Coordinated Science

OSCILLATIONS IN A ONE-DIMENSIONAL, INHOMOGENOUS PLASMA

E. A. Jackson and M. Raether
REPORT R-239
JANUARY, 1965

COORDINATED SCIENCE LABORATORY
UNIVERSITY OF ILLINOIS URBANA, ILLINOIS

Contract DA-28-043-AMC-00073(E)

The research reported in this document was made possible by support extended to the University of Illinois, Coordinated Science Laboratory, jointly by the Department of the Army, Department of the Navy (Office of Naval Research), and the Department of the Air Force (Office of Scientific Research) under Department of Army Contract DA-28-043-AMC00073 (E).

OSCILLATIONS IN A ONE-DIMENSIONAL, INHOMOGENEOUS PLASMA

 byE. A. Jackson and M. Raether

Abstract

Oscillations in finite, inhomogeneous plasmas have received considerable attention recently in connection with the interpretation of the so-called Tonks-Dattner resonances. Although some progress has been made in calculating the resonance frequencies from the moment equations for a cold and warm plasma, attempts to calculate the Landau damping of these modes have not led to tangible results. ${ }^{1-6}$

In this report we give a rigorous formulation of the problem and present detailed calculations of the eigen frequencies and their damping rates for a one-dimensional, inhomogeneous plasma in the long wavelength regime.

1. Eigenfrequencies and Eigenvectors

We start with the one-dimensional Vlassov and Poisson equation.

$$
\begin{equation*}
\frac{\partial f}{\partial t}+v \frac{\partial f}{\partial x}-\frac{e}{m} E \frac{\partial f}{\partial v}=0 \tag{1}
\end{equation*}
$$

$$
\begin{equation*}
\frac{\partial E}{\partial x}=4 \pi e\left(n_{i}-\int f d v\right) \tag{2}
\end{equation*}
$$

Linearization leads to the following set of equations:

$$
\begin{equation*}
v \frac{\partial f_{o}}{\partial x}-\frac{e}{m} E_{o} \frac{\partial f_{o}}{\partial v}=0 \tag{3}
\end{equation*}
$$

(4)

$$
\frac{\partial E_{o}}{\partial x}=4 \pi e\left(n_{i}-n_{e}\right)
$$

and
(5)

$$
\begin{aligned}
& \frac{\partial f_{1}}{\partial t}+v \frac{\partial f_{1}}{\partial x}-\frac{e}{m} E_{1} \frac{\partial f_{o}}{\partial v}-\frac{e}{m} E_{o} \frac{\partial f_{1}}{\partial v}=0 \\
& \frac{\partial E_{1}}{\partial x}=-4 \pi e \int f_{1} d v
\end{aligned}
$$

(6)

We estimate the ratio of the last two terms in Eq. (5):

$$
\frac{E_{o} \frac{\partial f_{1}}{\partial v}}{E_{1} \frac{\partial f_{o}}{\partial v}} \approx \frac{E_{o} n_{1}}{E_{1} n_{o}}
$$

From (6) we estimate $\frac{E_{1}}{\lambda} \sim 4 \pi n_{1}$ where λ is the wavelength of the oscillation. From (3) we obtain

$$
\mathrm{E}_{\mathrm{o}} \approx \frac{\mathrm{kT}}{\mathrm{eL}} \text { where } \mathrm{L} \text { is the dimension of the plasma. }
$$

Hence

$$
\frac{E_{0} n_{1}}{E_{1} n_{0}} \approx \frac{\lambda_{D}^{2}}{\lambda \cdot L} \text { where } \lambda_{D} \text { is the Debye length. }
$$

The fourth term in Eq. (5) is therefore small compared to the third term for most cases of practical interest and will henceforth be neglected.

We therefore consider the equations

$$
\begin{align*}
& \frac{\partial f_{1}}{\partial t}+v \frac{\partial f_{1}}{\partial x}-\frac{e}{m} E_{1} \frac{\partial f_{o}}{\partial v}=0 \tag{7}\\
& \frac{\partial E_{1}}{\partial x}=-4 \pi e \int f_{1} d v \tag{8}
\end{align*}
$$

We enclose the plasma between two specularly reflecting walls at $x=0$ and $x=L . f_{1}$ must satisfy the following boundary conditions:

$$
\begin{aligned}
& f_{1}(0, v)=f_{1}(0,-v) \\
& f_{1}(L, v)=f_{1}(L,-v)
\end{aligned}
$$

Moreover $E_{1}(0)=E_{1}(L)=0$.
Following Weissglas [4] we introduce

$$
\begin{aligned}
& f_{1}=f^{+} \text {for } v>0 \\
& f_{1}=f^{-} \text {for } v<0
\end{aligned}
$$

(7) then can be written

$$
\frac{\partial f_{1}^{+}}{\partial t}+v \frac{\partial f^{+}}{\partial x}-\frac{e}{m} E_{1} \frac{\partial f_{o}}{\partial v}=0
$$

(9)

$$
\frac{\partial f^{-}}{\partial t}-v \frac{\partial f^{-}}{\partial x}+\frac{e}{m} E_{1} \frac{\partial f_{o}}{\partial v}=0
$$

Adding and subtracting these two equations results in
(10)

$$
\frac{\partial F^{+}}{\partial t}+v \frac{\partial F^{-}}{\partial x}=0
$$

(11)

$$
\frac{\partial F^{-}}{\partial t}+v \frac{\partial F^{+}}{\partial x}-2 \frac{e}{m} E_{1} \frac{\partial f_{o}}{\partial v}=0
$$

with $\mathrm{F}^{+}=\mathrm{f}^{+}+\mathrm{f}^{-}$and $\mathrm{F}^{-}=\mathrm{f}^{+}-\mathrm{f}^{-}$.
The boundary condition on f_{1} now simply requires that F^{-}vanishes at the boundary.

Eq. (8) can be written

$$
\begin{equation*}
\frac{\partial E_{1}}{\partial x}=-4 \pi e \int_{-\infty}^{+\infty} f_{1} d v=-4 \pi e\left\{\int_{0}^{\infty} f^{-} d v+\int_{0}^{\infty} f^{+} d v\right\}=-4 \pi e \int_{0}^{\infty} F^{+} d v \tag{12}
\end{equation*}
$$

We now assume f_{1} and E_{1} to be proportional to $e^{i \omega t}$.
(10) and (11) thus become

$$
\begin{aligned}
& i \omega F^{+}+v \frac{\partial F^{-}}{\partial x}=0 ; i \omega F^{-}+v \frac{\partial F^{+}}{\partial x}-2 \frac{e}{m} E_{1} \frac{\partial f_{o}}{\partial v}=0 \\
& F^{+}=i \frac{v}{\omega} \frac{\partial F^{-}}{\partial x} .
\end{aligned}
$$

Inserting F^{+}into (12) we obtain

$$
\frac{\partial}{\partial x}\left[E_{1}+\frac{4 \pi i e}{\omega} \int_{0}^{\infty} F^{-} v d v\right]=0
$$

or

$$
\begin{equation*}
E_{1}+\frac{4 \pi i e}{\omega} \int_{0}^{\infty} F^{-} v d v=\text { const. } \tag{13}
\end{equation*}
$$

If no external field is present the constant is 0. Expressing everything in terms of F^{-}and E_{1} we have

$$
\begin{align*}
& F^{-}+\frac{v^{2}}{\omega^{2}} \frac{\partial F^{-}}{\partial x^{2}}+2 i \frac{e}{m \omega} E_{1} \frac{\partial f_{o}}{\partial v}=0 \tag{14}\\
& E_{1}=-\frac{4 \pi i e}{\omega} \int_{o}^{\infty} F^{-} v d v .
\end{align*}
$$

We expand F^{-}and E_{1} in sin-series, which automatically satisfy the boundary conditions.

$$
\begin{equation*}
F^{-}=\Sigma F_{k} \sin \frac{\pi k x}{L} ; E_{1}=\Sigma E_{k} \sin \frac{\pi k x}{L} \tag{16}
\end{equation*}
$$

We put $f_{0}=n(x) \cdot g(v)$ where $g(v)=\left(\frac{m}{2 \pi K T}\right)^{1 / 2} \exp \left(-m v^{2} / 2 K T\right)$.

For $n(x)$ we choose the special form (Fig. 1)
(17)

$$
n(x)=n_{0}\left(1+v \cos \frac{2 \pi x}{L}\right)
$$

A suitable choice of n_{i} ensures that (17) also satisfies the zero-order equations (3) and (4).

Fig. 1 Schematic Density Profile for $v \gtrless 0$.
Although this choice for the density profile appears rather special and arbitrary, it will be shown later that the eigenmodes for more general density profiles can be obtained by perturbation methods starting with $n(x)=n_{0}\left(1+v \cos \frac{2 \pi x}{L}\right)$ as a zero order approximation.

Inserting the expression (16) into (14) and (15), we obtain

$$
\begin{align*}
& E_{k}=-\frac{4 \pi i e}{\omega} \int_{0}^{\infty} F_{k} v d v \tag{18}\\
& F_{k}=-\frac{2 i \frac{e}{m} n_{o} \frac{\partial g}{\partial v}}{\omega\left(1-\frac{v^{2}}{\omega^{2}} \frac{\pi^{2} k^{2}}{L^{2}}\right)}\left(E_{k}+\frac{v}{2} E_{k-2}+\frac{v}{2} E_{k+2}\right) . \tag{19}
\end{align*}
$$

Inserting F_{k} into (18) we have
(20)

$$
\begin{aligned}
& E_{k}+2 \omega_{p}^{2}\left(E_{k}+\frac{v}{2} E_{k-2}+\frac{v}{2} E_{k+2}\right) \int_{0}^{\infty} \frac{\frac{\partial g}{\partial v} v d v}{\omega^{2}-v^{2} \frac{\pi^{2} k^{2}}{L^{2}}}=0 \\
& 2 \omega_{p}^{2} \int_{0}^{\infty} \frac{\frac{\partial g}{\partial v} v d v}{\omega^{2}-v^{2} \frac{\pi^{2} k^{2}}{L^{2}}}=\frac{\omega_{p}^{2}}{\pi k} L \int_{-\infty}^{+\infty} \frac{\frac{\partial g}{\partial v} d v}{\omega-\frac{\pi k v}{L}}=\varepsilon_{k}-1
\end{aligned}
$$

where

$$
\begin{equation*}
\varepsilon_{k}(w)=1+\frac{\omega_{p}^{2}}{\varkappa_{k}} \int_{-\infty}^{+\infty} \frac{\partial g}{\partial v} d v \tag{21}
\end{equation*}
$$

is the dielectric constant and $x_{k}=\frac{\pi k}{L}$.
(20) can now be written

$$
\begin{equation*}
\varepsilon_{k} E_{k}+\frac{v}{2}\left(\varepsilon_{k}-1\right) E_{k-2}+\frac{v}{2}\left(\varepsilon_{k}-1\right) E_{k+2}=0 \tag{22}
\end{equation*}
$$

In the first equation for $k=1$, we have to observe that we must put $E_{-1}=-E_{1}$.

The infinite set of equations (22) separates into two systems for odd and even values of k. These sets of equations have a solution only if their determinants vanish. This requires
(23) $0=\left|\begin{array}{ccccc}\varepsilon_{1}-\frac{v}{2}\left(\varepsilon_{1}-1\right) & \frac{v}{2}\left(\varepsilon_{1}-1\right) & 0 & 0 & \ldots \\ \frac{v}{2}\left(\varepsilon_{3}-1\right) & \varepsilon_{3} & \frac{v}{2}\left(\varepsilon_{3}-1\right) & 0 & \ldots \\ 0 & \frac{v}{2}\left(\varepsilon_{5}-1\right) & \varepsilon_{5} & \frac{v}{2}\left(\varepsilon_{5}-1\right) & \ldots \\ \ldots & \ldots & \ldots & \ldots & \ldots\end{array}\right|$
for odd values of k. And
(24) $0=\left|\begin{array}{ccccc}\varepsilon_{2} & \frac{v}{2}\left(\epsilon_{2}-1\right) & 0 & \ldots & \ldots \\ \frac{v}{2}\left(\varepsilon_{4}-1\right) & \varepsilon_{4} & \frac{v}{2}\left(\varepsilon_{4}-1\right) & 0 & \ldots \\ 0 & \frac{v}{2}\left(\varepsilon_{6}-1\right) & \varepsilon_{6} & \frac{v}{2}\left(\varepsilon_{6}-1\right) & 0 \\ \ldots & \ldots & \ldots & \ldots & \ldots\end{array}\right|$
for even values of k.
In these determinants we divide each row by the off-diagonal elements and obtain

$$
D_{0}=\left|\begin{array}{cccc}
a_{1} & 1 & \ldots & \ldots \tag{25}\\
1 & a_{3} & 1 & \ldots \\
\ldots & 1 & a_{5} & 1 \\
\ldots & \ldots & \ldots & \ldots
\end{array}\right|
$$

and

$$
D_{e}=\left|\begin{array}{cccc}
a_{2} & 1 & \ldots & \ldots \tag{26}\\
1 & a_{4} & 1 & \ldots \\
\ldots & 1 & a_{6} & 1 \\
\ldots & \ldots & \ldots & \ldots
\end{array}\right|
$$

with $a_{k}=\frac{2 \varepsilon_{k}}{v\left(\varepsilon_{k}-1\right)}-\delta_{i k}$.
To evaluate the determinant D_{0} we divide the first row by a_{1} and subtract it from the second row,

$$
D_{0}=a_{1}\left|\begin{array}{ccccc}
1 & 1 / a_{1} & \cdots & \cdots & \cdots \\
0 & a_{3}-1 / a_{1} & 1 & \cdots & \cdots \\
\ldots & 1 & a_{5} & 1 & \cdots \\
\ldots & \ldots & 1 & a_{7} & 1
\end{array}\right|
$$

Proceeding in this fashion we obtain:
$D_{0}=a_{1}\left(a_{3}-\frac{1}{a_{1}}\right)\left(a_{5}-\frac{1}{a_{3}-\frac{1}{a_{1}}}\right) \cdots\left(a_{2 n+1}-\frac{1}{a_{2 n-1}-\frac{1}{a_{2 n-3}-\cdots}}\right)$

By calculating the partial numerators and denominators of these continued fractions we can show that all terms cancel, except for the numerator of the last continued fraction. Hence the determinant can be written:
(27)

$$
D_{0}=\lim _{n \rightarrow \infty} \text { Num } \quad a_{2 n+1}-\frac{1}{a_{2 n-1}-\frac{1}{a_{2 n-3}-\frac{1}{a_{2 n-5}-.}}}
$$

If $D_{0}=0$ the continued fraction can be inverted and we can write the dispersion relation in the form
(28)

$$
0=a_{1}-\frac{1}{a_{3}-\frac{1}{a_{5}-\frac{1}{a_{7}-\frac{1}{\ddots}}}}
$$

An analogous expression is obtained for the determinant D_{e}. In this form the dispension relation is well adapted for numerical calculation. Considerable simplification results if we use the long-wavelength expression for the dielectric constant.

For real values of $w_{s} \varepsilon_{k}$ can be written

$$
\begin{equation*}
\epsilon_{k}=1+2 \frac{\alpha^{2}}{k^{2}}\left(1-2 \Omega^{2} \frac{\alpha^{2}}{k^{2}} Y\left(\frac{\alpha \Omega}{k}\right)+i \sqrt{ } \pi \frac{\alpha \Omega}{k} \exp \frac{-\alpha^{2} \Omega^{2}}{k^{2}}\right) \tag{29}
\end{equation*}
$$

with

$$
\frac{\omega}{\omega_{p}}=\Omega ; \frac{\beta \omega_{p} L}{\pi}=\alpha ; \beta^{2}=\frac{m}{2 K T} .
$$

Neglecting the imaginary part for the moment and using the high frequency expansion for $Y(z)$

$$
\begin{equation*}
Y(z)=\frac{1}{2 z^{2}}\left(1+\frac{1}{2 z^{2}}+\frac{3}{4 z^{4}}+\cdots\right) \tag{30}
\end{equation*}
$$

We obtain for a_{k} (for $k>1$)

$$
a_{k}=\frac{2 \epsilon_{k}}{v\left(\epsilon_{k}-1\right)}=\frac{2}{v}\left(1-\frac{\Omega^{2}}{1+\frac{3}{2} \frac{k^{2}}{\alpha^{2} \Omega^{2}}}\right)
$$

For $\frac{3}{2} \frac{\mathrm{k}^{2}}{\alpha^{2} \Omega^{2}} \ll 1$ we may expand the denominator and obtain

$$
\begin{equation*}
a_{k}=\frac{2}{v}\left(1-\Omega^{2}+\frac{3}{2} \frac{k^{2}}{\alpha^{2}}\right) \tag{31}
\end{equation*}
$$

If we introduce this value into the recurrence relation for the E_{k}

$$
\begin{equation*}
E_{k-2}+a_{k} E_{k}+E_{k+2}=0 \quad(k>1) \tag{32}
\end{equation*}
$$

We find

$$
E_{k-2}+\frac{2}{v}\left(1-\Omega^{2}+\frac{3}{2} \frac{k^{2}}{\alpha^{2}}\right) E_{k}+E_{k+2}=0
$$

This can be written

$$
-\frac{v}{3} \alpha^{2}\left(E_{k-2}+E_{k+2}\right)+\left(\frac{2}{3} \alpha^{2}\left(\Omega^{2}-1\right)-k^{2}\right) \quad E_{k}=0
$$

With the notation $q=\frac{v}{3} \alpha^{2}$ and $a=\frac{2}{3} \alpha^{2}\left(\Omega^{2}-1\right)$

$$
\begin{equation*}
q=\frac{v}{2} \frac{1}{3 \pi^{2}} \frac{L^{2}}{\lambda_{D}^{2}} ; \quad a=\frac{1}{3 \pi^{2}} \frac{L^{2}}{\lambda_{D}^{2}}\left(\Omega^{2}-1\right) \tag{33}
\end{equation*}
$$

We see that this recurrence relation coincides with that for the Mathieu equation [8]

$$
\begin{equation*}
\frac{d^{2} E}{d \xi^{2}}+(a-2 q \cos 2 \xi) E=0 \tag{34}
\end{equation*}
$$

where $\xi=\pi \frac{x}{L}$.

We can therefore conclude that the eigenfunctions of the electric field are the Mathieu functions $s e r_{r}(\xi, q)$. The eigenmodes of oscillation are determined by corresponding values of a and q belonging to the eigenfunctions se (ξ, q).

The function $a_{r}=a_{r}(q)$ corresponding to $s e_{r}(\xi, q)$ are plotted in Fig. 2. For large values of q the following asymptotic expressions hold. For $\mathrm{q}<0$

$$
a_{2 r+1}=-2 q+(8 r+6) \sqrt{ } q
$$

(35)

$$
a_{2 r+2}=-2 q+(8 r+6) \sqrt{ } q
$$

For $q>0$

$$
a_{2 r+1}=-2 q+(8 r+2) \sqrt{ } q
$$

$$
\begin{equation*}
a_{2 r+2}=-2 q+(8 r+6) \sqrt{ } q \text {. } \tag{36}
\end{equation*}
$$

Similar results have been obtained by Weissglas for the same density profile using the moment equations. [3].

Fig. 2 a-q-diagram for the Mathieu functions $\operatorname{se}_{\mathrm{r}}(\bar{\xi}, q)$.
2. Landau-Damping of the Modes

The knowledge of the eigenfunctions of the electric field enables us to calculate the collisionless damping of the corresponding modes by perturbation methods. Using the matrix corresponding to (25) and (26) we can write (32) in the form

$$
\begin{equation*}
\underline{\underline{M} \cdot \underline{E}=0} \tag{37}
\end{equation*}
$$

where

$$
M_{j k}=\left(a_{j} \delta_{j k}+\delta_{j, k+2}+\delta_{j, k-2}\right) ; \quad a_{j}=\frac{2 \varepsilon_{j}}{v\left(\varepsilon_{j}-1\right)}-\delta_{1 j}
$$

where now the a_{j} 's are complex. Separating the a_{j} into real and imaginary parts we have

$$
\underline{\underline{M}}=\underline{M}_{\underline{M}}+i \underset{\underline{M}}{M}
$$

where

$$
\begin{equation*}
M_{j k}=\left(\operatorname{Re} a_{j} \delta_{j k}+\delta_{j, k+2}+\delta_{j, k-2}\right. \tag{38}
\end{equation*}
$$

and

$$
\begin{equation*}
M_{j k}=\operatorname{Im} a_{j} \delta_{j k} \tag{39}
\end{equation*}
$$

In the last section we neglected the $\operatorname{Im} a_{j}$ and obtained a solution to the equation

$$
\begin{equation*}
{ }_{=0}^{M} \quad E_{0}=0 \tag{40}
\end{equation*}
$$

Setting $E=\underline{E}_{0}+i \underline{E}_{1}$ equation (37) becomes

$$
\begin{equation*}
\underline{M}_{0} \cdot \underline{E}_{0}+i M_{1} \cdot \underline{E}_{0}+i M_{=}^{M} \cdot \underline{E}_{1}=0 \tag{41}
\end{equation*}
$$

to first order in the perturbed quantities. The first term vanishes because of equation (40). We dot \underline{E}_{0} into the remainder of (41) and obtain

$$
\underline{E}_{0} \cdot \underline{M}_{1} \cdot \underline{E}_{0}+\underline{E}_{0} \cdot \underline{M}_{=0} \cdot \underline{E}_{1}=0
$$

Since ${\underset{M}{M}}_{0}$ is a symmetric matrix, $E_{0} \cdot{ }_{=0}^{M} \cdot E_{1}=E_{1} \cdot{ }_{=}^{M} \cdot E_{0}=0$ in virtue of equation (40). Thus

$$
\begin{equation*}
\underline{E}_{0} \cdot \underline{M}_{1} \cdot \underline{E}_{0}=0 \tag{42}
\end{equation*}
$$

where E_{0} is a column matrix whose elements are the Fourier coefficients of the Mathieu functions, D_{k}, which are defined by

$$
\operatorname{se}_{r}(\xi, q)=\sum_{k=\left\{\begin{array}{l}
\text { even } \\
\text { odd }
\end{array}\right.} D_{k}^{r}(q) \sin (k \xi)
$$

Thus, using (39), equation (42) becomes

$$
\begin{align*}
& \sum=\left\{\begin{array}{l}
\text { even } \\
\text { odd }
\end{array} D^{2} \text { In' } a_{k}=0 .\right. \tag{43}
\end{align*}
$$

Now
(44) $\quad I m a_{k}=-\frac{2 \operatorname{Im} \epsilon_{k}}{v\left|\epsilon_{k}-1\right|^{2}}$.

We approximate $\left|\varepsilon_{k}-1\right|^{2}$ by $\omega_{p}^{2} / \omega_{r}^{2}$ (where $\omega=\omega_{r}+i \omega_{i}$) and expand Lm ε_{k} in a power series in ω_{i} / ω_{r}. To first order in ω_{i} / ω_{r} we obtain [7]

$$
\operatorname{Im} \epsilon_{k}=-\left.\pi \frac{\omega_{p}^{2}}{x_{k}^{2}} \frac{\partial g}{\partial v}\right|_{v=\frac{\omega_{r}}{x_{k}}}-\frac{\omega_{i}}{\omega_{r}} \frac{\omega_{p}^{2}}{x_{k}^{2}} P \int \frac{\partial^{2} g / \partial v^{2} d v}{v-\frac{\omega_{r}}{x_{k}}}
$$

P denotes the principle value part of the integral. In the long wavelength approximation this becomes

$$
\operatorname{Im} \varepsilon_{k} \simeq \omega_{p}^{2}\left(2 \sqrt{\pi} \frac{\omega_{r}}{x_{k}^{3}} \beta^{3} \exp \left(-\beta^{2} \omega_{r}^{2} / x_{k}^{2}\right)-\frac{\omega_{i}}{\omega_{r}^{3}}\right)
$$

Substituting these into (44), equation (43) becomes

$$
\begin{equation*}
\Sigma D_{k}^{2}\left(2 / \pi \frac{\omega_{r}}{x_{k}^{3}} \beta^{3} e^{-\beta^{2} \omega_{r}^{2} / x_{k}^{2}}-\frac{\omega_{i}}{\omega_{r}^{3}}\right)=0 \tag{45}
\end{equation*}
$$

The D_{k} 's are normalized according to

$$
\Sigma D_{k}^{2}=1
$$

Therefore (45) reduces to

$$
\frac{\omega_{i}}{\omega_{r}}=\Sigma D_{k}^{2} 2 \sqrt{\pi} \frac{w_{r}^{3}}{x_{k}^{3}} \beta^{3} e^{-\beta^{2} \omega_{r}^{2} / x_{k}^{2}}
$$

In this approximation the damping rate is just the linear superposition of the individual damping rates of the Fourier components contributing to the eigenvectors.

Fig. 3 shows as an example the damping of the first 3 modes for one particular value of $\frac{\lambda_{D}}{L}$. We notice a tremendous increase in the damping rate for even small inhomogenities. In view of these results one may expect that even in the long wavelength limit Landau-damping can become the dominant damping mechanism for oscillations in inhomogeneous plasmas.

Fig. 3 Damping of modes as a function of inhomogeneity.
3. Example of a Different Density Profile

The solution that has been obtained for the density profile

$$
n(x)=n_{0}\left(1 \pm v \cos \frac{2 \pi x}{L}\right)
$$

provides a zero order approximation for the treatment of other density profiles by perturbation theory.

We demonstrate this for the profile

$$
n^{\prime}(x)=n_{0}^{\prime}\left(1+\xi \sin \frac{\pi x}{L}\right)
$$

$\sin \frac{\pi x}{L}$ can be expanded in a series in $\cos \frac{2 \pi k x}{L}$.

$$
\begin{aligned}
& \sin \frac{\pi x}{L}=\frac{4}{\pi}\left(\frac{1}{2}-\frac{1}{3} \cos \frac{2 \pi x}{L}-\frac{1}{3.5} \cos \frac{4 \pi x}{L}-\frac{1}{5.7} \cos \frac{6 \pi x}{L} \cdots\right) \\
& n^{\prime}(x)=n_{0}^{\prime}\left(1+\frac{2}{\pi} \xi-\frac{4}{3 \pi} \xi \cos \frac{2 \pi x}{L}-\frac{4}{3.5 \pi} \xi \cos \frac{4 \pi x}{L}-\cdots\right)
\end{aligned}
$$

We introduce

$$
\begin{aligned}
& n_{0}=n_{0}^{\prime}\left(1+\frac{2}{\pi} \xi\right) \\
& \mu=-\frac{4}{3 \pi} \frac{\xi}{1+\frac{2}{\pi} \xi}
\end{aligned}
$$

$n^{\prime}(x)$ then becomes

$$
n^{\prime}(x)=n_{0}\left(1+\mu \cos \frac{2 \pi x}{L}+\frac{\mu}{5} \cos \frac{4 \pi x}{L}+\frac{3 \mu}{5.7} \cos \frac{6 \pi x}{L} \ldots\right)
$$

We shall consider the solution for $n_{0}\left(1+\mu \cos \frac{2 \pi x}{L}\right)$ as a zero order approximation and treat the remaining terms as a perturbation. The recurrence relation now becomes

$$
\begin{gathered}
\epsilon_{k} E_{k}+\frac{\mu}{2}\left(\epsilon_{k}-1\right)\left(E_{k-2}+E_{k+2}\right)+\frac{\mu}{2.5}\left(\varepsilon_{k}-1\right)\left(E_{k-4}+E_{k+4}\right) \\
+\frac{3 \mu}{2.5 .7}\left(\epsilon_{k}-1\right)\left(E_{k-6}+E_{k+6}\right)+\ldots=0
\end{gathered}
$$

with

$$
\frac{2 \varepsilon_{k}}{\mu\left(\varepsilon_{k}-1\right)}=\frac{2}{\mu \omega_{p}^{2}}\left(\omega_{p}^{2}-\omega^{2}+\frac{3}{2} \frac{k^{2}}{\beta^{2}} \frac{\pi^{2}}{L^{2}}\right)
$$

This may be written

$$
\begin{aligned}
& \left(w_{p}^{2}-w^{2}+\frac{3}{2} \frac{k^{2} \pi^{2}}{\beta^{2} L^{2}}\right) E_{k}+\frac{\mu}{2} w_{p}^{2}\left(E_{k-2}+E_{k+2}\right) \\
& \quad+\frac{\mu \omega_{p}^{2}}{2.5}\left(E_{k-4}+E_{k+4}\right)+\frac{3 \mu \omega_{p}^{2}}{2.5 .7}\left(E_{k-6}+E_{k+6}\right)+\ldots=0
\end{aligned}
$$

This set of equations can be written as an eigenvalue equation for ω^{2}

$$
\underline{M} \underline{E}=w^{2} \underline{E}
$$

We split $\underset{=}{M}$ into $\underset{=}{M}$ and M_{1} and attempt a perturbation solution

$$
\left(\underline{M}_{0}+\underline{M}_{1}\right)\left(\underline{E}_{0}+\underline{E}_{1}\right)=\left(w_{0}^{2}+w_{1}^{2}\right)\left(\underline{E}_{0}+\underline{E}_{1}\right)
$$

In zero order we have

$$
M_{0} E_{0}=w_{0}^{2} E_{0}
$$

The solution to this equation is known. In first order we obtain for the perturbed eigenvalue

$$
w_{1}^{2}=\left(\underline{E}_{0} \cdot M_{1} \underline{E}_{0}\right)
$$

$M_{1}=\frac{3}{2} \mu \omega_{p}^{2}\left(\begin{array}{ccccc}0 & -\frac{1}{3.5} & \frac{4}{3.5 .7} & \frac{4}{5.7 .9} & \ldots \\ -\frac{1}{3.5} & -\frac{1}{5.7} & -\frac{1}{7.9} & \frac{4.7}{5.9 .11} & \ldots \\ \frac{4}{3.5 .7} & -\frac{1}{7.9} & -\frac{1}{9.11} & -\frac{1}{11.13} & \ldots \\ \frac{4}{5.7 .9} & \frac{4.7}{5.9 .11} & -\frac{1}{11.13} & -\frac{1}{13.15} & \ldots \\ \ldots & \ldots & \ldots & \ldots & \ldots\end{array}\right)$

Representing E_{0} by the Fourier coefficients of the respective Mathieu functions $E_{0}=\left(D_{1}, D_{3}, D_{5}, \ldots\right)$ and the matrix elements of M_{1} by $M_{i k}$, we obtain

$$
\begin{aligned}
\omega_{1}^{2}=\frac{3}{2} \mu_{p}{ }^{2} & \left(M_{33} D_{3}^{2}+M_{55} D_{5}^{2}+M_{77} D_{7}{ }^{2}+\ldots\right. \\
& +2 M_{13} D_{1} D_{3}+2 M_{15} D_{1} D_{5}+2 M_{17} D_{1} D_{7}+\ldots \\
& +2 M_{35} D_{3} D_{5}+2 M_{37} D_{3} D_{7}+\ldots \\
& \left.+2 M_{57} D_{5} D_{7}+\ldots\right) \\
= & \frac{3}{2} \mu \omega_{p}^{2} S .
\end{aligned}
$$

In order to compare results for the two profiles we have to express density and inhomogenity in terms of common variables. We choose as such variables the maximum density $\overline{\mathrm{n}}$ and the total inhomogenity η.

Fig. 4 Schematic sketch of the sin- and cos-density profile.

The following relations hold

$$
\begin{aligned}
& \xi n_{0}^{\prime}=2 v n_{0}=\eta \bar{n} \\
& n_{0}(1+v)=n_{0}^{\prime}(1+\xi)=\bar{n} .
\end{aligned}
$$

In terms of the new variables we have

$$
\begin{aligned}
& \xi=\frac{\eta}{1-\eta} ; \quad v=\frac{\eta}{2-\eta} \\
& n_{0}=\bar{n}\left(1-\frac{1}{2} \eta\right) ; \quad n_{0}^{\prime}=\bar{n}(1-\eta)
\end{aligned}
$$

Let us denote by a_{1}, q_{1} the characteristic values for the cos-profile, and by a_{2}, q_{2} those for the zero-order of the sin-profile. We find

$$
\begin{aligned}
q_{1} & =-\frac{1}{6} \eta \frac{\beta^{2} L^{2}}{\pi^{2}} \bar{\omega}_{p}^{2} \\
a_{1} & =\frac{2}{3} \frac{\beta^{2} L^{2}}{\pi^{2}}\left(\omega^{2}-\bar{\omega}_{p}^{2}\left(1-\frac{1}{2} \eta\right)\right. \\
q_{2} & =-\frac{4}{9 \pi} \eta \frac{\beta^{2} L^{2}}{\pi^{2}} \bar{\omega}_{p}^{2} \\
a_{2} & =\frac{2}{3} \frac{\beta^{2} L^{2}}{\pi^{2}}\left(\omega_{0}^{2}-\bar{\omega}_{p}^{2}\left(1-\left(1-\frac{2}{\pi}\right) \eta\right)\right) \\
\omega_{2}=\omega_{0}^{2} & +\omega_{1}^{2}=\omega_{0}^{2}-\frac{2}{\pi} \bar{\omega}_{p}^{2} \eta s
\end{aligned}
$$

or

$$
\begin{aligned}
& \frac{\omega^{2}}{\omega_{p}^{2}}=3 \pi^{2}\left(\frac{\lambda_{D}}{L}\right)^{2} a_{2}+1-\eta+\frac{2}{\pi} \eta(1-s) \quad \text { (sin } 1-\text { profile) } \\
& \frac{\omega^{2}}{\omega_{p}^{2}}=3 \pi^{2}\left(\frac{\lambda_{D}}{L}\right)^{2} a_{1}+1-\frac{1}{2} \eta
\end{aligned} \quad \text { (cos-profile) } \quad \text { (s) }
$$

λ_{D} is referred to the maximum density.
Fig. 5 shows a comparison of the frequencies of the lowest mode as a function of inhomogeneity for the sin- and the cos-profile.

Fig. 5 Eigenfrequencies of the first mode as a function of inhomogeneity for the sin- and cos-profile.

REFERENCES

1. A Dattner, Phys. Rev. Letters 10, 205 (1963).
2. J. C. Nicke1, J. V. Parker and R. W. Gould, Phys. Rev. Letters 11, 185 (1963).
3. P. Weissglas, Phys. Rev. Letters 10, 206 (1963).
4. P. Weissglas, J. Nuc1. Energy, Part C, 6, 251 (1964). (This paper also contains numerous references to earlier work.)
5. F. C. Hoh, Phys. Rev. 133, Alol6 (1964).
6. S. J. Buchsbaum and A. Hasegawa, Phys. Rev. Letters 12, 685 (1964).
7. J. D. Jackson, J. Nuc1. Energy, Part C, 1, 171 (1960).
8. N. W. McLachlan, Theory and Application of Mathieu Functions, Oxford, 1951.

