretical shock against those determined by experiments, it would 

be of value to develop methods of studying in detail the accuracy 

of approximate solutions by evaluating the collision integral for 

these solutions. Such results would be directly useful in increasing

the fidelity of the proposed approximate solutions.
1 2Nordsieck and Hicks * have successfully developed a 

Monte Carlo method of evaluating the collision integral for any 

velocity distribution function and have applied it to a nonlinear 

translational relaxation problem and to the shock problem. We shall 

describe in this paper methods of testing approximate solutions of 

the Boltzmann equation for a strong shock wave that have been made 

possible by the development of the Monte Carlo method of evaluating 

the collision integral. Several different tests were made for the 

purpose of finding how well the approximate solutions satisfy the 

Boltzmann equation. Since we are able to calculate the collision 

integral for the approximate solutions, it is also possible to examine 

the distribution of the collision integral in the velocity space for 

each approximate solution. In addition, it is possible to evaluate 

the moments of the distribution function and those of the collision 

integral that cannot be obtained analytically. For example, we may
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determine whether the Boltzmann flux decreases monotonically in a 
shock wave.

We are able to test any approximate shock for hard sphere 

molecules with our computer program. We shall discuss in this paper 

detailed tests of three approximate solutions of the Boltzmann equation 
for a shock wave for several Mach numbers.

Methods of Testing Approximate Solutions

The Boltzmann equation for a shock wave may be written 
as

vx (df/dx) = (a-bf) (i)

in which f = f(v,x) = velocity distribution function; (a-bf) = 

collision integral (a = gain term, bf = loss term); v and v are
X  _L

cylindrical polar coordinates in velocity space; and the x axis lies 

perpendicular to the plane of the shock wave.

We can first compute the collision integral for a given 

approximate solution f ^  by using the Monte Carlo method and then 

test how well the approximate solution satisfies the Boltzmann equation 
by using either of the following two tests:

(a) Test 1: comparing the calculated ( a - b f ) w i t h  vx (df/dx)

in the velocity space. (This test is equivalent to examining
df/dt.)

(b) Test 2: comparing in the velocity space each approximate solution

f with f , the next iterate, obtained by integrating the 

Boltzmann difference equation with respect to x.
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If the Boltzmann equation were satisfied, then ( a - b f ) ^ ,would be equal

to v^Cdf/dx) at each point in the velocity space and throughout the

shock. Similarly, the f for any iteration, obtained by integrating

the Boltzmann equation, would be the same as that for the previous

iteration. Either test is sufficient to ascertain whether a given
( 0)f is the solution of the Boltzmann equation.

To obtain f^ ^(v) at each station of a shock wave we perform 

a numerical integration of the following differential equation by a 

method developed by Nordsieck and Hicks:

vx (df/dx)(1) = (a-bf)(0)

In our discussion we shall use the reduced number density

n = (n - n1)/(n2 - n )

( 2)

(3)

to identify the position in a shock wave.

Test 2, which requires determination of f^ ^} may be made for 

any distribution function after it is read into the computer memory 

by our program. On the other hand in Test 1 the determination of 

(df/dx) generally needs additional programming; however, for certain 

approximate shocks, like that of Mott-Smith, such programming is quite 
simple.

Since our Monte Carlo method evaluates the gain and loss 

terms (a and bf) of the collision integral separately, we are able 

to examine them separately for each approximate solution. Such results 

would be useful in studying the validity of any approximate model 

of the collision integral in which assumptions concerning both "b" 
and the ratio "a/b" are made.
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For the approximate methods such as the moment method it is

necessary to find explicit analytical formulae for the moments of

both the distribution function and the collision integral. Such

analytical calculations are sometimes quite tedious, and, indeed,

some of the significant moments cannot be obtained analytically. We

use the quadrature methods of Nordsieck and Hicks to calculate the

following moments: I (0) = moment of f, I (0) = moment of a, and

= moment of (a-bf) where 0 = a function of molecular velocity.
In our studies eleven functions were chosen for I and nine for If A
and • We note that the moment I (0) is equivalent to the gradient 

of the moment 1^(0^ )  • if 0 is put equal to 1/v then the corresponding 

IAB is equal to dn/dx, the density gradient. If 0 = (1+lnf) then the 
corresponding I is the gradient of the Boltzmann flux.

equation to be tested we chose the following bi-modal Ansatz for the 

distribution function:

Approximate Solutions Tested

As the first type of approximate solutions of the Boltzmann

(4)

where f  = n (m/2TîkT ) 3/2 exp[-(m/2kT ) (v - i u  ) 2] oi a a ot <y J (5)

fß = nß Cm/2rrlcTß)3/2 exp[-(m/2kTg) (v-iuß)2]

and n^, n^, T^, , u^, and u^ are functions of x. We have tested two
O

such approximate solutions: the Mott-Smith shock, corresponding to
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the special case of constant T^, Tß, Uq> and uß; and the 6-moment
shock,4 corresponding to the general case of all six parameters variable.
For the 6-moment method, in addition to three invariant moment equations,
three moment equations corresponding to 0 = v2 v3 and v v2 were

x  * x  ’ x  JL

used to obtain the solutions. The resulting macroscopic properties 

for Mach numbers near two indicate that the 6-moment shock represents 
a compromise between the Mott-Smith and Navier-Stokes shocks and shows 

improvements over the latter in the downstream region; however, the 

parameters T^, T^, u^, and u^ vary significantly with n only near 

the upstream and downstream ends.

For the Mott-Smith distribution function, df/dn is constant 

and equal to (f2~ ̂ f) /^n2"n )̂ , and dn/dx, the density gradient, has 
the following simple quadratic form:

dn/dx = B(n-nx)(n2-n)/(n2-n1) (6)

in which B is a constant to be determined by a chosen moment equation.

We use the following functions in making the first test of the Mott- 
Smith shock:

L = n̂_n1)(n2-n)/(n2-n1) (7)

Z = (a-bf)/v^L (g)

Since (a-bf) for the Mott-Smith shock has the same quadratic form as 

L, the ratio Z should be constant and equal to B/(n2-n..) at each 
point in the velocity space and throughout the shock if the Mott-Smith 

shock satisfied the Boltzmann equation. Sakurai3 has proved analytically 
that for large Mach numbers the ratio Z is constant for a finite velocity 

Recently, Oberai has made similar investigations.space.
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As a second type of approximate solution to be tested we 

chose the distribution functions corresponding to the Navier-Stokes 
shock.

Results and Discussion

We have made Test 2, that of comparing f ^  with f ^ } for all 

three shocks; however, we have obtained results on Test 1 only for the 

Mott-Smith shock. We have chosen Monte Carlo sample sizes of approximately

131,000 to 700,000 collisions for Test 1, and 32,000 to 131,000 collisions 

for Test 2. Monte Carlo fluctuations were examined by using at least 

four statistically independent runs. The method^ of improving the 

accuracy of the calculation of (a-bf) by forcing Conservation of three 

moments has been used to obtain improved results. We shall discuss the 

results obtained both before and after this correction process.

For convenience of discussion we divide the finite velocity
2 .

space into three regions as shown schematically in Fig. 1. Region I 

is a semi-circle whose center and radius are determined by the Mach 

number. In most of this region df/dx and (a-bf) are negative. In 

region II, bounded by the line v^ = 0 and the boundary of region I, 

df/dx and (a-bf) are positive. In region III, for which Vx is negative, 

df/dx is positive and (a-bf) is negative. We therefore expect that 

(a-bf) vanishes at the boundary between regions II and III and near the 

boundary between regions I and II. These characteristics of the regions 

were deduced from various a priori arguments and were tested by 

calculating isoline plots for (a-bf)v± for a Mott-Smith shock with
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^ ~ ^ ^  > 2, 3, and 4 and a Monte Carlo sample of approximately

700,000 collisions. Inspection of the plots indicates that (a-bf)vJ_ 

does have the characteristics described above.

The random and systematic errors in the evaluation of the 

collision integral have been studied carefully and are known to be 

small. For more accurate tests of the approximate solutions than 

those described here it will be necessary to extend our study of 
systematic errors.

In our calculations, the velocity space is divided into 

226 velocity bins. For Test 2 the Boltzmann equation is integrated 

for each velocity bin to obtain f^ ^, which depends on the collision 

integrals for that velocity bin and therefore ultimately upon the 
values of f ^  for all bins.

(a) Results of Test 1:

We first compare the isoline plot of (a-bf)Vj_ with the isoline 

plot of (Lv^)v^. Fig. 2 shows the two isoline plots at one position in 
a Mott-Smith shock for M = 2 and 4, obtained for a large Monte Carlo 

sample of approximately 700,000 collisions with no (a-bf) corrections. 

(The isoline plot of (a-bf)^ has the same form at any position in a 

Mott-Smith shock.) Although the two sets of isolines for each Mach 

number do have a considerable resemblance, the ratio of the values 

of the two functions, Z, varies considerably over velocity space as 

shown in Fig. 3. From these results it is quite evident that the 

Mott-Smith solution does not satisfy the Boltzmann equation throughout

— —velocity_space for M — 2 and 4; however, for higher Mach numbers,
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the variation of the value Z was found to be small throughout a large

part of region III. At the boundaries of regions I and II and regions II

and III, the value Z has large fluctuations, since (a-bf) and Lv each

becomes very small at these boundaries, and larger fractional errors

are to be expected. If Z were very nearly constant in the velocity

space, it might be compared with the value calculated by Mott-Smith

for one of the arbitrarily chosen moment equations. For the moment
2equation with 0 = vx the calculated Mott-Smith value of Z in the same 

arbitrary units as used in Fig. 3 is 0.53 for M = 2 and 0.47 for 

M = 4.

We have also obtained improved results (by (a-bf) corrections) 

and analyzed the Monte Carlo fluctuations on the basis of these results. 

The contour-band plots of Z shown in Fig. 4 were obtained from results 

of four independent samples with a Monte Carlo sample of approximately

500,000 collisions. The width of the contour bands shows the Monte 

Carlo fluctuations among the four independent computer runs for 

the sample size used.

Results of Test 1 have also been obtained for M = 6, 8, and 
10 for the Mott-Smith shock.

(b) Results of Test 2:

We choose to show contour intervals of the ratio f ^ / f ^ ^  

for the second test. Fig. 5 shows these results with no (a-bf) 

corrections for three positions in a Mott-Smith shock and in a 

6-moment shock for M = 2. Even though the parameters for the two 

shocks do not differ appreciably at the three locations chosen, the
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difference in the contours of the distribution function ratio is 

quite appreciable. In most parts of regions I and III for h = 1/4 

and 1/2, is greater than one for the Mott-Smith shock and

less than one for the 6-moment shock. Since /(a-bf)dv (which is the 

mass flux) has the same value at each position in a shock wave, the 

existence of non-uniform distribution of f(1)/f(0) is due to improper 
variation of the collision integral, corresponding to the approximate 
solution, over the velocity space.

The relative inaccuracy of an approximate shock in different

regions of the velocity space may be found by examining the ratio of
f( D /f(0) • -v,t /t in these regions. For both Mott-Smith and 6-moment 
shocks, the ratio of f(1)/f(0) lies between 0.95 and 1.05 for most 
regions at three chosen positions in a shock for M = 2 as shown in 

Fig. 5. The large deviation of f^ ^/f^  ̂ from unity (greater than 

1.05 and less than 0.95) occurs in the following domains of the 

velocity space for the Mott-Smith shock: (1) n = 1/4 and 1/2: the

region with large speeds; (2) n = 3/4: the region with large positive

vx and Part of region I. In the 6-moment shock, similar deviations 

are found for positions corresponding to n = 1/4 and 1/2; however for 

n = 3/4, the ratio f /f is closer to unity in region I. The 

inaccuracy of both approximate solutions for fast molecules indicates 

that it may not be suitable to use these solutions for certain 

calculations such as those for ionization and dissociation. Fig. 6 
shows the effect of Monte Carlo fluctuations evaluated from four 

runs with a sample size of approximately 131,000 collisions and
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corrections of (a-bf) to force conservation. In the regions where 

significant (a-bf) corrections were made, the ratio of f ̂ / f  ̂  is 

closer to one after the corrections were made. Studies of moments 

of (a bf) seem to indicate that the corrections compensate for some 

bias of our Monte Carlo calculations. The regions corresponding to 

the different levels of f^ \ ^  remain qualitatively the same as 
before (a-bf) corrections.

We have also obtained results of the second test for Navier- 

Stokes shocks for M = 1.4, 1.6, 1.8 and 2.0. Fig. 7 shows these 

results for M = 1.4 and 2.0. We observe the following for M = 2:

(1) the region at the periphery of the velocity space with positive 

vx has a negative distribution function; (2) deviations of f ^ / f ^  

from unity that are much larger than those of either a Mott-Smith or 

a 6-moment shock occur in the region where molecular speeds are large 
at the position in the shock close to the cold side; (3) this region 

of very large deviations of f^ ^/f^  ̂ becomes smaller for positions 

closer to the hot side. These results seem to support speculations 

made in the past that the Navier-Stokes shock is inaccurate near the 

upstream side of the shock. For M = 1.4, the ratio of f(1)/f(°) in the 

greater part of the velocity space lies between 0.95 and 1.05 at the 
three positions in the shock considered. (We use a different scale 

of velocity for M = 1.4 in order to decrease quadrature error in 

calculating the collision integral.) Our results therefore confirm 

that the Navier-Stokes shock is more accurate at lower Mach numbers.
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Another measure of the accuracy of the approximate solution 

is 6f, the rms difference between f^  ̂ and f^ Values of 6f for 
M = 1.4 to 2 are plotted in Fig. 8 for the Mott-Smith and Navier- 
Stokes shocks for n = 1/4, 1/2, and 3/4. (The unit of n is n ^  the 

unit of velocity is A/[2TrkT^/m].) The large decrease in 6f for the 
Navier-Stokes case when Mach number decreases again indicates that 

Navier-Stokes shock does have better accuracy at lower Mach numbers. 

The Mott-Smith shock is observed to have almost as good an accuracy, 

measured by 6f, at M = 2 as at M = 1.4. However, the smallest values 

of 6f shown in Fig. 8 for either approximation are more than 20 times 
as large as the residual errors in the Monte Carlo solution of the

OBoltzmann equation for fixed Monte Carlo samples.

We also observe the following concerning the accuracy at 

different positions in these two shocks: for the Navier-Stokes 

shock, the position close to the hot side has better accuracy than 

the other two positions, while the position close to the cold side 

has better accuracy for the case of Mott-Smith shock.

(c) Numerical Calculations of Moments

As indicated earlier, we have calculated many moments of

f, a, and (a-bf). We shall discuss two moments that cannot be

evaluated analytically. Fig. 9 shows the behavior of the first of

these two moments, the Boltzmann flux, for M = 2. We observe that

all three shocks considered satisfy the condition that the Boltzmann

flux decreases monotonically in a shock. The second interesting

moment not calculable analytically is the function I for 0 = 1/v .AB x
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This moment can be represented by B (see Eq. 6) and is plotted in
Fig. 10 for a Mott-Smith shock as a function of M. For purposes of

comparison, analytical calculations of B for other moments, represented 
2 3 2by 0 = v , v , and v v , are also included in Fig. 10. It should be
X X  X  JL

noted that 1̂  for 0 = 1/v^ is dn/dx for any shock, while only for the
Mott-Smith shock are the other non-constant moments I proportional

to dn/dx. It is well known that Mott-Smith calculations do not give
2a unique value of B for dn/dx, and only I for 0 = v has been foundAB x

to be in agreement with experimental results. We observe from
2Fig. 10 that B for 0 = 1/v agrees quite well with B for 0 = v .x x
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Fig. 1 Finite velocity space considered and expected signs of df/dx 
and (a-bf) in different regions.
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( Numericol values are in arbitrary units)

Fig. 2 Isolines of the collision integrals (a-bf)y,_ and (Lvx)vj_ for 
Mott-Smith shock of M = 2 and 4. L = (f2-f]_) (n2-n) (n-ni) / (n2-n1) . 
Monte Carlo sample = 700,000 collisions approximately. No (a-bf)C^) 
corrections.
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Vi

are in arbitrary units )

Fig. 3 Contour interval plot of Z in arbitrary units for Mott-Smith 
shoek^of M = 2 and 4. Values of Z correspond to the results given in
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X = Large fluctuations

( Numerical values are In arbitrary units )

Fig. 4 Contour-band plot of Z in arbitrary units for Mott-Smith 
shock of M = 2 and 4. Results were obtained from four computer runs 
of independent collision samples (sample size = 2^).
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Mott - Smith shock
M = 2

S ix- Moment shock

n = (n-n!)/(n2-ni)
Cross-hatched regions: fd )> f(o )

c = 0 .60-0.80 , b = 0.80-0.95, a =0.95-1.00 
A = 1.00-1.05 , B = 1.05-1.20 
(Numerical values in arbitrary units)

Fig. 5 Contour interval plot of the ratio f(l)/f(0) at three positions 
in a Mott-Smith shock and a 6-raom'ent shock. M = 2. (a-bf) used was 
calculated with a Monte Carlo sample of 2^  collisions. (a-bf) 
not corrected.

was



M = 2

V1
20

n = ( n - n 1) / ( n 2 - n 1)
Cross-hatched regions; f (1)> f (0) 
c = 0 .60-0.80, b = 0.80-0.95 , a = 0.95-1.00 
A= 1.00-1.05 , B = 1.05-1.20

(Numerical values are in arbitrary units)

Fi® ‘ ® c c°nto” -band plot of the ratio fC1)/f<0) at three posltions in 
a Mott-Smith shock. The results were obtained with four computer runs 
of independent samples (sample size = 217 collisions) and with 
(a-bf) corrections.
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Novier -  Stokes 
M = 1.4

Navier -  Stokes

n = (n-njt/irij-nj)

Cross-hatched regions: fM  > f<°) 
c = 0 .6 0 -0 .8 0 , b = 0 .8 0 -0 .9 5 , a = 0 .9 5 -1 .0 0  
A =1.00-1.05 , B = 1 .05-1 .20  , C = 1 .2 0 -1 .7 0 , D = 1 7 0 -6 .0 0  
(Numerical values are in arbitrary units)

Fig. 7 Contour interval plot of the ratio f(1)/f(°) at three positions 
in a Navier-Stokes shock. M = 1.4 and 2. ( a - b f ) Uced was calculated 
with a Monte Carlo sample of 217 collisions. (a-bf)(0' was corrected.
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Fig. 8 Variation of 6f, rms difference between f^  ̂ and f , at 
three positions in Mott-Smith and Navier-Stokes shocks, plotted vs 
Mach number.
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Fig. 9 Variation of Boltzmann flux with h for M = 2.



Fig. 10 Variation of B with Mach number.
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