NECESSARY AND SUFFICIENT CONDITIONS FOR REALIZABILITY OF GIVEN SWITCHING FUNCTIONS
 Shunichi Toida

This work was supported in part by the Joint Services Electronics Program (U. S. Army, U. S. Navy, and U. S. Air Force) under Contract No. DA 28043 AMC 00073(E).

Portions of this work were also supported by the Air Force Office of Scientific Research, United States Air Force, under Grant AF AFOSR 931.65.

Reproduction in whole or in part is permitted for any purpose of the United States Government.

DDC Availability Notice: Qualified requesters may obtain copies of this report from DDC. This report may be released to OTS.

NECESSARY AND SUFFICIENT CONDITIONS FOR REALIZABILITY OF GIVEN SWITCHING FUNCTIONS
 Shunichi Toida, B.S.
 Department of Electrical Engineering University of Illinois, 1966

Abstract

In this paper the author established a relationship among switching functions between any two points of a contact network and proved that the relationship is in fact necessary and sufficient for switching functions to be assigned to an actual contact network, that is, realizable.

In addition he picked up one particular type of switching function, that is, single-contact switching functions and established a necessary condition for switching functions to be single-contact.

ACKNOWLEDGMENT

The author would like to express his sincerest thanks to his advisor, Professor W. Mayeda, for his good hints, advice and encouragement. In fact the author obtained almost all of these results through discussion with him. Thanks are also extended to Mrs. Rudicil who prepared the final manuscript.

TABLE OF CONTENTS

Page
I. INTRODUCTION 1
II. RELATIONSHIPS AMONG SWITCHING FUNCTIONS IN A CONTACT NETWORK 2
III. ON SINGLE-CONTACT NETWORKS 12
IV. FURTHER PROBLEMS 15
BIBLIOGRAPHY 16

I. INTRODUCTION

Among switching functions between any two points of a contact network there must be some relationship. They cannot be arbitrary, so the author started with a general question of what are conditions for switching functions to be realized as a contact network.

In the first two theorems there are mentioned relationships for switching functions between any two of three points in a contact network to satisfy. In fact Theorem II states that the relation is necessary and sufficient for given switching functions to be realizable.

In the next two they are expanded to relationships among arbitrarily many points, and also Theorem IV states that the relation is necessary and sufficient for given switching functions to be realizable.

These relationships should be satisfied by any kind of contact networks. Other conditions imposed on switching functions either imply or do not conflict with them. As an example of the former the author picked up one particular type of switching functions that is singlecontact switching functions and established a necessary condition for switching functions to be single-contact. As is mentioned later this condition seems to the author to be also sufficient. But he has not proved it yet. This would be a good future problem.
II. RELATIONSHIPS AMONG SWITCHING FUNCTIONS IN A CONTACT NETWORK

Definition I

A contact network is a non-oriented graph with a Boolean variable x_{i} associated with each edge [1].

Definition II
A path product $i j$ is the product of the variables associated with the edges of a path from vertex i to vertex j of the contact network [1].

Definition III

Any switching function F can be written as a Boolean sum of Boolean products of Boolean variables. That is

$$
F=\sum x_{1}^{i_{1}} \cdot x_{2}^{i_{2}} \cdots \cdots x_{n}^{i_{n}}
$$

where x_{k} are Boolean variables, $i_{j}=1$, or $0, j, k=1, \cdots, n$, and Σ is a Boolean sum. We call this form the standard form of the switching function F. "." is often omitted within the standard form.

In the following discussion it is assumed (without loss of generality) that switching functions are in the standard form.

We can add redundant terms to the standard form of a switching function so that its terms correspond one-to-one to paths of the contact network to which the switching function is assigned.

Theorem I

Given switching functions $F_{a b}$ and $F_{b c}$ between any two of three vertices a, b, and c in the contact network, the third switching function, that is F_{ac} must satisfy the following equation:

$$
\mathrm{F}_{\mathrm{ac}}+\mathrm{F}_{\mathrm{ab}} \cdot \mathrm{~F}_{\mathrm{bc}}=\mathrm{F}_{\mathrm{ac}}
$$

where "." is Boolean multiplication and " + " is Boolean addition.

Proof

Each term of F_{ac} (notice that F is in the standard form) corresponds to a path between a and c. But not every path between a and c corresponds to a term of F_{ac}. It is known that path product of those paths which do not correspond to any term of F_{ac} is a redundant term of F_{ac}.

Let $F_{a c}^{\prime}$ be the switching function to whose terms correspond paths between a and c one-to-one.

Then $\mathrm{F}_{\mathrm{ac}}=\mathrm{F}_{\mathrm{ac}}^{\prime}$; hence, $\mathrm{F}_{\mathrm{ac}}+\mathrm{F}_{\mathrm{ac}}^{\prime}=\mathrm{F}_{\mathrm{ac}}$.
Similarly define $F_{a b}^{\prime}$ and $F_{b c}^{\prime}$.
Then since $F_{a b}=F_{a b}^{\prime}$ and $F_{b c}=F_{b c}^{\prime}$; hence, $F_{a b}^{\prime} \cdot F_{b c}^{\prime}=F_{a b} \cdot F_{b c}$.
Every term of $F_{a b}^{\prime} . F_{b c}^{\prime}$ is the Boolean product of a path product $a b$ and a path product $b c$.

When two path products, one in $\mathrm{F}_{\mathrm{ab}}^{\prime}$ and the other in $\mathrm{F}_{\mathrm{bc}}^{\prime}$, are multiplied the edges in paths corresponding to the two path products form a path ac, as shown. in Fig. 1(a). In addition they may form circuits which are connected to the path $a c$, a path between b and a vertex in the path ac, or combination of these two, as shown in Fig. 1(b), (c), and (d), respectively.

(a)

(c)

(b)
a

(d)

Figure 1

In any case, a path between a and c is always formed. Hence, every term of the product of two switching functions contains a set of variables which appear in a certain term of $\mathrm{F}_{\mathrm{ac}}^{\prime}$ and it may contain other variables, too. Hence, every term of the product is either equal to a term of F^{\prime} ac or to the product of a term of $\mathrm{F}_{\mathrm{ac}}^{\prime}$ and other variables.

> Hence, $F_{a c}^{\prime}+F_{a b}^{\prime} \cdot F_{b c}^{\prime}=F_{a c}^{\prime}$
> Hence, $F_{a c}+F_{a c}^{\prime}+F_{a b}^{\prime} \cdot F_{b c}^{\prime}=F_{a c}+F_{a c}^{\prime}=F_{a c}$.

But, $F_{a b}^{\prime} \cdot F_{b c}^{\prime}=F_{a b} \cdot F_{b c}$.

$$
\text { Hence, } \begin{aligned}
\mathrm{F}_{\mathrm{ac}} & =\mathrm{F}_{\mathrm{ac}}+\mathrm{F}_{\mathrm{ac}}^{\prime}+\mathrm{F}_{\mathrm{ab}}^{\prime} \cdot \mathrm{F}_{\mathrm{bc}}^{\prime} \\
& =\mathrm{F}_{\mathrm{ac}}+\mathrm{F}_{\mathrm{ac}}^{\prime}+\mathrm{F}_{\mathrm{ab}} \cdot \mathrm{~F}_{\mathrm{bc}} \\
& =\mathrm{F}_{\mathrm{ac}}+\mathrm{F}_{\mathrm{ab}} \cdot \mathrm{~F}_{\mathrm{bc}} .
\end{aligned}
$$

Example

Let the contact network be given as in Fig. 2.

Figure 2

$$
\begin{aligned}
\text { Then } & F_{a b}=x y+x z+w y z \\
F_{b c} & =x+y z \\
F_{a c} & =w y+x z+x y \\
F_{a b} & \cdot F_{b c}=x y+x z+w y z \\
\text { Hence } & F_{a c}+F_{a b} \cdot F_{b c}=x y+x z+w y=F_{a c} .
\end{aligned}
$$

Theorem II

For given three switching functions $F_{a b}, F_{b c}$, and $F_{c a}$, there exists a contact network containing vertices a, b, and c, such that switching functions between a, b, and c are $F_{a b}, F_{b c}$, and $F_{c a} i f$, and only
if, the following relations hold:

$$
\begin{aligned}
& \mathrm{F}_{\mathrm{ab}}+\mathrm{F}_{\mathrm{bc}} \cdot \mathrm{~F}_{\mathrm{ca}}=\mathrm{F}_{\mathrm{ab}} \\
& \mathrm{~F}_{\mathrm{bc}}+\mathrm{F}_{\mathrm{ca}} \cdot \mathrm{~F}_{\mathrm{ab}}=\mathrm{F}_{\mathrm{bc}} \\
& \mathrm{~F}_{\mathrm{ca}}+\mathrm{F}_{\mathrm{ab}} \cdot \mathrm{~F}_{\mathrm{bc}}=\mathrm{F}_{\mathrm{ca}}
\end{aligned}
$$

Proof "if" part
The contact network shown in Fig. 3 is a desired contact network.

Figure 3
"only if" part
By letting F_{ab} the third switching function in Theorem I we
obtain $\mathrm{F}_{\mathrm{ab}}+\mathrm{F}_{\mathrm{bc}}: \mathrm{F}_{\mathrm{ca}}=\mathrm{F}_{\mathrm{ab}}$. Similarly the other two can be obtained.

Example
Let the contact network be given as in Fig. 4.

Figure 4

Then $\quad F_{a b}=w x+x z+w y z$

$$
\begin{aligned}
& F_{b c}=z+w x y \\
& F_{a c}=x y+x z+w y z \\
& F_{a b} \cdot F_{b c}=x z+w y z+w x y \\
& F_{b c} \cdot F_{a c}=x z+w x y+w y z \\
& F_{a c} \cdot F_{a b}=x z+w x y+w y z
\end{aligned}
$$

Hence $F_{a b}+F_{b c} \cdot F_{a c}=w x+x z+w y z=F{ }_{a b}$
$F_{b c}+F_{a c} \cdot F_{a b}=z+w x y=F_{b c}$
$F_{a c}+F_{a b} \cdot F_{b c}=x y+x z+w y z=F a c$

Theorem III

Let F_{ab} be a switching function between a and b . Also let $F_{b c}, F_{c d},----, F_{m a}$ be switching functions between any two vertices in a path between a and b. Then $F_{a b}+F_{b c} \cdot F_{c d} \cdot \cdots-\cdots F_{m a}=F_{a b}$.

Proof
By induction on the number n of vertices in a path between a and b except a and b.

By Theorem I it is true for $n=1$.
Assume that it is true for $n=k$.
Then $F_{a b}+F_{b c} \cdot F_{c d} \cdot \cdots-\cdot F_{k a}=F_{a b}$.

$$
k+1
$$

$$
\begin{aligned}
& F_{a b}+F_{b c} \cdot F_{c d} \cdot \cdots \cdot F_{k ~ k+1} \cdot F_{k+1 a}=F_{a b}+F_{b c} \cdot F_{c d} \cdot \cdots \cdot F_{k+k} \cdot F_{k a}+F_{b c} \cdot F_{c d} \cdot \cdots \cdot F_{k ~ k+1} \cdot F_{k+1 a} \\
& =F_{a b}+\left(F_{b c} \cdot F_{c d} \cdot \cdots \cdot F_{k+k}\right) \cdot\left(F_{k a}+F_{k k^{\prime}} \cdot F_{k+1 a}\right) \\
& =\mathrm{F}_{\mathrm{ab}}+\mathrm{F}_{\mathrm{bc}} \cdot \mathrm{~F}_{\mathrm{cd}} \cdot \cdots \cdot \mathrm{~F}_{\mathrm{k}+\mathrm{k}} \cdot \mathrm{~F}_{\mathrm{ka}} \\
& =F_{a b} \text {. }
\end{aligned}
$$

Example

Let the contact network be given as in Fig. 5 .

Figure 5

Then
$F_{a b}=v w x y+x y z+s t v+s t w x z$
$F_{b c}=x+s t w y$
$F_{c d}=y+s t w x+s t v x z$
$F_{d e}=w+v x z+$ stxy
$F_{e b}=v+w x z+s t x y z$
$\mathrm{F}_{\mathrm{ac}} \cdot \mathrm{F}_{\mathrm{cd}}=\mathrm{xy}+\mathrm{stwy}+\mathrm{stwx}+$ stvxz
$F_{a c} \cdot F_{c d} \cdot F_{d e}=w x y+v x y z+s t x y+s t w y+s t w x+s t v x z$
$F_{a c} \cdot F_{c d} \cdot F_{d e} \cdot F_{e b}=v w x y+s t w x z$
Hence

$$
F_{a b}+F_{a c} \cdot F_{c d} \cdot F_{d e} \cdot F_{e b}=v w x y+x y z+s t v+s t w x z=F_{a b}
$$

Definition IV

Switching functions are realizable if there exists a contact network to which they can be assigned.

Definition V

Let $\left\{F_{a b}\right\}$ be a set of given switching functions. Then a corresponding network N of $\left\{\mathrm{F}_{\mathrm{ab}}\right\}$ is a contact network formed by connecting an edge between vertex a and vertex b whose weight is $F_{a b}$ for $a l l F_{a b}$ in $\left\{\mathrm{F}_{\mathrm{ab}}\right\}$.

Example

$$
\text { Given } F_{a b}, F_{b c}, F_{c a}, F_{c d} \text {, and } F_{b d} \text { its corresponding network is }
$$ as in Fig. 6.

Figure 6

Theorem IV

Switching functions are realizable if, and only if, for all possible paths between any two adjacent vertices in the corresponding graph the following relation holds;

$$
F_{a b}+F_{a b}^{\prime}=F_{a b}
$$

where $F_{a b}=$ given switching function between vertex a and b
$F_{a b}^{\prime}=$ Boolean sum of all possible path products between vertex a and vertex b less $F_{a b}$.

Proof "if" part
A corresponding network is a desired network. This is clear by definition of a corresponding network.
"only if" part
By induction on the number of paths. Let a and b be arbitrary adjacent points in the contact network. Let $P_{1}, P_{2}, \cdots, P_{n}$, be all possible paths between a and b. Let $F_{1}, F_{2}, \cdots, F_{n}$, be path products corresponding to $P_{1}, P_{2}, \cdots, P_{n}$, respectively.
$\mathrm{n}=1$. By Theorem III, $\mathrm{F}_{\mathrm{ab}}+\mathrm{F}_{1}=\mathrm{F}_{\mathrm{ab}}$. Assume that it is true for $\mathrm{n}=\mathrm{k}$.

Then $F_{a b}+F_{1}+F_{2}+\cdots+F_{k}+F_{k+1}=\left(F_{a b}+F_{1}+\cdots+F_{k}\right)+F_{k+1}$

$$
\begin{aligned}
& =F_{a b}+F_{k+1} \\
& =F_{a b} .
\end{aligned}
$$

Example

Let the contact network be given as in Fig. 7

Figure 7

Then $\quad F_{b c}=x+y z$

$$
\begin{aligned}
& F_{a e}=x+w y z \\
& F_{e b}=y+x z \\
& F_{c e}=z+x y \\
& F_{a d}=w+x y \\
& F_{d c}=y+w x z \\
& F_{b c}^{\prime}=F_{b e} \cdot F_{e c}+F_{b e} \cdot F_{e a} \cdot F_{a d} \cdot F_{d c}=x y+y z+x z
\end{aligned}
$$

Hence $\quad F_{b c}+F_{b c}^{\prime}=x+y z=F_{b c}$

$$
F_{a e}^{\prime}=F_{a d} \cdot F_{d c} \cdot F_{c e}+F_{a d} \cdot F_{d c} \cdot F_{c b} \cdot F_{b e}=x y+w x z+w y z
$$

Hence $\quad F_{a e}+F_{a e}^{\prime}=x+w y z=F_{a e}$

$$
\mathrm{F}_{\mathrm{eb}}^{\prime}=\mathrm{F}_{\mathrm{ec}} \cdot \mathrm{~F}_{\mathrm{cb}}+\mathrm{F}_{\mathrm{ea}} \cdot \mathrm{~F}_{\mathrm{ad}} \cdot \mathrm{~F}_{\mathrm{dc}} \cdot \mathrm{~F}_{\mathrm{cb}}=\mathrm{xy}+\mathrm{xz}+\mathrm{yz}
$$

Hence $\quad F_{e b}+F_{e b}^{\prime}=y+z x=F_{e b}$

$$
F_{c e}^{\prime}=F_{c b} \cdot F_{b e}+F_{e a} \cdot F_{a d} \cdot F_{d c}=x y+y z+z x
$$

Hence $\quad F_{c e}+F_{c e}^{\prime}=z+x y=F_{c e}$

$$
F_{a d}^{\prime}=F_{d c} \cdot F_{c e} \cdot F_{e a}+F_{d c} \cdot F_{c b} \cdot F_{b e} \cdot F_{e a}=x y+w x z+w y z
$$

Hence $\quad F_{a d}+F_{a d}^{\prime}=w+x y=F_{a d}$

$$
F_{d c}^{\prime}=F_{c e} \cdot F_{e a} \cdot F_{a d}+F_{b c} \cdot F_{e b} \cdot F_{e a} \cdot F_{a d}=x y+w x z+w y z
$$

Hence $F_{d c}+F_{d c}^{\prime}=y+w x z=F_{d c}$.
III. ON SINGLE-CONTACT NETWORKS

Definition VI

Ring product (\times is defined as follows:

$$
\begin{array}{ll}
x_{i} \circledast x_{j}=x_{i} \cdot x_{j} & \text { if } x_{i} \neq x_{j} \\
x_{i} \otimes x_{j}=1 & \text { if } x_{i}=x_{j}
\end{array}
$$

where "." is Boolean multiplication.

Definition VII

Single-contact network is a contact network in which each edge has a different Boolean variable associated with it. The switching function of such a network (between any two terminals) is a singlecontact function [1][2].

Theorem V
If given switching functions are single-contact functions then for any three vertices a, b, and c in the contact network the following equation holds:

$$
\mathrm{F}_{\mathrm{ab}} \otimes \mathrm{~F}_{\mathrm{bc}}=\mathrm{F}_{\mathrm{ac}}
$$

Proof

Since by the proof Theorem I $F_{a b}^{\prime} \otimes F_{b c}^{\prime}=F_{a b} \otimes F_{b c}$, we can prove this by showing $\mathrm{F}_{\mathrm{ab}}^{\prime} \otimes \mathrm{F}_{\mathrm{bc}}^{\prime}=\mathrm{F}_{\mathrm{ac}}$. As in the proof of Theorem I , when two path products, one in $F_{a b}^{\prime}$ and the other in $F_{b c}^{\prime}$, are multiplied the edges in paths corresponding to the two path products form a path ac. In addition they may also form circuits which are connected to the path ac, a path between b and a vertex in a path ac or combination of these two as in the proof of Theorem I.

Case 1) All edges form a path ac.
The product of two path products is equal to a certain term of $\mathrm{F}_{\mathrm{ac}}^{\prime}$.

Case 2) Edges form a path between b and a vertex, say d, in a path ac in addition to the path ac.

Edges in the path bd are both in a path $a b$ and a path $b c$ and variables associated with these edges take the form of the square in the product $F_{a b}$. $F_{b c}$. So by letting squares to be 1 we eliminate variables of the edges which form a path bd.

Case 3) Edges form circuits which are connected to a path ac in addition to the path ac.

There are always at least two paths between b and a vertex, say d, in the path ac. Hence, for every product P_{1} of two path products of this case there exists a ring product P_{2} of two path products of the type of Case 2) such that $P_{1}+P_{2}=P_{2}$.

Case 4) Combination of Case 2) and Case 3).
Similar to Case 3).
Since all paths between a and c are obtained by combining all paths between b and c with $a l l$ paths between a and b, hence, $F_{a b}^{\prime} \otimes F_{b c}^{\prime}=F_{a c}$. Hence, $F_{a b} \otimes F_{b c}=F_{a c}$.

Example
Let the contact network be given as in Fig. 8.

Figure 8

Then

$$
\begin{aligned}
& F_{a b}=x v+w x z+v w y+y z \\
& F_{a d}=x+w y+v y z \\
& F_{a c}=y+w x+v x z \\
& F_{b c}=z+v w+v x y \\
& F_{b d}=v+w z+x y z \\
& F_{c d}=w+x y+v z
\end{aligned}
$$

Hence

$$
\begin{aligned}
& F_{a b} \otimes F_{b c}=y+w x+v x z=F_{a c} \\
& F_{a c} \otimes F_{b c}=v x+y z+w x z+v w y=F_{a b} \\
& F_{a b} \otimes F_{a c}=z+v w+v x y=F_{b c} \\
& F_{a b} \otimes F_{b d}=x+w y+v y z=F_{a d} \\
& F_{a b} \otimes F_{a d}=v+w z+x y z=F_{b d} \\
& F_{a d} \otimes F_{b d}=v x+y z+v w y+w x z=F_{a b} \\
& F_{a c} \otimes F_{a d}=w+x y+v z=F_{c d} \\
& F_{a c} \otimes F_{c d}=x+w y+v y z=F_{a d} \\
& F_{a d} \otimes F_{c d}=y+w x+v x z=F_{a c} \\
& F_{b c} \otimes F_{c d}=v+w z+x y z=F_{b d} \\
& F_{b c} \otimes F_{b d}=v z+w+x y=F_{c d} \\
& F_{c d} \otimes F_{b d}=v w+z+v x y=F_{b c} .
\end{aligned}
$$

IV. FURTHER PROBLEMS

For any contact networks conditions of Theorem II or IV should be satisfied if they actually exist. Hence, other conditions such as single-contact realization or minimum realization should either include those conditions or be put together with them. The condition of Theorem V is one of the former type conditions. As is mentioned in introduction it looks sufficient for given switching functions to be realized as a single-contact network. Considering the reasoning of the proof of Theorem V, this does not look an unreasonable proposition.

There is no way of finding switching function between arbitrary two vertices in a contact network, where some of them are known, even with Theorems II, III, and IV because switching functions do not form a group with operations Boolean addition or multiplication. That is, there are many switching functions which satisfy conditions of Theorems II, III, and IV. It will be useful to find such operation that forms a group together with such switching functions.

Although the above two are the application of the result obtained at present, the author believes that there are much more applications since the theorems are so simple and general.

1. Seshu, S. and Reed, M., Linear Graphs and Electrical Networks, Addison-Wesley, Massachusetts, U.S.A.
2. Mayeda, W., 'Application of Linear Graphs to Electrical Networks, Switching Networks and Communication Nets," CSL Report R-203, University of Illinois, 1964.

1 Dr. Chalmers Sherwin
Deputy Director (Research \& Technology)
DD\&RE Rm 3E10
The Pentagon Washington, D. C. 20301
1 Dr. Edward M. Reilly Asst. Director (Research)
Off. of Defense Res $\& E$ Eng Orc. Of Defense Res \& Eng
Department of Defense Washington, D. C. 20301
1 Dr. James A. Ward
Office of Deputy Director (Research and Information Rm 3D1037)
Department of
The Pentagon Washington, D. C. 20301
1 Director
Advanced Research Projects Agency Washington, D. C. 20301
1 Mr . Charles Yost, Director for Materials Sciences Advanced Research Projects Agency Washington, D. C. 20301
20 Defense Documentation Conte Cameron Station, Bldg. 5 Alexandria, Virginia 22314
Attn: TISIA

Director
National Security Agency
Fort George G. Meade, Maryland 20755
Attn: Librarian C-332
1 Chief of Research and Development Headquarters, Department of the Army
Washington, D. C. 20310 Attn: Physical Sciences Division $P \& E$
1 Chief of Research and Development Headquarters, Department of the Army Washington, D. C. 20310
Attn: Mr. L. H. Geiger, Rm 34442
1 Research plans office
U. S. Army Research Office
3045 Columbia Pike

Arlington, Virginia 22204
1 Commanding General
U. S. Army Materiel Command
Attn: AMCRD-RS-PE-E

Washington, D. C. 20315
1 Commanding General
U. S. Army Strategic Communications Washington, D. C. 20315

1 Commanding officer U. S. Army Materials Research Agency

Watertown Arsenal
Watertown, Massachusetts 02172
Commanding officer
U. S. Army Ballistics Research Lab,

Aberdeen Proving Ground
Aberdeen, Maryland 21005
Attn: V. W. Richards
Commanding officer
Commanding Officer
U . S. Army Ballistics Research Lab.
Aberdeen Proving Ground
Aberdeen, Maryland 21005
Aberdeen, Maryland 21005
Attn: Keats A. Pullen, Jr
1 Commanding officer
Commanding officer
U. S. Army Ballistics Research Lab.
Aberdeen Proving Ground
Aberdeen, Maryland 21005
Attn: George C. Francis, Computing Lab,
Commandant
U. S. Army Air
P. O. Box 9390
P. O. Box 9390

Attn: Missilexas 79916
1 Commanding General
U. S. Army Missile Command
Redstone Arsenal, Alabama
35809

Attn: Technical Library
1 Commanding General
Frankford Arsenal
Philadelphia, Pa.
Attn: SMUFA-1310 (Dr. Sidney Ross)
1 Commanding General
Frank ford Arsenal
Philadelphia, Pa.
Pita 19137
U. S. Army Munitions Command

Picatinney Arsenal
Dover, New Jersey 07801
1 Commanding officer
Harry Diamond Laboratories
Connecticut Ave. \& Van Ness St., N.W.
Washington, D. C. 20438
Commanding officer
Harry Diamond Laboratories
Attn: Library
Connecticut Ave. \& Van Ness St., N.W.
Washington, D. C. 20438

Commanding officer
U. S. Army Security
U. S. Army Security Agency
Arlington Hall

Arlington Hall
Arlington, Virginia 22212
1 Commanding officer
U. S. Army Limited War Laboratory

Aberdeen Proving Ground
Aberdeen, Maryland 21005
1 Commanding officer
Human Engineering Laboratories Aberdeen Proving Ground, Maryland 21005

Director

U. S. Army EngineerGeodesy, Intelligence Fort Mapping, Research \& Devil. Agency
Come Virginia 22060
U. S. Army Command and General

Fort Leavenworth
Attn: Secretary
1 Dr. H. Roble, Deputy Director
U. S. Army Research office (Durham)

Durham, North Carolina 27706
1 Commanding officer
U. S. Army Research Office (Durham)
P. O. Box CM, Duke Station
P. O. Box CM, Duke Station
Durham, North Carolina 27706

Durham, North Carolina 27706
Attn: CRD-AA-IP (Richard 0. Ulsh)
Commanding General
U. S. Army Electron
U. S. Army Electronics Command Fort Monmouth, New Jersey 07703
Attn: AMSEL-SC Attn: AMSEL-SC

Director
U. S. Army Electronics Laboratories
Fort Monmouth, New Jersey 07703 Attn: Dr. S. Benedict Levin, Director

1 Director
U. S. Army Electronics Laboratories

Fort Monmouth, New Jersey 07703
Attn: Mr. Robert O. Parker, Executive
Secretary, JSTAC (AMSEL-RD-X)
Superintendent
U. S. Military Academy
West Point, New York 10996

The Walter Reed Institute of Research Walter Reed Army Medical Center
Washington, D. C. 20012

Director
U. S. Army Electronics Laboratories Fort Monmouth, New Jersey 07703
Attn: AMSEL-RD-DR

1 Director
U. S. Army Electronics Laboratories

Attn: AMSEL-RD-X
Fort Monmouth, New Jersey 07703
U. S. Army Electronics Laboratories

Fort Monmouth, New Jersey 07703
Attn: AMSEL-RD-XE
Director
U. S. Army Electronics Laboratories Fort Monmouth, New Jersey 07703
Attn: AMSEL-RD-XC

1 Director
U. S. Army Electronics Laboratories Fort Monmouth, New Jersey 07703
Attn: AMSEL-RD-XS

Director

U. S. Army Electronics Laboratories

Fort Monmouth, New Jersey 07703
Attn: AMSEL-RD-NR
Director
U. S. Army Electronics Laboratories
Fort Monmouth, New Jersey 07703
Attn: AMSEL-RD-NE
U. S. Army Electronics Laboratories

Fort Monmouth, New Jersey 07703 Attn: AMSEL-RD-NO
Director
U. S. Army Electronics Laboratories Fort Monmouth, New Jersey 07703
Attn: AMSEL-RD-NP

Director
U. S. Army Electronics Laboratories Fort Monmouth, New Jersey 07703
AtEn. AMSEL-RD-SA
U. S. Army Electronics Laboratories

Fort Monmouth, New Jersey 07703
Attn: AMSEL-RD-SE

Director

U. S. Army Electronics Laboratories Fort Monmouth, New Jersey 07703
Attn: AMSEL-RD-SR

Director
U. S. Army Electronics Laboratories
Fort Monmouth, New Jersey 07703
Attn: AMSEL-RD-SS

1 Director
U. S. Army Electronics Laboratories Fort Monmouth, New Jersey 07703
Attn: AMSEL-DD-PE

Director
U. S. Army Electronics Laboratories Fort Monmouth, New Jersey 07703 Attn: AMSEL-RD-PF
1 Director
U. S. Army Electronics Laboratories Fort Monmouth, New Jersey 07703
Attn: AMSEL-RD-PR

1 Director
U. S. Army Electronics Laboratories Fort Monmouth, New Jersey 07703
Attn: AMSEL-RL-GF

Director
U. S. Army Electronics Laboratories Fort Monmouth, New Jer say 07703
Attn: AMSEL-RD-ADT

1 Director
U. S. Army Electronics Laboratories Fort Monmouth, New Jersey 07703
Attn: AMSEL-RD-FU\#1

1 Commanding Officer
U. S. Army Electronics R\&D Activity
Fort Huachuca, Arizona

Fort Huachuca, Arizona 85163
Commanding officer
U. S. Army Engineers R\&D Laboratory Fort Belvoir, Virginia 22060
Attn: STINFO Branch
1 Commanding officer
U. S. Army Electronics TurD Activity

New Mexico 88002 Range
Director
Human Resources Research office
The George Washington University
300 N. Washington Street
Alexandria, Virginia
Commanding Officer
U. S. Army Personnel Research office
Washington 25, D. C.
Commanding officer
U. S. Army Medical
Fort Knox, Kentucky
Commanding General
U. S. Army Signal Center and School

Attn: Chief, Office of Academic
Fort Monmouth, New Jersey 07703
Dr. Richard H. Wilcox, Code 437 Department of the Navy
Washington, D. C. 20360
Chief, Bureau of Weapons
Attn: Technical Library DL1-3
Department of the Navy
Washington, D. C. 20360
Chief, Bureau of Ships
Department of the Navy
Washington, D. C. 20360
Attn: Code 680
Chief, Bureau of Ships
Department of the Navy
Washington, D. C. 20360
Attn: Code 732
Attn: Code 732
U. S. Naval Air Development Center

Johnsville, Pennsylvania
Attn: NADC Library
Commanding officer
Naval Electronics Laboratory
San Diego, California 92052
Attn: Code 2222(Library)
Commanding officer
Naval Electronics Laboratory
Attn: Code 2800, c. S. Manning
Commanding officer and Director
(Code 142 Library)
lashing ton Dor Model Basin
Director
Naval Research Laboratory
Washington, D. C. 20390

Commanding officer
Office of Naval Research Branch Office
219 S . Dearborn Street
Chicago, Illinois 60604
Chief of Naval Operations
Department of the Navy
Washington, D. C. 20350
Washington, D.
Attn: OP-07T
Chief of Naval Operation
Department of the Navy
washington, D. C. 20350
Attn: OP-03EG

Commanding Office
Office of Naval Research Branch Office
1000 Gary Street
San Francisco, California 94109
1 Commanding officer
U. S. Naval Weapons Laboratory

Asst. Director for Computation
Dah1gren, Virginia 22448
Attn: G. H. Gleissner (Code K-4)
Inspector of Naval Material
Bureau of Ships Technical Representative
1902 West Minnehaha Avenue
St. Paul 4, Minnesota
5 Lt. COL. E. T. Gaines, SREE
Directorate of Engineering Sciences
Air Force office of Scientific Research
Washington, D. C. 20333
Director of Science \& Technology
Deputy Chief of Staff ($R \& D$)
Washington, D. C.
Director of Science \& Technology Deputy Chief of Staff (R\&D) USAF
Washington, D. C.
Attn: AFRST-SC
1 Karl M. Fuechsel
Electronics Division
Director of Engineering Sciences Air Force office of Scientific Research
Washington, D. C. 20333

1 Lt. Col. Edwin M, Myers
Headquarters, USAF (AFRDR)
Washington 25, D. C.
1 Director, Air University Library
Maxwell Air Force Base
Attn: CR-4803a
Commander
Research \& Technology Division
AFSC (Mr. Robert
AFSC (Mr. Robert L. Feik)
Boiling AFB 25, D. C.
Commander
Research \& Technology Division
Office of the Scientific Director
Boiling AFB 25, D. C.
Attn: RTHR
1 Commander
Air Force Cambridge Research Laboratories
Attn: Research Library
Attn: $\begin{gathered}\text { Research Library } \\ \text { CRMXL-R }\end{gathered}$
L. G. Hansom Field

Bedford, Massachusetts 01731
1 Dr. Lloyd Hollingswor th
AFCRL
L. G. Hanscom Field
Bedford, Massachusetts 01731

1 Commander
Air Force Cambridge Research Laboratories
Attn: Data Sciences Lab $\begin{aligned} & \text { (Lt. S. J. Kahne, CRB) }\end{aligned}$
L. G. Hansom Field
Bedford, Massachusetts
01731

1 Commander
Air Force Systems Command
Air Force Systems Command
Office of the Chief Scientist
(Mr. A. G. Wirer)
Andrews AFB, Maryland 20331
1 Commander
Air Force Missile Development Center
Holloman Air Force Base, New Mexico
1 Commander
Research \& Technology Division
Attn: MAYT (Mr. Evans)
Wright-Patterson Air Force Base
Ohio 45433
Directorate of Systems Dynamics Analysis
Aeronautical Systems Division
Wright-Patter son AFB, Ohio 45433
His. Aeronautical Systems Division
AF Systems Command
Attn: Navigation \& Guidance Laboratory
Attn: Navigation \& Guidance Labor
Wright-Patterson AFB, Ohio 45433
Commander
Rome Air Development Center
Attn: Documents Library, RAALD
Griffins Air Force Base
Commander
Rome Air Development Center
Attn: RAWI-Major W. H HHaŗ iris
Griffiss Air Force Base
Rome, New York 13442
Lincoln Laboratory
Massachusetts Institute of Technology
P. O. Box 73
Lexington 73 , Mesa
Lexington 73 , Massach
Attn: Library A-082

Continued next page

Attn: AMSEL-RD-SS

Distribution list as of March 1, 1965 (Cont'd.)

1 Lincoln Laboratory

```
Massachusetts Institute of Technology
    Lexington 73, Massachusetts
    Lexington 73, Massachusetts
```

1 APGC (PGAPI)
Eglin Air Force Base
Florida
Florida
1 Mr . Alan Barnum
Rome Air Development Center
Griffiss Air Force
Grifiss Air Force Base
Rome, New York 13442
1 Director
Research Laboratory of Electronics Massachusetts Institute of Technology
Cambridge, Massachusetts 02139

1 Polytechnic Institute of Brooklyn 55 Johnson Street
Brooklyn, New York 11201 Attn: $\begin{aligned} & \text { Mr. Jerome Fox } \\ & \text { Research Coordinato }\end{aligned}$

1 Director
Columbia Radiation Laboratory
Columbia University
New York, New York 10027
1 Director
Coordinated Science Laboratory University of Illinois
Urbana, Illinois 61803

1 Director
Stanford Electronics Laboratories Stanford University
Stanford, California
1 Director
Electronics Research Laboratory University of California Berkeley 4, Californía
1 Professor A. A. Dougal, Director Laboratories for Electronics and Related Science Research University of Texas
Austin, Texas 78712
1 Professor J. K. Aggarwal Professor J. K. Aggarwal
Department of Electrical Engineering University of Texas
Austin, Texas 78712

Director of Engineering \& Applied Physics 210 Pierce Hall Cambridge, Massachusetts 02138
1 Capt. Paul Johnson (USN Ret.) National Aeronautics \& Space Agency 1520 H. Street, N. W.
Washington 25, D. C.

1 NASA Headquarters
Office of Applications
400 Maryland Avenue, S Washington 25, D. C.
Attn: Code FC Mr, A.

National Bureau of Standards Research Information Center and Advisory Serv. on Info. Processing Washington 25 , D. C.
1 Dr. Wallace Sinaiko Institute for Defense Analyse Research \& Eng. Support Div. Washington 9, D. C.
1 Data Processing Systems Division National Bureau of Standards Conn. at Van Ness
Room 239, Bldg. 10
Washington 25, D. C
Attn: A. K. Smilow
1 Exchange and Gift Division The Library of Congre

Dr. Alan T. Waterman, Director National Science Foundation Washington 25, D. C.
H. E. Cochran Oak Ridge National Laboratory Oak Ridge, Tennessee
1 U. S. Atomic Energy Commission Office of Technical Information Extension Office of Te
P. 0 , Box 62 Oak Ridge, Tennessee
1 Mr. G. D. Watson Defense Research Member 2450 Massachusetts Washington 8, D. C.

Martin Company
P. O. Box 5837

Attn: Engineering Library MP-30
1 Laboratories for Applied Sciences University of Chicago Chicago, Illinois 60

Librarian
School of Electrical Engineering Purdue University
Lafayette, Indiana
1 Donald L. Epley Dept. of Electrical Engineering State University of Iowa
Iowa City, Iowa

1 Instrumentation Laboratory Massachusetts Institute of Technology
68 Albany Street 68 Albany Street Attn: Library WI-109
1 Sylvania Electric Products, Inc. Electronics System 100 First Avenue Waltham 54, Massachusetts
2 Hughes Aircraft Company Centinela and Teale Streets Attn: K. C. Rosenberg, Attn: $\begin{aligned} & \text { K. C. Rosenberg, Supervisor } \\ & \text { Company Technical Document }\end{aligned}$
3 Autonetics
9150 Eest Imperial Highway Downey, California

1 Dr. Arnold T. Nordsieck General Motors Corporation Defense Research Laboratories
6767 Hollister Avenue Goleta, California
1 University of California Lawrence Radiation Laboratory P. O, Box 808

1 Mr. Thomas L. Hartwick Aerospace Corporation P. O. Box 95085 Los Angeles 45, California

1 Lt. Col. Willard Levin Aerospace Corporation
P. O. Box 95085 Los Angeles 45, California
1 Sylvania Electronic Systems-West Electronic Defense Laboratories P. O. Box 205

Mountain View, California
1 Varian Associates 611 Hansen Way Palo Alto, California 94303
Attn: Tech, Library Attn: Tech. Library
1 Huston Denslow
Library Supervisor California Institute of Technology Pasadena, California
1 Professor Nicholas George California Institute of Technology Electrical Engineering Department Pasadena, California
1 Space Technology Labs., Inc. One Space Park
Redondo Beach Attn: Acquisitions Group STL Technical Library
1 The Rand Corporation
1700 Main Street 1700 Main Street Attn: Library

Miss F. Cloak
Radio Corp, of America
RCA Laboratories
Princeton, New Jersey Center
Mr. A. A. Lundstrom
Bell Telephone Laboratories
Room 2E-127
Whippany Road
Whippany, New Jersey
1 Cornell Aeronautical Laboratory, Inc, Buffalo 445 See Street Buffalo 21 , New York
Attn: J. P. Desmond, Librarian
$1 \quad \begin{aligned} & \text { Sperry Gyroscope Company } \\ & \text { Marine Division }\end{aligned}$
Marine Division Library
155 Glenn Cove Road
Carle Place, L. I., New York
Attn: Miss Barbara Judd
1 Library
Light Military Electronics Dept.
General Electric Company
Armament \& Control Products Section
Johnson City, New York
Dr. E. Howard Holt
Director
Plasma Research Laboratory
Rennselaer Polytechnic Institute
Troy, New York
Battele-DEFENDER
Battelle Memorial Institute
505 King Avenue

1 Laboratory for Electroscience Research New York University
Bronx 53, New York
$1 \begin{aligned} & \text { National Physical Laboratory } \\ & \text { Teddington, Middlesex }\end{aligned}$
England
Attn: Dr. A. M. Uttley, Superintendent,

$$
\begin{aligned}
& \text { Dr. A. M. Uttley, Sul } \\
& \text { Autonomics Division }
\end{aligned}
$$

Dr. Lee Huff
Behavioral Sciences
Advanced Research Projects Agency Washington, D. C. 20301
1 Dr. Glenn L. Bryan
Head, Personnel and Training Branch
Office of Naval Research
Washington, D. C. 20360
Instituto de Fisica Aplicado
LL. Torres Quevedo
Madrid, Spain Laboratory
Attn: Jose L.
1 Stanford Researa
Stanford Research Institute
Attn: G-037 External Reports Attn: G-037 External Reports Menlo Park, California

REVISED U. S. ARMY DISTRIBUTION LIST
(As received at the Coordinated Science Laboratory 27 July 1965)

1 Dr. Chalmers Sherwin
Deputy Director (Research \& Technology)
DD\&RE Rm 3E1060
The Pentagon
Washington, D. C. 20301
1 Dr. Edward M. Reilley
Asst. Director (Research)
Ofc. of Defense Res. \& Eng.
Department of Defense
Washington, D. C. 20301
1 Dr. James A. Ward
Office of Deputy Director (Research and Information Rm 3D1037)
Department of Defense
The Pentagon
Washington, D. C. 20301
1 Director
Advanced Research Projects Agency
Department of Defense
Washington, D. G. 20301
1 Mr. E. I. Salkovitz, Director for Materials Sciences Advanced Research Projects Agency Department of Defense Washington, D. C. 20301

1 Colonel Charles C. Mack
Headquarters
Defense Communications Agency (333)
The Pentagon
Washington, D. C. 20305
20 Defense Documentation Center
Attn: TISIA
Cameron Station, Building 5
Alexandria, Virginia 22314
1 Director
National Security Agency
Attn: Librarian C-332
Fort George G. Meade, Maryland 20755
1 U. S. Army Research Office
Attn: Physical Sciences Division
3045 Columbia Pike
Arlington, Virginia 22204
1 Chief of Research and Development Headquarters, Department of the Army Attn: Mr. L. H. Geiger, Rm 3D442 Washington, D. C. 20310

1 Research Plans Office
U. S. Army Research Office

3045 Columbia Pike
Arlington, Virginia 22204
1 Commanding General
U. S. Army Materiel Command

Attn: AMCRD-RS-PE-E
Washington, D. C. 20315
1 Commanding General
U. S. Army Strategic Communications Command Washington, D. C. 20315

1 Commanding officer
U. S. Army Materials Research Agency

Watertown Arsenal
Watertown, Massachusetts 02172
1 Commanding Officer
U. S. Army Ballistics Research Laboratory

Attn, V. W. Richards
Aberdeen Proving Ground
Aberdeen, Maryland 21005
1 Commanding Officer
U. S. Army Ballistics Research Laboratory

Attn: Keats A. Pullen, Jr.
Aberdeen Maryl Ground
Commanding Officer
U. S. Army Ballistics Research Laboratory Attn: George C. Francis, Computing Lab. Abtn: George C. Francis, Computing Lab.

1 Commandant
U. S. Army Air Defense School

Attn: Missile Sciences Division, C\&S Dept.
P. O. Box 9390

Fort Bliss, Texas 79916
1 Commanding General
U. S. Army Missile Command

Attn: Technical Library
Redstone Arsenal, Alabama 35809
1 Commanding General
Frankford Arsenal
Attn: SMUFA-1310
Attn: SMUFA-1310 (Dr. Sidney Ross)
Philadelphia, Pennsylvania 19137

1 Commanding General
Frankford Arsenal
Attn: SMUFA-1300
Philadelphia, Pennsylvania 19137
1 U. S. Army Munitions Command
Attn: Technical Information Branch
Picatinney Arsenal
Dover, New Jersey 07801
1 Commanding Officer
Harry Diamond Laboratories
Attn: Mr. Berthold Altman
Connecticut Avenue and Van Ness St., N.W.
Washington, D. C. 20438
1 Commanding Officer
Harry Diamond Laboratories
Attn: Library
Connecticut Avenue and Van Ness St., N.W.
Washington, D. C. 20438
1 Commanding Officer
U. S. Army Security Agency

Arlington Hall
Arlington, Virginia 22212
1 Commanding officer
U. S. Army Limited War Laboratory

Attn: Technical Director
Aberdeen Proving Ground
Aberdeen, Maryland 21005
1 Commanding Officer
Human Engineering Laboratories
Aberdeen Proving Ground, Maryland 21005
1 Director
U. S. Army Engineer Geodesy,

Intelligence \& Mapping
Research and Development Agency
Research and Development Agency
Fort Belvoir, Virginia 22060
1 Commandant
U. S. Army Command and General Staff College Attn: Secretary

1 Dr. H. Robl, Deputy Chief Scientist U. S. Army Research Office (Durham) Box CM, Duke Station
Durham, North Carolina 27706
1 Commanding officer
U. S. Army Research Office (Durham)

Attn: CRD-AA-IP (Richard 0. U1sh)
Box CM, Duke Station
Durham, North Carolina 27706
1 Superintendent
U. S. Army Military Academy

West Point, New York 10996
1 The Walter Reed Institute of Research Walter Reed Army Medical Center Washington, D. C. 20012

1 Commanding Officer
U. S. Army Electronics R\&D Activity Fort Huachuca, Arizona 85163

1 Commanding Officer
U. S. Army Engineers R\&D Laboratory Attn: STINFO Branch
Fort Belvoir, Virginia 22060
1 Commanding officer
U. S. Army Electronics R\&D Activity

White Sands Missile Range, New Mexico 88002
1 Director
Human Resources Research Office
The George Washington University
Alexandria, Virginia 22300
1 Commanding officer
U. S. Army Personnel Research Office Washington, D. C.

1 Commanding Officer
U. S. Army Medical Research Laboratory Fort Knox, Kentucky 40120
1 Commanding General
U. S. Army Signal Center and School

Fort Monmouth, New Jarsey 07703
Attn: Chief, Office of Academic Operations
1 Dr. S. Benedict Levin, Director
Institute for Exploratory Research
U. S. Army Electronics Command

1 Director
Institute for Exploratory Research
U. S. Army Electronics Command

Attn: Mr. Robert O. Parker, Executive
Secretary, JSTAC (AMSEL-XL-D)
Fort Monmouth, New Jersey 07703
1 Commanding General
U. S. Army Electronics Command

Fort Monmouth, New Jersey 07703
Attn: AMSEL-SC
RD-D
$R D-G$ RD-G
RD-MAF
RD-MAT
RD-GF
N (Marine Corps LnO)
$\mathrm{XL}-\mathrm{D}$
$\mathrm{XL}-\mathrm{E}$
XL-E

$\mathrm{XL}-\mathrm{S}$
$\mathrm{HL}-\mathrm{D}$
HL-L
HL-J

HL-O
NL-D
NL-P
NL-R
NL-S

KL-S
KL-T
VL-D
WL-D
1 Mr. Charles F. Yost
Special Assistant to the Director of Research
National Aeronautics \& Space Admin. Washington, D. C. 20546
1 Director
Research Laboratory of Electronics
Massachusetts Institute of Technology
Cambridge, Massachusetts 02139
1 Polytechnic Institute of Brooklyn
55 Johnson Street
Brooklyn, New York 11201
Attn: Mr. Jerome Fox
Research Coordinator
1 Director
Columbia Radiation Laboratory
Columbia University
538 West 120th Street
New York, New York 10027
1 Director
Stanford Electronics Laboratories
Stanford University
Stanford, California 94301
1 Director
Electronics Research Laboratory
University of California
Berkeley, California 94700
1 Director
Electronic Sciences Laboratory
University of Southern California
Los Angeles, California 90007
1 Professor A. A. Dougal, Director Laboratories for Electronics
and Related Science Research
University of Texas
Austin, Texas 78712
1 Professor J. K. Aggarwal
Department of Electrical Engineering
University of Texas
Austin, Texas 78712
1 Division of Engineering and Applied Physics
210 Pierce Hall
Harvard University

Cambridge, Massachusetts 02138

DD FORM 1473

KEY WORDS	LINK A		LINK B		LINK C	
	ROLE	WT	ROLE	WT	ROLE	WT

INSTRUCTIONS

1. ORIGINATING ACTIVITY: Enter the name and address of the contractor, subcontractor, grantee, Department of Defense activity or other organization (corporate author) issuing the report.

2a. REPORT SECURITY CLASSIFICATION: Enter the overall security classification of the report. Indicate whether "Restricted Data" is included. Marking is to be in accordance with appropriate security regulations.

2b. GROUP: Automatic downgrading is specified in DoD Direc tive 5200.10 and Armed Forces Industrial Manual. Enter the group number. Also, when applicable, show that optional markings have been used for Group 3 and Group 4 as authorized.
3. REPORT TITLE: Enter the complete report title in all capital letters. Titles in all cases should be unclassified If a meaningful title cannot be selected without classification, show title classification in all capitals in parenthe sis immediately following the title.
4. DESCRIPTIVE NOTES: If appropriate, enter the type of report, e.g., interim, progress, summary, annual, or final. Give the inclusive dates when a specific reporting period is covered.
5. AUTHOR(S): Enter the name (s) of author (s) as shown on or in the report. Enter last name, first name, middle initial. If military, show rank and branch of service. The name of the principal author is an absolute minimum requirement.
6. REPORT DATE: Enter the date of the report as day, month, year; or month, year. If more than one date appears on the report, use date of publication.

7a. TOTAL NUMBER OF PAGES: The total page count should follow normal pagination procedures, i.e., enter the number of pages containing information.

7b. NUMBER OF REFERENCES: Enter the total number of references cited in the report.

8a. CONTRACT OR GRANT NUMBER: If appropriate, enter the applicable number of the contract or grant under which the report was written.
$8 \mathrm{~b}, 8 \mathrm{c}, \& 8 \mathrm{~d}$. PROJECT NUMBER: Enter the appropriate military department identification, such as project number, subproject number, system numbers, task number, etc.

9a. ORIGINATOR'S REPORT NUMBER(S): Enter the official report number by which the document will be identified and controlled by the originating activity. This number must be unique to this report.

9b. OTHER REPORT NUMBER(S): If the report has been assigned any other report numbers (either by the originator or by the sponsor), also enter this number (s).
10. AVAILABILITY/LIMITATION NOTICES: Enter any limitations on further dissemination of the report, other than those imposed by security classification, using standard statements such as:
(1) "Qualified requesters may obtain copies of this report from DDC."
(2) "Foreign announcement and dissemination of this report by DDC is not authorized."
(3) "U. S. Government agencies may obtain copies of this report directly from DDC. Other qualified DDC users shall request through
(4) "U. S. military agencies may obtain copies of this report directly from DDC. Other qualified users shall request through
(5) "All distribution of this report is controlled. Qualified DDC users shall request through

If the report has been furnished to the Office of Technical Services, Department of Commerce, for sale to the public, indicate this fact and enter the price, if known.
11. SUPPLEMENTARY NOTES: Use for additional explanatory notes.
12. SPONSORING MILITARY ACTIVITY: Enter the name of the departmental project office or laboratory sponsoring (paying for) the research and development. Include address
13. ABSTRACT: Enter an abstract giving a brief and factual summary of the document indicative of the report, even though it may also appear elsewhere in the body of the technical report. If additional space is required, a continuation sheet shall be attached.

It is highly desirable that the abstract of classified reports be unclassified. Each paragraph of the abstract shall end with an indication of the military security classification of the information in the paragraph, represented as (TS), (S), (C), or (U).

There is no limitation on the length of the abstract. However, the suggested length is from 150 to 225 words.
14. KEY WORDS: Key words are technically meaningful terms or short phrases that characterize a report and may be used as index entries for cataloging the report. Key words must be selected so that no security classification is required. Identifiers, such as equipment model designation, trade name, military project code name, geographic location, may be used as key words but will be followed by an indication of technical context. The assignment of links, roles, and weights is optional.

