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OSCILLATIONS IN A ONE-DIMENSIONAL, INHOMOGENEOUS PLASMA

by

E. A. Jackson and M. Raether

Oscillations in finite, inhomogeneous plasmas have received 

considerable attention recently in connection with the interpretation 

of the so-called Tonks-Dattner resonances. Although some progress has 

been made in calculating the resonance frequencies from the moment 

equations for a cold and warm plasma, attempts to calculate the Landau 

damping of these modes have not led to tangible results.^ ^

In this report we give a rigorous formulation of the problem and 

present detailed calculations of the eigen frequencies and their damping 

rates for a one-dimensional, inhomogeneous plasma in the long wavelength 

regime.

1. Eigenfrequencies and Eigenvectors

We start with the one-dimensional Vlassov and Poisson equation.

(1) |f + v | i - i - E | £ .  0ot ox m Bv

( 2 ) Mdx = 4rre(n^ - J* fdv)

(3)

Linearization leads to the following set of equations

Bf e _ Sf _ v o - — E o = 0  r—  m o ——ox $v

(4) dE
dx

o = 4rre(n. - n ) — i e
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and

(5) 3fi + Bf,v __1 ■ e Bf e - — E o ---E
at Bx m I t ■ m Bv

(6) = - 4ne Jf  f! d vBx

Bf
Bv

1 = 0

We estimate the ratio of the last two terms in Eq. (5): 

3f,
Bv

F Òfn
1 a T

E n.0 1
E, n1 o

From (6) we estimate —  ~  4nen^ where \ is the wavelength of the

oscillation. From (3) we obtain 

kT«  —  where L is the dimension of the plasma.

Hence
E n , 20 1 A. , .n D where \ rs the Debye length.
1 o A • L

The fourth term in Eq. (5) is therefore small compared to the third term 

for most cases of practical interest and will henceforth be neglected.

We therefore consider the equations

Bf(7)

(8)

Bf, Bf, e „1 + v 1 - — E
Bt Bx m

3Ei = - 4ne [ f, «
Bx J 1

enclose the plasma

x=L. f^ must sati:

o = 0
Bv



3

f 1(0,v) = ^ ( 0,-v) 

f1(L,v) = f1(L,-v)

Moreover E^CO) = E^(L) = 0.

Following Weissglas [4] we introduce

f l = f+ for v > 0

= f for v < 0

(7) then can be written

9ft j 9f+ e d f n__ l + v -—  - — E. o = 0t t ox m l  -—dt av
(9)

df df e _ df Att---v -—  + - E. o = 0ot ax m 1 -—av

Adding and subtracting these two equations results in

/1AX bF^ dF A
(10) a T  + v a T  ■ 0

(11) | f  + v - 2 £ E. 9fo = 0  at ox m l  -—dv

with F+ = f+ + f and F = f+ - f

The boundary condition on f^ now simply requires that F vanishes 

boundary.

Eq. (8) can be written

dE. +®
(12) w"l = - 4iTe J f^dv = - 4rre { J f dv + J f+dv} = - 4ue J 

dx o

We now assume f^ and E^ to be proportional to e

o
icot

at the

F+dv .
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(10) and (11) thus become

+ ÒF -iouF + v -—  = 0 ; iuuF + v -r—  òx öx 2 - E Òfo = 0 m 1 -—  ov

„ +  . V  Ò FF = l —0) dx
■,+ .Inserting F into (12) we obtain

h  [Ei + i r *  J* F’ vdv] = 0

or
4rrie(13) J  F vdv = const.

If no external field is present the constant is 0. Expressing everything 

in terms of F and E^ we have

(14) F" + ^  ^ 2  + 21 m  E1 3f° = 00) ÒX ÖV

(15) E1 = - J* F-vdv .

We expand F and E^ in sin-series, which automatically satisfy the boundary 

conditions.

(16) F = „  . T T k x  _  . T T k xE F. sin — - ; E. = E E, sin — —  k L I k L

1/2
We put fQ = n(x) • g(v) where g(v) = ^ j exp (-mv2/2KT)

For n(x) we choose the special form (Fig. 1)
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(17) n(x) = nQ(l + v cos — )

A suitable choice of ensures that (17) also satisfies the zero-order 

equations (3) and (4).

Fig. 1 Schematic Density Profile for u < 0.

Although this choice for the density profile appears rather special

and arbitrary, it will be shown later that the eigenmodes for more general

density profiles can be obtained by perturbation methods starting with
2jtxn(x) = n (1 + v cos —z— ) as a zero order approximation.O Lj

Inserting the expression (16) into (14) and (15), we obtain

(18) „ 4rrieE, = -k <ju J Fkvdv

(19) F k = -

2i %  ^m o jv
. V2 n2k2 .«(1 - j " )

uo L

(E k + 2 E k-2  + 2 E k+2^ *

Inserting into (18) we have
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(20) Ek + 2lUp2(Ek + f \.2 + | Ek+2 00 dg .)J a?vdvO
= 0

2 2 0) - v
2, 2TT k

where

" ^ v d v2o) rp J0 —
(JÜ 2 +°° dg

L J dv
2 2 TTk -00 o o tt k rrkv2 2 — r—  0) - ---0) -v 2 LLi

-  ek - 1

^  äs dv(21) ®k (“>) = 1 + J
k -00 0) - K, Vk

TTkis the dielectric constant and h, = —  .k L

(20) can now be written

(22) ckEk + f (ek - 1) E, _0 + % (e,. - 1) Ek-2 r 2 v k Jk+2 = 0.

In the first equation for k = 1, we have to observe that we must put

E-i ■ -Er
The infinite set of equations (22) separates into two systems for odd 

and even values of k. These sets of equations have a solution only if their 

determinants vanish. This requires

]*! - f ( V 1) | (6fl) 0 0

(23) 0 =

:U
2 (e3’1) 2 (*3 -l)

2 ( V 1) :5 2 (e5_1)0



for odd values of k. And

(24) 0 =

2 ( V 1)

7  (€/.- l ) 2 ( V 1) 0

I  < V X> *6 2 ( V 1) 0

for even values of k.

In these determinants we divide each row by the off-diagonal 
elements and obtain

(25) D =o

and

(26) D = e

with a, = k
2e, - 6ik *v(V i)

To evaluate the determinant Dq we divide the first row by a. 

subtract it from the second row.
and



)

D0 ■ al

1 1/a

0 a3

Proceeding in this fashion we obtain:

D = a (a o 1 3 7 ?  (a5 ■) . .

a3 “ al
2n+l

a2n-l ‘-±-

\ 2n-3

\
/

By calculating the partial numerators and denominators of these continued 

fractions we can show that all terms cancel, except for the numerator of 

the last continued fraction. Hence the determinant can be written:

(27) D = l i m  Num o n-*00 a2n+l " --- -
a2n-l

a 12n-3

2n-5

If D = 0  the continued fraction can be inverted and we can write the o
dispersion relation in the form
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An analogous expression is obtained for the determinant D . In thise
form the dispension relation is well adapted for numerical calculation.

Considerable simplification results if we use the long-wavelength .

expression for the dielectric constant.

For real values of U)> can be written

2 2 2 2 
(29> eR = 1 + 2 —  (1 - 2Q ~2 Y (— ) + WTT —  exP — )

k k k

with

U) n 00) L q2 m—  = fi ; _j>_ - <* ; P =
p  TT

2KT

Neglecting the imaginary part for the moment and using the high frequency 

expansion for Y(z)

(30) Y(z) = i - [ l + i -  + ^—  +...
2z \ 2z 4z

We obtain for a^ (for k > 1)

2e,
a, =k viCjjl) 1 - Cl

3 k_  
+ 2 2^2Of Cl
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For — 2 2 <<: ̂  we may exPand the denominator and obtain
oi n

2 / . n2 3 k 2
(31) ak = v ( 1 '  °  + 2 ~\ Oi

If we introduce this value into the recurrence relation for the E.

0 2 ) Ek.2 + ak Ek + Ek+2 = 0 (k > 1)

We find

Ek-2 + f (i - n2 + | S  > Ek + V 2
Oi

= 0

This can be written

- I “' <Ek-2 + Ek+2> + ( ! “V - «  - k 2 j Ek = 0 '

v 2 2 2 2With the notation q = — a and a = — Oi (Q -1)

V 1 L2

C
M

rH

q = 2 „ 2 . 2 ’ a = 2 23tt 3tt XD

We see that this recurrence relation coincides with that for the Mathieu

equation [8]
2

(34) -2-f + (a - 2q cos 2§) E = 0
d5

where 5 = tt yJL

We can therefore conclude that the eigenfunctions of the electric field are 

the Mathieu functions ser(|,q). The eigenmodes of oscillation are determined 

by corresponding values of a and q belonging to the eigenfunctions ser(5,q).
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The function = a^(q) corresponding to ser(§,q) are plotted in Fig. 2.

For large values of q the following asymptotic expressions hold.

For q < 0

a2 r+ l = " 2q + (8r + 6) J  q

(35)
a2r+2 = - 2q + (8r + 6) J  q 

For q > 0

a2x+l = " ^q + (8r + 2) J  q
(36)

a2r+2 = - 2q + (8r + 6) J  q .

Similar results have been obtained by Weissglas for the same density profile 

using the moment equations.[ 3 ].



-3 0  -2 0  - 1 0  0 10 20 30

(q)

Fig. 2 a-q-diagram for the Mathieu functions ser(§,q).
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2. Landau-Damping of the Modes

The knowledge of the eigenfunctions of the electric field enables 

us to calculate the collisionless damping of the corresponding modes by 

perturbation methods. Using the matrix corresponding to (25) and (26) 

we can write (32) in the form

(37) M • E = 0

where

M .. — (a.6 + 6. 0 + 6 . . ) j a , —jk j jk j,k+2 J,k-2'  j
2e .

6

where now the a 's are complex, 

parts we have

Separating the a. into real and imaginary

M = Mq + i Mf

where

(38) MV = (Rea.6.k + 6.;k+2 + 6jjk_2 

and

(39) M. = Im a .6 .
V  J Jk

In the last section we neglected the Im a, and obtained a solution to theJ
equation

(40) MQ • EQ = 0 .

Setting E = _Eq + i E-̂ equation (37) becomes

(41) M0 ' lo + i ^  + i M0 • Ex = 0

to first order in the perturbed quantities. The first term vanishes because 

of equation (40). We dot E_ into the remainder of (41) and obtain
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I0 * &  • E0 + E0 • M0 • Ex = 0 .

Since Mq is a symmetric matrix, EQ • MQ • • MQ • EQ = 0 in

virtue of equation (40). Thus

(42) • S i • ‘  0

where h  is a column matrix whose elements are the Fourier coefficients 

of the Mathieu functions, D^, which are defined by

ser (5,q) = 2 d r(q) sin (k?) •
. feven 
k=t0dd

Thus, using (39), equation (42) becomes

(43)
M

even
odd

Dk inf ak = 0 .

Now

(44) Im ak = -
2 Im e,

viv n

We approximate |ek"l|2 by (JUp2/û 2 (where (D = + i u^) and expand Im ek

in a power series in (JO./cJD . To first order in ou./u) we obtain T7ll r l r L

ou
Im €, = k -  TT I s

dv U)v = r

(JD. 0)1
0)r k. p J

3^g/dv2dv
(JL)v - r

P denotes the principle value part of the integral. In the long wave­

length approximation this becomes
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i f  Q 9 9 9 w -
Im  ek ~  U)p f V tt — 3 P exp ( - 0  u>r  /K k ) ---^

\ \  «>t

Substituting these into (44), equation (43) becomes

,2 1 , 20)
(45) 2 D, V tt P3 *r /Kk *1 = 0.

0)

The D^'s are normalized according to

2D, = 1.k

Therefore (45) reduces to

Zjjt

2

In this approximation the damping rate is just the linear superposition 

of the individual damping rates of the Fourier components contributing to 

the eigenvectors.

Fig. 3 shows as an example the damping of the first 3 modes for one

particular value of _D . We notice a tremendous increase in the damping
L

rate for even small inhomogenities. In view of these results one may 

expect that even in the long wavelength limit Landau-damping can become 

the dominant damping mechanism for oscillations in inhomogeneous plasmas.



Inhomogeneity , v
Fig. 3 Damping of modes as a function of inhomogeneity.
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3. Example of a Different Density Profile

The solution that has been obtained for the density profile

n(x) = n (1 + i) cos
O 1j

provides a zero order approximation for the treatment of other density 

profiles by perturbation theory.

We demonstrate this for the profile

n' (x) = n^ (1 + § sin -^)

ttx , , , . . 2rrkxsin —  can be expanded in a series in cos —---Li Li

sin TTX

TT
2 - 3 cos 2rrx 1 4ttx

L " 3.5 COS L 5.7 cos 6t t x

n' (x) = n' -, 2 » _4 - 2nx ____
1 + n ? ' 3tt 5 cos L 3.5tt

4 - 4 TTX£ COS — —

We introduce

n = n' ( 1 + ^ 5 )
O O TT

'  3^
I

1+ \  l

n' (x) then becomes

, , s 2ttx ll 4ttx 3lln (x) = nQ (1 + p, cos - j -  + ^ cos - j — + " co 6t t x  . s —  ... )

2 T txWe shall consider the solution for n (1 + u, cos —— ) as a zero ordero n L
approximation and treat the remaining terms as a perturbation. The 

recurrence relation now becomes

*kEk + 2 (Sk ' 1) (Ek-2 + Ek+2) + 275 ^ k ' 1  ̂ (Ek-4 + Ek W

++ 2.5.7 (V 1} <Ek-6 + Ek+6> + ••• ■ 0
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with
2c, — ~  ( 2 2 3 k2 tt2

%  v p 2 e2 L2 )
This may be written

% 2 - “2 + f ^  \  + H 2 (Ek-2 + Ek+2>

+ (Ek-4 + Ek+4> + ^ < Ek-6 + Ek+6> + • •' = 0 '

This set of equations can be written as an eigenvalue equation for a/

M E = U) E

We split M into Mq and and attempt a perturbation solution 

%  + M x) (Eq + E p  = (wQ2 + ll)12) (Eq + E p  .

In zero order we have

=0 -0 ^0 -0
The solution to this equation is known. In first order we obtain for 

the perturbed eigenvalue

^1 «0 * =1 V
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3 2
Mr  2

0 1 4 4
3.5 3.5 .7 5.7 .9

1 1 1 4.7
3.5 5.7 7.9 5.9.11

4 1 1 1
3.5.7 7 . 9 9.11 11.13

4 4.7 1 1
5.7.9 5.9.11 11.13 13.15

Representing by the Fourier coefficients of the respective Mathieu 

functions Eq = (D^, , D^, ...) and the matrix elements of by M.^, 

we obtain

“ l 2 ■ I  ^ p 2 M33 D32 + M55 D52 + M77 + ' ' '

+ 2M13 Dx D3 + 2M15 Dl D5 + 2M1? Dl D? +

+ 2M35 D3 D5 + 2M37 °3 °7 + * * *

+2M57 °5 °7 +

3 2= -Z .(JLO) S .2 P

In order to compare results for the two profiles we have to express 

density and inhomogenity in terms of common variables. We choose as such 

variables the maximum density n and the total inhomogenity T].
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n

Fig. 4 Schematic sketch of the sin- and cos-density profile.

The following relations hold

§ n' = 2u n = T] n o o

no d  + V) = n^ (1 + i )  = n .

In terms of the new variables we have

g _  J L  . „ _  J L5 l-Tl U 2-11
no = n (i - -i I)) ; = n (1 - n) .

Let us denote by a , q the characteristic values for the cos-profile, 

and by , q t h o s e  for the zero-order of the sin-profile. We find
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TT

-  2GUP

ai  = f * ¥  (“ 2 - “ P2 d  - 1  n)
TT

iL. -n P2L2 ~ 2
q° 9tt ^ 2 “ pT rtt

•2 - f ^ r  (“o2 - “P2 d - d  - i »n K

2 2 2 2 - 2  W0 = UU +U), = 0) ---CD T1 S2 O 1 O TT P  1

or

2 = 3rr ( N) )2 a + l - T ] + ^ T ]  (1 - S) (sin-profile)
U) L nP

3n2 ( )2 a + 1
L

(cos-profile)

is referred to the maximum density.

Fig. 5 shows a comparison of the frequencies of the lowest mode as 

a function of inhomogeneity for the sin- and the cos-profile.



Fig. 5 Eigenfrequencies of the first mode as a function 
of inhomogeneity for the sin- and cos-profile.
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