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ABSTRACT

Relaxation oscillations described by the generalized Liénard 

equation, x + |i,f(x)x + g(x) = 0 (« = d/dt) , with p»l, are investigated

are subject to certain restrictions, a number of analytic curves can be

obtained in these planes which serve as bounds on solution trajectories,

Piece-wise connection of such bounding curves provide explicit annular

regions with the property that solution trajectories on the boundary of

an annulus move to the interior with increasing time, t. The Poincare-

Bendixson theorem then guarantees at least one periodic orbit within

such an annulus. It is shown that the periodic orbits which are isolated

by this means are unique within the annulus, hence orbitally stable. The
-*4/3maximum width of the annulus is of order ' , and the amplitude bounds

obtained for the periodic solution agree favorably with the kpown ampli-
2tude for the specific case of the van der Pol equation x + (j,(x -1) x + 

x = 0. The results are generalized to less restrictive f(x), g(x), and 

F(x) than those first considered.

in the phase and Liénard planes. When
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1. Introduction

Much attention has been devoted to the periodic solutions of the

(Cesari [l] contains an extensive bibliography.) Conditions for the existence 

and uniqueness of non-zero periodic solutions have been investigated; Eq. (1.1) 

possesses non-zero periodic solutions when f(x) and g(x) are suitably res

tricted. In particular, a unique non-zero periodic solution of the van der 

Pol equation

generalized Lienard equation

x + /lf(x)x + g(x) =0  QJ> > 0, '= d/dt) . (1.1)

x + M(x2 - l)x + x = 0 (1 .2)

exists for all H > 0.

Equation (1.1) is equivalent to the systems

x = JXv, v = -/If(x)v - g(x)//l (1.3)

and
x

x = fl[y - F(x)], y = -g(x)/M, F(x) = J*q f(5)d§ (1.4)

which define the "scaled" phase (x,v) and Lienard (x,y) planes respectively.

Any initial condition (x(tQ), x(tQ)) prescribed for the solution 

of Eq. (1.1) defines a unique point in the phase and Lienard planes. The
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subsequent development in time of x(t), x(t) corresponds to a motion of the 

point in these planes. The curves traced by such motions will be referred 

to as trajectories, orbits or integral curves, interchangeably. Periodic 

orbits are simple closed curves in the planes.

In this paper we study a class of relaxation oscillations, namely 

the periodic solutions of Eq. (1.1) when p. is very large. We construct 

explicit annular regions in the scaled Lienard plane with the property 

that the velocity vectors (x,y), associated with points on the boundaries 

of an annulus, point toward the interior of the annular region. Thus, 

once a solution trajectory enters the region it must remain therein; by 

the Poincare - Bendixson theorem, such an annulus contains at least one 

periodic orbit. However, our annuli contain at most one periodic orbit, 

which is therefore unique, within the annulus.

It is convenient, at first, to assume that

(1) f(x) and g(x) have continuous first derivatives for all x;

(2) there exists an a < 0 and a b > 0 such that f(a) = f(b)
= 0 and f(x) > 0 outside (a,b); F(a) > 0, F(b) < 0;

I^Cx-a)^ < F(a) - F(x) < L^(x-a)^

L^(x-a)^ < F(x) - F(b) < L^(x-a)^

in (a,b), where > 0 (see Fig. 1);

(3) xg(x) > 0 for x f 0;

(4) for F(x), and G(x) = g(|)d|, that
F(+ co) — + co, G(+ co) = oo;

(5) g(x)/f(x) is monotone decreasing outside (a,b).

Note that f(x) need not be even, nor g(x) odd. Note also that inte 

gral curves encircle the origin clockwise as t increases.
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Assumptions (1) to (4) are sufficient to assure the existence of

a non-zero periodic solution of Eq. (1.1).

Sets of simple confining contours are investigated in Sec. 2. These,

and other contours, are used in Sections 3 and 4 to construct inner and outer

boundaries of an annulus which contains a periodic solution of Eq. (1.1).
-4/3The annulus has a maximum width of order ¡X .

All of the above assumptions, except (3), can be weakened some

what, as is done in Sec. 5, where it is shown that the results of previous 

sections hold, with minor modifications. The boundaries of the annuli given
i / A

in Sec. 5 still remain within 0(/i ) of each other. LaSalle [2] constructed an

annulus of maximum width 0(fJ> )̂ for the Lienard equation (g(x) = x) , with 

f(x) subject to different assumptions than those given here.

Section 6 contains some numerical results.

2. Some Confining Contours

Properties of integral curves have been obtained [2,3] by investi

gating their relationship to the contours of constant energy

\{x,v) = v2/2 + G(x)/M2 = c (c = constant > 0) 

in the scaled phase plane, or correspondingly the contours

0(x,y) = y2/2 + G(x)/M2 = c
in the scaled Lienard plane. Both the family \(x,v) = c and $(x,y) = c 

are closed nested ovals enclosing the origin: the larger is c, the larger

the oval.

The time rate of change of 0(x,y) along a solution (x(t),y(t)) of 

Eq. (1.4) is given by
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0(x,y) = yy + g(x)x/p- = -g(x)F(x)f\i .
j.

Note that <p is the scalar product of the velocity vector (x,y) and grad($), 

the vector which has the direction of maximum increase in <fi(x,y). Thus, if 

an integral curve crosses a contour $(x,y) = c, in a region R where <p > 0,

then it does so in a direction of increasing </>, that is, toward the exterior\
of the oval. Hence, the oval bounds exterior trajectories away from the 

origin: the contour will be called an "inner bound" in the region R.

Similarly, if <f> < 0 in some region R9 , then 4> ovals are crossed toward their 
interior and are termed "outer bounds" in R 9 .

Let a < 0 and 8 > 0 be the two roots of F(x) = 0 outside (a,b), 
and assume G(a) < G(B)„ Then the oval <Pa; y2/2 + G(x)/P-2 = G(a)/fl2 lies 
entirely in a < x < B. If F(x) were such that -g(x)F(x) > 0  in a < x < B, 

then would provide an inner bound on all exterior trajectories. Note 

that this is the case for the van der Pol equation and, in fact, 4>a is the 

best "universal" inner bound for equations of the van der Pol type (where 

-gF > 0 in (a,B)), valid for all M > 0 [4]0
The ovals are integrals of the Lienard equation when there is no 

damping (f(x) = 0), or, equivalently of the differential equation

dy/dx = - -------  (2.1)
M ¡> - 'i(x)]

when F(x) =0.

Another family of ovals is obtained by letting F(x) = K, a constant, 

in Eq. (2.1). Upon integrating one has

X (x,y) = (y - K)2/2 + G(x)/P-2 = constant. (2.2)
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The ^(x,y) = c form a family of displaced or shifted, closed, nested ovals. 

Note that along a solution trajectory X(x,y) = -g(x) [F(x) - K]/fi. Hence 

the x ovals will be inner bounds wherever x > 0 and outer bounds where 
X < 0. In particular, if x < 0, the x ovals are inner bounds where F(x)

> K and outer bounds where F(x) < K.

We introduce now a new set of contours in the phase plane. From 

Eq. (1.3) one has that

dv/dx = -f(x) - g(x)/fX2v (2.3)
which can be written as

vdv + g(x)dx//J-2 + f(x)vdv = 0.
On integrating, this becomes

v2/2 + G(x)/jJ-2 + JvdF(x) = constant.
Integrating by parts, one gets

v2/2 + G(x)/ĵ 2 + vF(̂ ;) - J*F(x)dv = constant.
On setting F(x) = K, a constant, in the integral, one obtains the family of 

contours

v 2/2 + G(x)/jW2 + v [F(x) - K] = constant.

We consider a particular set of these contours, namely the one 

parameter family

Y(x,v) = v2/2 + v [F(x) - F(u)]+ G(x)/M-2 = G(u)/M? (2.4) 
The upper branch of such a contour satisfies

v = F(u) - F(x) + {[F(u) - F(x)]2 + 2[G(u) - G(x )]/M2]1/2
> 0  (2.5)

for u < x < 0, in the second quadrant (see Fig. 2).
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We determine the region in which these contours are inner bounds 

by a direct comparison of slopes. One has, from Eq. (2.4), that

■ w n ■ - [ - . M  - . « / „ v i .

Since [-f(x) - g(x)/|jLZv] is just the slope of trajectories, and is positive
ofor 0 < v < vq (x) = -g(x)/|jb f(x), in x < a, then the upper branch (Eq. (2.5)) 

of a Y contour will be an inner bound wherever F(x) > F(u), as long as the 

Y contour remains below vq(x). We will show below, however, that v = vq (x) 
is an outer bound in x < a. Consider then the possibility of an intersection, 

from below, of a f contour with v = vq(x). All trajectories between the Y 

contour and v q (x) must converge to such an intersection, which would make 
it a singular point, contradicting the uniqueness guaranteed by our assump

tions. We conclude that the Y contours provide inner bounds for F(x) > F(u).
In the scaled Lienard plane the Y contours become

[y - F(u )]2/2 - [F(x) - F(u )]2/2 + G(x)/(j,2 = G(u)/|i2 
or, choosing the upper branch,

y = F(u) + {[F(x) - F(u)]2 + 2[G(u) - G(x) ]//}*. (2.6)
2Consider now the curve v q (x ) = -g(x)/|jL f(x), which, from Eq. (2.3),

is the contour of zero slope in the phase plane. We have assumed that

g(x)/f(x) is monotone decreasing outside (a,b), so that trajectories which

start on, or cross v (x), in x < a, will move to the right away from and be-o
low Thtrs v = v q^  is an outer btfcmd in X < a, and similarly in x > b

(see Fig. 3). Notice that any monotone increasing curve lying on or above 

v q (x ), in the phase plane (x < a), will serve as an outer bound.

Other bounding arcs will be established in the next sections.
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3. The Outer Boundary

Consider a Lienard trajectory which starts on, or below, T .

To furnishes an outer bound; at x = a, however, Fq is singular. An im

provement on T  in the neighborhood of x = a can be found by using a x 

oval.

The x ovals

x(x,y) = (y - K)2/2 + G(x)/j 2̂ = constant 
are outer bounds, for x < 0, wherever

X “ -g(x) [F(x) - K]/M < 0,

that is, wherever F(x) < K. Thus, if one chooses K = max[F(x)] = F(a')

(in x < 0), then all integral curves will cross these ovals from the ex-
2terior to the interior, when x < 0. The constant can be given by G(k)//J- 

and these x ovals represented by

X(x,y) = [y - F(a)]2/2 + G(x)/n2 = G(k)/fi2. (3.1)
*A member of this family will join smoothly onto rQ if k is chosen properly. 

The equations

= FCXp - g(X1)/|l2f(X1) = F(a) + {2[G(k) - G ^ ) ] } 172//!

and (3.2)

[dy/dx]
-g(X,) i d

-------------------TJi-- = f(X.) - -J'T—  [g(x)/f(x)]
|*{2[G(k) - G(XX)]]L/2 1 H2 dx X1’Y1X1’Y1

determine the appropriate choice of k, k^, and the coordinates (X^,Y^) of P^ 

(the point of tangency); P^ and the X oval, X^, are thereby fixed.

Here and elsewhere, •'smoothly" is to imply a continuous tangent.
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The x.j_ oval could be used as an outer bound to the y-axis, but it 

is too crude. Instead, we use only the arc P ^ ^  t0 F2 (t0 ^eter-

mined) and continue from with another contour.

The integral curve through satisfies

0 < dy/dx -g(x>
H[y - f(x)]

-s(*)
fi [Y2 - F(x)]

for X2 < x < 0, where ^ 2^ 2) are the coordinates of P2. Now

y - F(x) > y - F(a) + L2(x “ a)2 > Y2 “ F(a) + l*2(x _ a)2» 
from the assumed properties of F(x).

Let

M2 = max[-g(x)], a < x < 0,
and

V2 = [Y1 - F(a)]/L2 > 0

since Y2 > Yi > F(a)• Then

dy/dx < dy/dx = — rr----
U 11“  “  , 1

V Yo + .
V*a

(x - a)2 *

The integral of this last equation which passes through P2,
M,

yu (x) = Y2 + ~2 tan-1 x - a
Y'

- tan-1 / X2 ' 3

7 / _1
, (3.3)

serves as an outer bound from P2 to P^COjY^).
We now determine the point P2 by requiring that Yu (x) join smoothly

onto at P2* The equality of slopes

M,>A-2 -g(x2)

%  + (X2 -a)2fi- y-• + (X, -a)- fi{2[G(k1) - G(X2)]}1/2 

determines X2> The oval and X2 being known, P2 is now fixed

(3.4)
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The point P^(0,Y^) is obtained from Eq. (3.3)

_i -1 / ̂ 2 "tan (-a/v2) - tan |----—y3 = yu (0) = y2 + -5
^ 2l2

(3.5)

The outer bound from to P^ is an arc of another X oval, Xg*

From x = -g(x) [F(x) - Kl/p. we have that X < 0, for x > 0, wherever F(x) > K. 
Choosing K = F(b) (the minimum value of F(x) for x > 0) , then x < ® and the 

oval through P^ is selected to be the outer bound. Thus

y = F(b) + {[Y3 - F(b)]2 - 2G(x)/H2)1/2
is the outer bound from P^ to P^, where this oval intersects y = F(x). Note

-2that this outer bound is a horizontal line segment, y = Y , to within 0(j-l ).

The point P^ has as coordinates: X^, the solution of

F(x) = F(b) + {[Y3 - F(b)]2 - 2G(x )/P2}1/2 , (3.6)

and Y4 = F(X4).
The outer bound from P^ to P,., a point on Fq, is chosen to be a 

_2short (length 0(/J )) vertical line segment, connecting P^ with the point

P,. directly below it on 1"̂ . Note that trajectories cross this vertical seg

ment from right to left (x < 0 for y < F(x)) and it is thus an outer bound.

The outer bound now follows IV from P^ to P^, which corresponds 

to P^. The point P^ is chosen just as P2 was, etc.
The outer boundary of the annulus is now complete (Fig. 4). 

Approximate expressions for the various coordinates and contours 

can be found by expanding the equations in Taylor's series and retaining terms 

in the appropriate orders.
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-2/3 -2/3To determine we substitute = a - Â p, and = a - l-p, 

in Eq*s. (3.2) and calculate that

\  = {|g(a)|/[f'(a)]2]1/3 +

? = 9 ^ / 8  + 0(m,‘2/3).

-2/3,

We then find

Yt = F(a) + \ {g2(a)/|f'(a)|}1/3 p,'4/3 + 0(g,'2).

-2/3 .

(3.7)

(3.8)

(3.9)

For we set X2 ~ a + Â p, ' in Eq. (3.4) and obtain a quartic 

for the determination of A^:

22M
(A2 + W2)2 = --  2 2 (Aj + |) (3.10)

|g(a)|L0

where

w2 = |14/3[Y1 - F(a)]/L2 = ifg2(a)/|f'(a) |}1/3/L2 + 0(m,"2/3). (3.11)

From the equation for the oval, we get

Y2 = F(a) + {2|g(a)|(A2 + |) }1/2 n"4/3 + 0(|j,'2).

A From Eq. (3.5) we have, for P^,

Y3 = t2 + {n/2 - tan'AzyWj)} + 0(p,‘2).

-2 -2 Since the arc P^P^ h°rizontal> to 0(p, ), then = Y^ + 0(p, )

= F(X^). From this relation, we find X^ by setting X^ = B + e, where B is

the smallest positive root of F(x) = F(a). This gives

t = [Y4 - F(a)]/£(B) + 0 ( A 2).
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Then, finally, 

1
X4 B + f(B) {2|g(a) K A j + ?)//2 + {tt/2 - tan'1(A2/W2)]

—  2 2 —

-4/3

(3.12)

+ 0(u‘2).

Note that gives an upper bound on the maximum positive x-excursion 

of the periodic orbit. In Section 6 we will apply this bound to particular 
equations. If we define A as the maximum negative root of F(x) = F(b) , 

then an analogous bound, involving A, may be obtained for the maximum 

negative x-excursion of the periodic orbit.
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Consider an integral curve which starts at p^(x^,y^), x^ < a, 

y^ = F(x^). The Y contour through p^

'il = [y - F(X]l)r/2 - [F(x) - F(x x)]2/2 + G(x)/M2 = G(Xl)/H2 (4.1)

provides an inner bound on the trajectory through p^, since F(x) > F(x^) in 

x^ < x <a. Furthermore, this trajectory is exterior to all Y contours for 

which x^ < u < a. Hence the trajectory through p^ will rise above the 

envelope to the family of Y contours (see Fig.5).

Thus, an inner bound on the trajectory through p^ is the arc of 

the Y^ oval to p£, where the oval joins smoothly onto the envelope E. The 

envelope will provide a continuation of the inner bound from p£. Parametric 

equations for E are

E: y - F(x) = -g(u)//l2f(u)
(4.2)

G(x) = G(u) - [g(u)/f(u)]2 + [F(x ) - F(u)] g(u)/f(u) .
2M

When u is given, Eq’s. (4.2) determine a point, p^, on the envelope 

E; the locus of such points is E. However, E will be an inner bound only at 

points for which Y > 0, namely when F(x) > F(u);for x < 0. Consequently, 

associated with each u is a Y oval (Eq. (2.6)), an excluding interval where 

F(x) > F(u), and a point, p^, on E. If p^ lies within the excluding interval 

then E will be an inner bound at this point, otherwise not. Figure 6 illus
trates the geometrical significance of Eq's. (4.2) where, for clarity, we frave 

used the scaled phase plane representation of E, that is
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v = -g(u)/^2f(u) = v q (u )

G(x) = G ( u ) ---[g(u)/f(u)32 + [F(x ) - F(u)]g(u)/f(u).

Let u be the maximum value of u for which p (= p0) lies within m u 3m
the excluding interval; E will be an inner bound for u < u . The coordinates— m
of P3(x3»y3) are obtained by solving Eq's. (4.2) together with F(x^) = FCu^).

Clearly u^ < a and x^ > a (Fig. 7).

The equations which determine x«,y0 and u are3* 3 m

y = F(x) - g(u)/|i2f(u)

G(x) = G(u) - [g(u)/f(u) ] 2 + [F(x) - F(u)] g (u) / f (u) (4.3)
2p

F(x) = F(u).

The point p^ (in the scaled Lienard plane) at which E stops being 

an inner bound, lies to the right, and above, thé point (a,F(a)) where y = F(x) 

is a maximum.

It is important to observe that p^ is determined directly from the 

properties of f(x), g(x) and the value of #A, and not from p^ and p£.

The inner bound from p^ to p (0, y ) is obtained by bounding the 

slopes of the trajectories in the interval x^ < x <0. Since dy/dx > 0 in 

this interval (when y >  F(x)), it follows that a trajectory starting at y(x̂ ) 
rises monotbnically to y(0). Since y(0) < Y^, the outer bound at x = 0 

(Eq. (3.5)), it follows that

y - F(x) < y - F (a) +Lj(x - a)2 < Yj - F(a) + t 1(x - a)2 
from the assumed properties of F(x). Furthermore, a constant C can be found 

such that -g(x) > -g(a) + C(x - a). Thus
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, ., , 1 -g(a) + G(x - a)dy/dx > dy/dx = —r— --- a±-£---- *----- l-- —
M Y3 - F(a) + L 1 (x - a)

The integral of the last equation which passes through is

*L(X) = y3 '

c

tan-1 I x - a -tan-1
*3 - a1

+ 21̂  2
log

2 , ,  s 2+ (x - a)

+ (x 3 '  a )
(4.4)

where 7  ̂ = [ Y3 “ F(a)] /£]_» y^(x) can serve as a ^ower bound on the trajectory
from p^ to p^. The point p^ is determined from Eq. (4.4), at x = 0, as

y4 = yL(0) - y3 --*&■
W  L

tan ^(-a/7) - tan ^
x„ - a

21^
log

7 1 + a
2 ^ , v 2

71 + X̂3_a^

(4.5)

The arc P4P5 is also obtained by integrating a slope inequality.
In x > 0, y > F(x), the slope of trajectories satisfies

0 > dy/dx = -s(x) > -a(x)
fi2 [y - F(x)] fi2 [yQ - F(x)]

as long as y(x) > y , where yQ is a constant to be chosen. Now yQ - F(x)

has a simple zero at x = x q > 0, where yQ = F(x q)* hence one may write

[y - F(x)]/(x q - x) = H(x) > 0 for x > 0. We will choose yQ > F(a), so

that x > B, where B is the unique positive root of F(x) = F(a). Hence 
o •“ * ■

H(x) > h(x) = [F(B) - F(x)]/(B - x) > 0, for x > 0. On setting

= max[g(x)/h(x)], 0 < x < X^, where is the maximum positive x-excursion 

of the outer bound (Eq. (3.7)), one has
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dy/dx > —2
P (xq - x)

We may then choose as inner bound the integral of dy/dx =
2-M^/P (x q - x) which passes through p^, namely

M,
y (x) = y, + — 2 ~ log

X - Xo

P

This inner bound is valid until y = yQ (see Fig. 8, ). We choose
2y such that this inner bound intersects y = y at x = x ( 1 - 1/P ). Then J o o o

2y^ = y^ - 2M^ log ji/p . Our inner bound is thus

M,
y = y4 + log

P
x - X o
X

2 2from P4(0,y4) t0 P5 whose coordinates are x^ = xq(1 - 1 /P ),y.5= ^ “2M1 log P/P , 
with y5 = F(xq).

The inner bound from p,_ to p^ (the point of intersection with 

y = F(x)) is chosen to be an arc of the Y contour, Y^, through p^. This con

tour is determined by finding the value of the parameter, u^, from

2 2 1/2y5 = F(u 5) + {[F(x 5) - F(u 5)] + 2 [G(u 5) - G(x5) ] /M 3 (4*7)

Then will intersect F(x) at p6 (x^y^) where xfi = 1I5, y6 = F(u5>. This 

contour will also join the envelope E, at p^.

The remainder of the inner boundary of the annulus is constructed 

similarly, with p^ corresponding to p^ and p^ to p2*

The inner boundary is now complete. (Fig- 9).

Approximate expressions for the coordinates and contours are obtained 

as in Sec. 3.
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We will first eliminate the parameter u from Eq*s. (4.2) and ob

tain an equation for the envelope E, valid for all u < a-e (e > 0  arbi

trary). From the second equation we determine that x = u + 0(P );
• ' " • Vf ‘ , •

thus, in the first equation we find

E: y = F(x) - g(x)/p f(x) + 0(fX 3) (x < a-g).
.3Observe that the envelope E lies only 0(P ) from rQ in this region

-3(x ^ a*-e); that is, the annulus has width 0(p ) here, and similarly for

x > b+g.
-2f/3 -2/3To determine p^ we set x^ = a + and u^ = a - Ifl in

Eq. (4.3) and calculate

83 = {|S(a)|/[2f1 (a)]2}1/3 + 0(M_2/3)

T| = 83 + 0((i‘2/3)
arid consequently we find

y3 = F(a) + | {4g2(a)/|f'(a)|}1/V 4/3 +

For we get, from Eq. (4.5)

y4 = y3 + {n/2 - tan’V j / W p ) H"4/3 + 0(log M * 2)

where W2 = l̂4^3[y_ - F(a) ]/L^ (Y3 is obtained from the outer bound).
2Since the arc p^p^p^ is horizontal, to within 0(log p/p ), then 

2y^ = y^ + 0(log p/p ) = F(x^), which determines x^. We find, as for the 

outer bound in Sec. 3, that
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Observe that provides a lower bound on the maximum positive x-excursion o

of the periodic orbit.

5. Generalizations

The assumptions of Section 1 are needlessly restrictive. It is

Let a, b, A, B have their previous meanings, and let e > 0 be an 

arbitrary positive number.

Assume that

(1) g(x) satisfies a Lipschitz condition in A -  g < x < B + e 

with xg(x) > 0 for x ^ 0 in this interval;
(2) a) f(x) is continuous in A - e < x < B + g;

b) f (x) > 0 in A - e < x < a ,  and b < x < B + g;

c) there exist constants > 0, and K2 > 0 such that

(3) F(a) > 0, F(b) < 0, and that there exist positive constants 

, L2, such that

possible to weaken them somewhat and still obtain an annulus of maximum width 

0(M , as is done here.

f(x) > K^a-x) 

f (x) > K2(x-b)

A - e < x < a

b < x < B + e;

L2(a-x)2 < F(a) - F(x) < L^a-x) 

L^Cx-b)2 £  F(x) - F(b) < L^(x-b)

2

2

in a < x < b .
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Cartwright [5] has shown that f(x) continuous, g(x) Lipschitz, are 

sufficient for the existence and uniqueness of solutions of the phase plane 

equation. In the Liénard plane, y -  F(x) is continuously differentiable.

Observe that the assumption of monotone g(x)/f(x) has been dropped; 

consequently, neither nor E now possesses the required bounding property. 

They will be replaced by a new outer bound, To*, (or v q* in the phase plane) 

and a new inner bound, E*, which is the envelope of another family of ovals, 

Q.

Furthermore the explicit asymptotic computation of the points 

near x = a (and x = b), using Taylor's series expansions, is no longer 

possible since f(x) and g(x) are not differentiable. It will still be 

possible, however, to obtain bounds for these coordinates and hence bounds 

for the amplitude.

5.1 The Outer Bound Modification

Since -g(x) < -g(a) + D(a-x), D a positive constant, and f(x) 

> K^(a-x) in A -  © < x < a, then the curve

v * (x) = -g(a)+D(a-x) 2 ~g(x)
0 M2 K^(a-x) H2f(x) “ V x) A - « < x < a

lies on, or above, the contour of zero slope in the phase plane. Trajectories 

on v q (x) will have negative, or at most, zero slope; thus orbits will move 

to the right, away from, and below, vq (x), for the slope of v q (x) is posi- 
tive. The contour vq '(x), therefore, is an outer bound in the phase plane 
and correspondingly, the curve f *

r * r , v . -g(a)+J)(a-x)r : y = F(x) + ---------
M Kx(a-x)

A - e < x < a
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an outer bound in the Lienard plane.

The point (which replaces P^) is the point at which the x oval 

of Eq. (3.1) is tangent to T .

The equations

= F(X1 ) + - 2
-g(a)-H)(a-X1 )

I '  =
M K1(a-X1 )

F(a) + {2 [G(k) - G(XX )]]2/H

and (5.1)

dy
k-gCXj )

f(x *) + -J-
-g(a)+D(a-X1)

dx * * 
X1 ,Y1 fl{2[G(k) - GCX*)]4 , 2 K1(a-X1 )

k * kdetermine k^ and the coordinates (X^ , Yi > of pi •
The points P_, P_, P. are determined as in Sec. 2. The point P 2 ' 3 4 o

•k k k kon r , replaces Pc on T ; the arc P_ P, , following T , replaces the o o o  d o  o
•k karc PjPg* and the point P^ is determined just as P^ was. The modified 

outer bound is now complete.

5.2 The Inner Bound Modification

It was remarked, in discussing the bounding properties of the 

X contours, that these contours would be inner bounds as long as the con
tours remained below vq (x) in the phase plane, or rQ(x) in the Lienard 

plane. If vq (x) = -g(x)/M f(x) is not monotone increasing, then vq (x) 
cannot furnish an outer bound on trajectories (hence the use of vq (x)), 
and the justification of the envelope, E, as inner bound is no longer valid.

The requirement that g/f be monotone can be circumvented by intro-
*ducing another set of ovals, Q(x,y) = constant, whose envelope, E , still 

provides an inner bound on trajectories.

The Q contours, a family of ''shifted” ovals, are defined by
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n: i [y - F(U)]2 + G(x)/H2 - G(u)/)»2 , (5.2)

where the parameter u is to assume values u < a.

We discuss the half-plane x < 0; similar arguments apply for

x > 0.

Along a solution trajectory one has that

Q = [y “ F(u)]y + g(x}x/M2 = -g(x) [F(x) - F(u)]/M > 0

whenever F(x) > F(u) for x < 0.

Observe that the largest x excursion of an Q oval occurs at 

x = u, where y = F(x) = F(u) . Furthermore, if u = a, then F(u) = F(cc)
= 0, and this particular Q oval reduces to the contour $ .

Consider now a trajectory which begins (at some t = t^) at a 

point p^ on y = F(x) (see Fig. 10). We assume that p^ is exterior to

<P , as shown. If we choose an Q oval which passes through p, the corres-
cr 1
ponding value of u, u^, will satisfy u^ < 0L.

We now follow the trajectory, in time, after this intersection
*with y - F(x). Observe that the trajectory through p^ will lie exterior

not only to the above Q oval, but to all Q ovals which provide inner bounds

for the trajectory. Since all these ovals project somewhat above the curve
*y = F(x), the trajectory through p^ will lie above the projections, for 

x < a. In particular the trajectory will lie above the envelope to the fam

ily (5.2) in x < a (Fig. 11).
•kLet the envelope be denoted by E . A parametric representation

*for E is
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E: y “ F ( u ) --- ĝ(Hl
f(u)

G(x) * G(u) . r s(u) i
2M2 L f(u) J

(5.3)

Eq1 s. (5.3) furnish, for a given Value of the parameter u, a
* ■ -lpoint, on the envelope Ê . Figure 12 illustrates the geometrical

significance of Eq*s. (5.3). The point qu is the solution to Eq's, (5.3)
* ► •and the locus of points q^ is the envelope, E . Observe that an excluding

*interval exists, as before, where E is an inner bound.

The coordinates of q (x , y ), the point at the edge of thenum m* m * r
excluding interval, and the maximum value of the parameter u, u^, are solu

tions of the system

F(x) = F(u)

(5.4)y = F(u) - g(u)/M f(u)

G(x) = G(u) * - K r  Cé(u)/f(u)]2 .
>' 2M

It is evident that u < a < x . The point q corresponds to
■ im

the point p = Po* Indeed, inspection of Eq*s. (4.3) reveals that 
%  J

q = p , that is, both E and E terminate at the same point, p_, which 
um um
is determined from the functions f, g, F, G alone and not from other points 

on the inner boundary.

The continuation of the inner bound proceeds, as before, from p^ 

through p^ to p^. From p,., however, we continue now with a 0 oval which 

intersects F(x) (at p^ ) and joins onto E at p7 . The inner boundary 

follows E to pg , where E ceases to be an inner bound. The points p^
"k k kand P2 are in correspondence, as are Pg and p^ .
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The modified inner bound is complete.

5.3 Nested Limit Cycles

Figure 13 shows a characteristic curve y = F(x), in the Lienard 

plane, for which we can apply the results of the previous sections. We 

assume here that xg(x) > 0 for all x, within the region depicted in the 

diagram.

We may deduce at once the location of two closed periodic orbits 

(by generating an annulus for each), namely the limit cycles marked c^ and

°3*
It is shown below that c^ and ĉ  are periodic solutions which

possess "orbital stability" , that is, all trajectories which begin (at

some t = t ) sufficiently near c, (c ) will converge, as t -» «», to c (cj, o i J 1 3
Indeed, the technique described in the preceding sections will locate 

only orbitally stable periodic solutions. However, an unstable non-zero 

periodic solution exists for the situation shown in Fig. 13. We locate 

this unstable (i.e. orbitally unstable) solution by generating an annulus 

for the trajectories in reversed time; that is, we set t = -t in the 

Eq's. (1.4) and replace y by -Y (in order to maintain clockwise motions 

in the plane), yielding

dX/dT = M[Y + F(x)], dY/dT = -g(x)//X .

Consequently, motions in reversed time are determined by the characteristic 

curve Y = -F(x), shown in Fig. 14. The limit cycle labelled c ^  is now evi 

dent. It is stable (as t -* «>), and an annulus may be constructed for it. 

Returning again to direct motions, the corresponding solution is unstable 

(as t -» co) , and is shown dotted in Fig. 13.
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6. Numerical Values for the van der Pol Equation

For Eq. (1.2), f(x) = X2 - 1, F(x) = x^/3 - x and g(x) = x. The 

zeros of f(x) occur at a = -1 and b = 1, and F(-l) = -F(l) = 2/3. The 

constants A and B, determined from F(A) = -2/3 and F(B) = 2/3, are A = -2 

and B = 2. We also have F(-l) - F(x) = (2-x)(x+l)2/3 so that = 

max[;(2-x)/3] = 1 and = min[(2-x)/3] = 2/3, in -l < x < 0. Due to 

symmetry, and = I^.

We calculate the upper bound on the amplitude of the periodic
2 2orbit. Using Eq*s. (3.7) to (3.11), we have the quartic (Â  + 0.596)

= 9(A^ + 0.710)/2 which determines (the unique positive root), namely
-4/3A^ = 1.63. From Eq. (3.12) we obtain the upper bound as 2 + 0.857(j, '

+ 0(p,‘2).
-4/3The lower bound, from Eq. (4.8), is found to be 2 + 0.643p,

+ 0(log |jl/(j,2) .

These bounds are to be compared with the exact asymptotic ex

pansion of the amplitude, which is 2 + 0*779jjf^^ + 0(log /̂(jl2), [6]e

If we treat the van der Pol equation according to the scheme
2outlined in Section 5, we have f(x) = x - 1 > 2(-l- x) in x < -1, so

&that = 2. Noting that = |f*(-l)|, so that agrees, to within 
-20(p, ), with rQ at P^, we find that the upper bound on the amplitude

does not change from that given above. For the lower bound, observe

that Pg, where the envelope E was terminated, is identical with the point

at which the envelope E was terminated. Consequently, the lower bound

will agree exactly with that given above. Indeed, if f(x) > |f(a)|(a-x)

in A - e < x < a, so that = J f *(a)|, then the amplitude bounds deter-
-2mined from Section 5 will agree, to within 0(p, ), with those computed



24

from Sections 3 and 4, with If'(a)I replaced by K



c°x < x qojqA ■JGj snx miriti aqq 
|© uotqaod qaqq ut 0 < K < (x)d (ti) puB Px > x > q «T H > (*)d (i) q®qq

(x ),ì ue guotqxpufco aqq m©5j JBat© st 31 * (°x),j = w 398 pus *°x » x 3©
(x)i = X qoasiaqut 6 (x)^X ^XjtGqOafBJq jtduuf aqq qai •snxnuUB aqq UtqqtA 

*(x)^X pus (x)^X *8at.ic3>qoafBJiq XqBqqtq-iB o»q sftoqs il aqnStd

*uottmBlo|8UBJ5 aqq 30 u©tqB8xqsdAUt aqq 05 paaoead a o u 
©M * anbtun sj qt q®qt apntouririvUBO a A esnxnuuB 8u*j:uTjqoo b utqqt** qxq 

-io ©tpoT^Bd duo 38B©t qa B©aquBi«u8 maqoaqq uosxtpuog-axaoutoa aqq eouts 

•entnuuB aqq utqqt** qstxa u®9 ttqio'Ofpot^ad au© qs©m q? ‘©t q®qq ÌsntnuuB 

aqq utqqt** satt qotqA STXB'-X aAtqt8®3 aqq j© uoxqqod qaqq u© qut©d paxtj 

au© uàqq aaora ©u aq ubo aaaqq qaqq A©qs au *88auanbtun aqBjqsudtnap ©x 

•sqtqjo otP©T*9d iCjt3«apt t2©tqBna©j8u«jq Btqq squtod paxtd *tias 

SfXB-iC ©AtOÌ«ed aqq 30 uetq®ratojsuBqq snonutquoo b sauttap stqx 
•ux8|Ji© aqq qnoqa udtqtttOAaq au© jaqqa s x x b-X aAtqt8od aqq oq ujnqaa f[ I» 

s x x b-X aAtqfS'òd aqq u© (Xbs 0 = 3 3®) utSaq qoxq#i saxjOqoarBax
•paufuqqo uaaq saq sn-[nuuB 8utUtju©D

b qBqq puB 5 uofqoag j© sudtqxpuoo aqq XgpsxqBS (x) 8 pus (x),j *(x)j qBqq\\
*jaAdA©q ‘asoddns a^ *quapuadaput xaqauiBJBd st jooad xno aoufs “ri xaqam 

-BJBd B aonpojquf qou op aA qaqq aq©N ‘SP(5)J « (x)x aaaqA (x)8* = X

: Ìp)d - X *» x Xq pauxjap aua-[d paaq^tl aqq ux Éo * (X)S + x(x)3 + x *uoxq 
-Bnba paBuatl paBtt®-191119® aqq oq suotqntcs oxpotJcad xapfsuoo a^

srnnMv m  nihiim ìishò piaoinad m  ¿o ssaNanòiNn
XIQNaddV

£Z
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2Gonsider the function X(x,y) *= (y - M) /2 + G(x). We have, along 

a solution trajectory, that

dX = (y - M)dy + g(x)dx = [F(x) - M)dy = yM, ~

Along yx(x) and y2(x),

X(H) - X(A) = JH dX = J X °g(x)[M - F(x)]dx/[yi - F(x)]
A o

and

, X(G) - X(B) = f  dX = I**® g(x)[M - F(x)]dx/[y - F(x)],G o  ^j,
respectively.

Since y2 - F(x) > - F(x), over the arcs AH and BG in (o, x q),

then

x(G) - X(B) < X(H) - X(A).

One also has, along y (x), that

I X(J) - X(G) = f  [F(jc) - M]dy < 0,

since F(x) > M and dy < 0.

Finally, as with the first inequality, we obtain

X(B’) - X(J) <  X(A‘) - X(H) .

Adding the three inequalities gives

X(B') - X(B) < X(A') - X(A) .

Substituting the expression for X(x,y), and rearranging somewhat, yields 

y2(B!t)- y2(A() < y2|B) - y2(A) - 2M Cy(B) - y(A) + y(A') - y(B')]

y2(B»> - y2(Ar) < y2(B) - y2(A).

so that
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In exactly the same way, we continue the trajectories into 

x < 0 and show that y^(Bn) - y^(A") < y^(B') - y^(A’), where A" and BM 

are the points on the positive y-axis to which the A and B trajectories 

(respectively) return, after making one revolution. Consequently, we 

have

y2(B") - y2(A") < y2(B) - y2(A).

Note that this is a strict inequality.

Assume now that at least two fixed points of the transformation 

exist (implying the existence of two or more periodic orbits within the 

annulus). On letting A and B be two such fixed points we have y(A") = 

y(A), y(B") = y(B), contradicting the strict inequality. Hence there 

is at most, therefore exactly, one fixed point within the annulus. The 

existence of a unique periodic orbit within such a confining annulus is

thus established.
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Figure 1

The region within which F(x) is to lie is shown here.



Figure 2

An excluding Y contour is shown in the phase plane.



Figure 3

The zero-slope isocline vq (x), is shown in the phase plane.



The outer boundary of the confining annulus is shown 
in the Lienard plane.



Figure 5
E, of the family of Y contours is depicted, 

in the Lienard plane.
The envelope,



Figure 6
A geometrical interpretation of the parametric equations 

for the envelope E, is shown, in the phase plane.



Figure 7
The largest parameter value, u , for which the envelope is an 

inner bound, is illustraïed in the phase plane.



Figure 8
The Lienard plane construction of the inner bound 

from to p,. is given.



y

Figure 9
The inner boundary of the confining annulus is presented, 

in the Lienard plane.



Figure 10
The excluding property of the Q ovals is depicted, 

in the Lienard plane.



Figure 11
The envelope, E* , of the family of G ovals is shown 

in the Lienard plane.
9



Figure 12
A geometrical interpretation of the parametric equations for the 

envelope E is illustrated, in the Lienard plane.



Figure 13
Nested limit cycles in the Lienard plane; 

c^ and c^ are stable, C2 is unstable.



Figure 14
The unstable limit cycle, C2 of figure 13, is represented in reversed 

time, where it becomes a stable periodic orbit, c^.





Distribution list as of February 1,1964

1 Director
Air University Library 
Maxwell Air Force Base, Alabama 
Attn: CR-4803a

1 Redstone Scientific Information Center
U .S. Army Missile Command 
Redstone Arsenal, Alabama

1 Electronics Research Laboratory(Unclassified) 
University of California
Berkeley 4, California

2 Hughes Aircraft Company 
Florence and Teale 
Culver City, California 
Attn: N. E. Devereux

Technical Document Center

3 Autonetics (Unclassified)
9150 East Imperial Highway 
Downey, California
Attn: Tech. Library, 3041-11

1 Dr. Arnold T. Nordsieck
General Motors Corporation 
Defense Research Laboratories 
6767 Hollister Avenue 
Goleta, California

1 University of California (Unclassified)
Lawrence Radiation Laboratory 
P. O. Box 808 
Livermore, California

1 Mr. Thomas L. Hartwick
Aerospace Corporation 
P. O. Box 95085 
Los Angeles 45, California

1 Lt. Colonel Willard Levin
Aerospace Corporation 
P. O. Box 95085 
Los Angeles 45, California

1 Professor Zorab Kaprelian
University of Southern California
University Park
Los Angeles 7 , California

1 Sylvania Electronic Systems -  West
Electronic Defense Laboratories 
P. O. Box 205 
Mountain View, California 
Attn: Documents Center

1 Varian Associates
611 Hansen Way 
Palo Alto, California 
Attn: Dr. Ira Weissman

1 Huston Denslow (Unclassified)
Library Supervisor 
Jet Propulsion Laboratory 
California Institute of Technology 
Pasadena, California

1 Professor Nicholas George
California Institute of Technology 
Electrical Engineering Department 
Pasadena, California

1 Space Technology Labs. ,  Inc.
One Space Park
Redondo Beach, California 
Attn: Acquisitions Group

STL Technical Library

2 Commanding Officer and Director 
U .S . Naval Electronics Laboratory 
San Diego 52, California
Attn: Code 2800, C. S. Manning

1 Commanding Officer and Director
U .S. Navy Electronics Laboratory 
San Diego 52, California 
Attn: Library

1 Office of Naval Research Branch Office 
1000 Geary Street 
San Francisco, California

1 The RAND Corporation i
1700 Main Street 
Santa Monica, California 
Attn: Library

1
1 Stanford Electronics Laboratories (Unclassified)

Stanford University 
Stanford, California
Attn: SEL Documents Librarian j

1 Dr. L. F. Carter
Chief Scientist Air Force 
Room 4E-324, Pentagon
Washington 25, D. C. j

1 Mr. Robert L. Feik
Associate Director for Research
Research and Technology Division j
AFSC
Bolling Air Force Base 25, D. C.

1 Captain Paul Johnson (USN-Ret) ^
National Aeronautics and Space 
Administration 
1520 H Street, N. W.
Washington 25, D. C.

1 Major Edwin M. Myers
Headquarters USAF (AFRDR)
Washington 25, D. C.

1 Dr. James Ward *
Office of Deputy Director 
(Research and Info)
Department of Defense 
Washington 25, D. C.

1 Dr. Alan T. Waterman
Director, National Science Foundation 
Washington 25, D. C.

1 Mr.. G. D. Watson 1
Defense Research Member 
Canadian Joint Staff 
2450 Massachusetts Ave. , N. W.
Washington 8, D. C.

1 Mr. Arthur G. Wimer i
Chief Scientist 
Air Force Systems Command 
Andrews Air Force Base 
Washington 25, D. C.

1 Director, Advanced Research
Projects Agency j
Washington 25, D. C.

1 Air Force Office of Scientific Branch
Directorate of Engineering Sciences j
Washington 25, D. C.
Attn: Electronics Division

1 Director of Science and Technology
Headquarters, USAF 
Washington 25, D. C.
Attn: AFRST-EI/GU t

1 AFRST -  SC
Headquarters, USAF 
Washington 25, D. C.

I Headquarters, R & T Division (Unclassified)
Bolling Air Force Base 
Washington 25, D. C. *
Attn: RTHR

1 Headquarters, U. S. Army Material Command *
Research Division, R & D Directorate
Washington 25, D. C.
Attn: Physics & Electronics Branch 

Electronics Section

1 Commanding Officer
Diamond Ordnance Fuze Laboratories 
Washington 25, D. C.
Attn: Librarian, Room 211, Bldg. 92

1 Operation Evaluation Group
Chief of Naval Operations (OP-03EG)
Department of Navy 
Washington, D. C. 20350

Chief of Naval Operations (Code OP-ONT) 
Department of the Navy 
Washington, D. C. 20350

Commanding Officer
U. S. Army Personnel Research Office
Washington 25, D. C.

Commanding Officer & Director 
Code 142 Library 
David W. Taylor Model Basin 
Washington, D. C. 20007

Chief, Bureau of Ships (Code 686) 
Department of the Navy 
Washington, D. C. 20360

Chief, Bureau of Ships (Code 732) 
Department of the Navy 
Washington, D. C. 20360

Chief, Bureau of Naval Weapons 
Technical Library, DLI-3 
Department of the Navy 
Washington, D. C. 20360

Director, (Code 5140)
U. S. Naval Research Laboratory 
Washington, D. C. 20390

Chief of Naval Research (Code 437) 
Department of the Navy 
Washington, D. C. 20360

Dr. H. Wallace Sinaiko (Unclassified) 
Institute for Defense Analyses 
Research & Engineering Support Division 
1666 Connecticut Ave. , N. W.
Washington 9, D. C.

Data Processing Systems Division 
National Bureau of Standards 
Conn, at Van Ness 
Room 239, Bldg. 10 
Washington 25, D. C.
Attn: A. K. Smilow

National Bureau of Standards (Unclassified) 
Research Information Center &
Advisory Service on Information 
Processing
Data Processing Systems Division 
Washington 25, D. C.

Exchange and Gift Division (Unclassified) 
The Library of Congress 
Washington 25, D. C.

NASA Headquarters 
Office of Applications 
400 Maryland Avenue, S. W.
Washington 25, D. C.
Attn: Mr. A. M. Greg Andrus 

Code FC

APGC (PGAPI)
Eglin Air Force Base 
Florida

Martin Company 
P. O. Box 5837 
Orlando, Florida 
Attn: Engineering Library 

MP-30

Commanding Officer
Office of Naval Research, Chicago Branch 
6th Floor, 230 North Michigan 
Chicago I , Illinois

Laboratories for Applied Sciences 
University of Chicago 
6220 South Drexel 
Chicago 37, Illinois

Librarian (Unclassified)
School of Electrical Engineering 
Purdue University 
Lafayette, Indiana



Donald L. Epley (Unclassified)
Department of Electrical Engineering 
State University of Iowa 
Iowa City, Iowa

Commanding Officer fc
U. S. Army Medical Research Laboratory
Fort Knox, Kentucky

Keats A. Pullen, Jr.
Ballistic Research Laboratories 
Aberdeen Proving Ground, Maryland

Director
U. S. Army Human Engineering Laboratories 
Aberdeen Proving Ground, Maryland

Mr. James Tippett 
National Security Agency 
Fort Meade, Maryland

Commander
Air Force Cambridge Research Laboratories 
Laurence G. Hanscom Field 
Bedford, Massachusetts

Dr. Lloyd Hollingsworth 
Director, ERD 
AFCRL
L. G. Hanscom Field 
Bedford, Massachusetts

Data Sciences laboratory
Air Force Cambridge Research Lab
Office of Aerospace Research, USAF
L. G. Hanscom Field
Bedford, Massachusetts
Attn: Lt. Stephen J. Kahne -  CRB

Instrumentation Laboratory(Unclassified) 
Massachusetts Institute of Technology 
68 Albany Street 
Cambridge 39, Massachusetts

Research Laboratory of Electronics(Unclassifi 
Massachusetts Institute of Technology 
Cambridge 39, Massachusetts 
Attn: Document Room 26-327

Dr. Robert Kingston 
Lincoln Laboratories 
Lexington, Massachusetts

Lincqjn Laboratory (Unclassified) 
Massachusetts Institute of Technology 
P. O. Box 73
Lexington 73, Massachusetts 
Attn: Library, A-082

Sylvania Electric Products, Inc.
Electronic Systems
Waltham Labs. Library
100 First Avenue
Waltham 54, Massachusetts

(Unclassified)
Minneapolis-Honeywell Regulator Co. 
Aeronautical Division 
2600 Ridgeway Road 
Minneapolis 13, Minnesota 
Attn: Dr. D. F. Elwell 

Main Station: 625

1 AFMDC (MDSGP/Capt. Wright) i
Holloman Air Force Base 
New Mexico

1 Commanding General
White Sands M issile Range i
New Mexico

1 Microwave Research Institute
Polytechnic Institute of Brooklyn
SB John Street (Unclassified) j
Brooklyn 1, New York

1 Cornell Aeronautical Laboratory, Inc.
4455 Genesee Street - j
Buffalo 21, New York
Attn: J. P. Desmond, Librarian

1 Sperry Gyroscope Company (Unclassified) ^
Marine Division Library 
155 Glen Cove Road 
Carle Place, L. I. , New York 
Attn: Mrs. Barbara Judd

1 Major William Harris
RADC (RAWI) 20
Griffiss Air Force Base 
New York

1 Rome Air Development Center
Griffiss Air Folce Base i
New York
Attn: Documents Library 

RAALD

1 Library (Unclassified)
Light Military Electronics Department i
General Electric Company 
Armament & Control Products Section 
Johnson City, New York

1 Columbia Radiation Laboratory 2
Columbia University (Unclassified)
538 West 120th Street 
New York 57, New York

1 Mr. Alan Bamum
Rome Air Development Center 
Griffiss Air Force Base 
Rome, New York

1 Dr. E. Howard Holt (Unclassified)
Director
Plasma Research Laboratory 
Rensselaer Polytechnic Institute 
Troy, New York

3 Commanding Officer
U. S. Army Research Office (Durham)
Box CM, Duke Station 
Durham, North Carolina 
Attn: CRD-AA-1P, Mr. Ulsh

1 Batte lie-DEFENDER
Battelle Memorial Institute 
505 King Avenue 
Columbus 1, Ohio

1 Aeronautical Systems Division
Navigation and Guidance Laboratory 
Wright-Patterson Air Force Base 
Ohio

Inspector of Naval Material
Bureau of Ships Technical Representative
1902 West Minnehaha Avenue
St. Paul 4, Minnesota

1 Aeronautical Systems Division
Directorate of Systems Dynamic Analysis
Wright-Patterson Air Force Base
Ohio

Activity Supply Officer, USAELRDL 
Building 2504, Charles Wood Area 
Fort Monmouth, New Jersey 
For: Accountable Property Officer 
Marked: For Inst, for Exploratory Research 

Inspect at Destination 
Order No. 576-PM-63-91

Commanding General 
U. S. Army Electronic Command 
Fort Monmouth, New Jersey 
Attn: AMSEL-RE

Mr. A. A. Lundstrom 
Bell Telephone Laboratories 
Room 2E-127 
Whippany Road 
Whippany, New Jersey

1 Commander
Research & Technology Div. 
Wright-Patterson Air Force Base 
Ohio 45433 
Attn: MAYT (Mr. Evans)

1 Commanding Officer (AD-5)
U .S . Naval Air Development Center 
Johnsville, Pennsylvania 
Attn: NADC Library

2 Commanding Officer 
Frankford Arsenal 
Philadelphia 37, Pennsylvania 
Attn: SMUFA-1300

H. E. Cochran
Oak Ridge National Laboratory
P. O. Box X
Oak Ridge, Tennessee

U .S . Atomic Energy Commission 
Office of Technical Information Extension 
P. O. Box 62 
Oak Ridge, Tennessee

President
U .S . Army Air Defense Board 
Fort B liss, Texas

U .S . Air Force Security Service 
San Antonio, Texas 
Attn: ODC-R

Director
Human Resources Research Office 
The George Washington University 
300 North Washington Street 
Alexandria, Virginia

Defense Documentation Center 
Cameron Station 
Alexandria, Virginia 
22314

Commander
U. S. Army Research Office 
Highland Building 
3045 Columbia Pike 
Arlington 4, Virginia

U .S . Naval Weapons Laboratory 
Computation and Analysis Laboratory 
Dahlgren, Virginia 
Attn: Mr. Ralph A. Niemann

Army Material Command 
Research Division 
R & D Directorate 
Bldg. T-7
Gravelley Point, Virginia


