
UNIVERSITY OF ILLINOIS -  URBANA, ILLINOIS



CONVOLUTIONAL TRANSFORMATIONS OF 
BINARY SEQUENCES : BOOLEAN FUNCTIONS 

AND THEIR RESYNCHRONIZING PROPERTIES

F. R Preparata

REPORT R-283 MARCH,1966



This work was supported by the Joint Services Electronics 
Program (U. S. Army, U. S. Navy, and U. S. Air Force) under 
Contract No. DA 28 043 AMC 00073(E).

Reproduction in whole or in part is permitted for any purpos 
of the United States Government.

DDC Availability Notice: Qualified requesters may obtain
copies of this report from DDC. This report may be released 
to OTS.



CONVOLUTIONAL TRANSFORMATIONS OF BINARY SEQUENCES;
BOOLEAN FUNCTIONS AND THEIR RESYNCHRONIZING 

PROPERTIES

F. P. Preparata

ABSTRACT

Non-feedback shift registers (finite-memory encoders) can be 

profitably adopted to perform transformations of binary sequences.

The output sequence is convolutionally obtained by "sliding” the 

encoding device along the input sequence and producing a symbol at 

each shift. Invertible transformations are characterized and decoding 

schemes are analyzed. The crucial point in the decoding problem is 

that the simply finite-memory feedback decoder presents the undesir

able well-known error propagation effect, while the non-feedback 

decoder contains, in general, an indefinite number of stages. Finite- 

memory non-feedback decoding is feasible, however, if some constraint 

is imposed on the input sequences, or, equivalently, if some decoding 

error is tolerated. The analysis is conducted through the concepts 

of resynchronizing states of Boolean functions. The algebraic pro

perties of resynchronizing states are carefully analyzed; it is shown 

that they can be assigned only in special sets, termed clusters, 

which form a lattice. Moreover, each cluster of resynchronizing 

states is possessed by a set of Boolean functions, which form a 

subspace of the vector space of all Boolean functions. The presented 

analysis provides a formal tool to relate finite-memory non-feedback 

decoding to the constraint imposed on the input generating source.



I. Introduction

The transformation of a symbol sequence into another symbol 

sequence is an important necessity in several practical cases of 

information processing and transmission. Particularly, the need may 

arise in the area of coding for noisy channels or, for example, in the 

area of cryptology. These possible applications stimulated some 

research over the past years, and especially Huffman's work [l] deserves 

mention as a fundamental investigation of finite-state machines as 

sequence transducers.

The theoretical analysis presented in this paper confines 

itself to a more limited class of finite-state transducers, which, 

nevertheless, for its intrinsic simplicity and flexibility is felt to 

be of considerable interest in practical realizations. We refer 

specifically to sequence transformations performed by convolutional 

finite-memory encoders, without feedback, which we shall introduce in 

the next section.

The central problem connected with sequence transformations 

is the unique reconstruction of the original (input) sequence from 

the transformed (output) sequence, i.e., the inversion of the trans

formation. The requirement of invertibility confines the analysis 

to information-lossless transformations, according to the appropriate 

terminology of Huffman. The problem, however, is not only the 

characterization of information lossless transformations, but also the 

circuit implementation of them.

These and other related topics are the subject of the following

sections »
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II. Formulation of the Problem, Preliminary Analysis

Time is subdivided into units defined by clock pulses, and 

during each time unit a sequence symbol occurs. The clock pulses also 

operate as shifting pulses for shift registers. The sequence symbols 

are chosen from the alphabet (0,1); and hereafter we shall use indif

ferently the terms "symbol" and "digit." Time units t are numbereds
in natural order, and each sequence symbol is given the index of the

time unit at which it occurs. With x^ we denote an input symbol,

with y the output symbol occurring at the same time unit t . s s
Similarly, {x] and {yj denote corresponding input and output sequences 

irrespective of their number of symbols. Boolean functions f, g, ... 

are always assumed in ring form, i.e., in sum--of-pro duct form with 

the connectives AND and EXCLUSIVE OR (see, e ,g. [2]), the latter being 

denoted by the symbol +. Arguments of Boolean functions, i.e.,

Boolean variables, are generally designed with the letter z0

The general form of a convolutional finite-memory encoder is 

given in Fig. 1.

n STAGES- 'i

Fig. 1. Convolutional Finite-Memory Encoder.
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Input symbols are fed to the shift register at the rate determined 

by the clock pulses. The output of each register stage and the input 

line feed a combinational block consisting of a single Boolean

function g of (n+1) variables. The generic output symbol yg is given 
by

ys = 8(xs > V l ’- V n )-

This justifies the term convolutional given to the transformation, 

although "recurrent" may be equally appropriate. The transformation, 

m  fact, may be thought of as performed by an encoding device which

slides" along the input sequence producing, at each shift, an output 
symbol.

The first step is the characterization of the function g in 

order that the transformation be invertible. We refer to the state 

graph of the encoder of Fig. 1, which has the well-known structure of 

a shift-register graph (see, for example [8]). States are determined 

by the contents of the encoder; each state is identified with a 

vertex, and each vertex has two incoming and two outgoing branches. 

Each branch is labeled with a symbol pair (x,y), designating respec

tively the input symbol which determines the transition and the output 

symbol produced.

The well-known condition for invertibility of the trans- 

formation [1] can be formulated as follows: for any pair of states

S1 and s2 of the encoder and any pair of different input sequences 

{x} and {x1} of equal length, leading from s: to s2 , the corresponding 

sequences {y} and fy'] are different. Let us suppose, without loss



of generality, that [x] and {x1} differ in their first symbol (should 

they not differ, there will be some other state s^, following s^, 

after which [x] and [x'j differ; in this case we assume s^ as initial 

state). If the transformation is invertible, the output symbols are 

also different, i.e., the symbol pairs relative to the branches 

pointing out of s^ must be (0,yo), (l,y^)„ Reciprocally, if (0,y ) 

and (l,yQ) are pairs associated with branches leaving s^, no two 

input sequences with different first symbols can yield the same output 

sequence. Since s^ is arbitrary, we may conclude that the above 

stated condition holds for each state if and only if the transformation 

is invertible. It is now easy to recognize that this is equivalent to 

saying that g >zn >•••>z )̂ must be of the form

8(zn+l’ Zn ” -” Z1) = zn+l + £(zn> V l ....

where f is an arbitrary function of n Boolean variables. Our discus

sion is summarized by the following theorem.

Theorem 1: A necessary and sufficient condition that the

transformation operated by a finite-memory non-feedback encoder be 

invertible is that

(1)s(zn+liZn ’- " ’zl) " zn+l + f(V V l .... zl>

We may now say that f(zn»zn_l’'••>zl) completely specifies 

an n-stage finite memory encoder, and that the sequence transformation 

is governed by the following equation

ys - xs + f(xs-r V 2 .... V n ^  (2)

Correspondingly, the encoder for invertible transformations is illus

trated in Fig. 2 (with obvious significance of the adopted symbols).
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Fig. 2. Convolutional Finite-Memory Encoder for Invertible 
Transformations.

Obviously, Eq. (2) is not sufficient to determine the sequence {y} 

resulting from a given sequence {x}, since the initial state of the 

encoder (i.e., its content when the first digit of {x} is fed to it) 

must also be known. Therefore, if x^ is the first symbol of {x}, and 

(x0 ,x_i,x_2,...,x_n+ i) is the initial content of the encoder, the 

sequence {y} is entirely known.

It is also apparent that, given the initial state 

(x0, x _^ , . . . >x_n+-̂) Eq. (2) leads to the relation governing the 

inverse transformation, i.e.,

x = y + f ( x  , , x  _,...,x ).s ys s-1 s-2 s-n (2 *)

Clearly, (2') is physically implemented by a feedback shift-register 

decoder as given in Fig. 3, which is initially loaded with (xQ,x ^,...,

x-n+l)*
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Fig. 3. Feedback Decoder Corresponding to the 
Encoder of Fig. 2.

This very simple realization has, however, a major inconvenience, as 

soon as we take into account the possibility that some symbols of the 

[y] sequence are altered by effect, for example, of transmission 

through a naturally or artifically noisy channel. In fact, if one 

symbol yg is altered, the corresponding xg will be affected by error, 

and this error will in turn affect the decoding of further symbols 

of [x], thereby corrupting the recovered sequence further beyond the 

injected error. Essentially, we are confronted with the familiar

error propagation effect which is typical of feedback convolution 

decoding (see, [3]).

In our case, particularly, we are facing the possibility 

that a single erroneous y symbol may cause an indefinite corruption 

of the decoded sequence. This, of course, would rule out the feed

back decoder as a practical device for the reconstruction of the 

original sequence. It may be conjectured, however, that by proper
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selection of the function f (zn>zn_^>•••>z^)> there is a non-zero 

probability that the error propagation terminate at a finite distance 

from the injected errors. This would happen when, after the error, 

n consecutive correct x symbols are produced so that the decoder is 

free from errors. If we could prove that some functions possess the 

statistical property of a rapid error termination, the feedback 

decoder could retain some importance because of its simplicity in 

applications where the transmission error rate is low and the receiver 

has a reasonable error tolerance. A preliminary study has been con

ducted, which shows that there are functions for which the error may 

not propagate indefinitely. But since no conclusion can so far be 

drawn as to how likely and how far from its origin the error will die 

out, the feedback decoder must, in general, be considered impractical.

To circumvent this basic drawback, the question now arises

whether it is possible to reconstruct the {x} sequence by means of a

finite-memory decoder without feedback. The attractive feature of

such a device is that, due to the lack of regenerative effects, any

injected error will affect the recovered sequence at most for a finite

and constant number of digits. The general answer to this question

is in the negative. In fact, a little thought shows that x is, ins
general, a function of all preceding y symbols, so that for correct 

decoding the non-feedback decoder should contain an indefinite number 

of stages if no bound is placed on the length of the sequences.

The intuition suggests, however, that if y depends only ons
a finite segment of length n of the sequence [x], the dependence of
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Xs °n t îe ys_j s^ou-*-̂ become weaker as j grows. In other words

Xs depend strongly on immediately preceding y symbols and

weakly on remote ones. This rather rough conjecture can be formalized 

into the following problem: given a transformation specified by

the function f (z^, ^,...,z^), given the sequence {x} and its trans

form {y} of length s, which is the lowest value of r such that x

depends only on y ,y , . . . ,y ?s s- 1 s-r

s

Before tackling this problem, we need some introductory

»

remarks and definitions. We restrict our attention to the functions 

f for which
f(0,0,...,0) = 0 (3)

with negligible loss in generality, since only those functions are 

excluded which contain, in ring form, the constant term [2,7] „

Further we assume that the encoder contains 0's when the first symbol 

of [x] is fed to it; we fix hereby the initial state of the encoder, 

or think of the sequence [x] as being extended with 0*s indefinitely 

into the past. This assumption and relation (3) imply that the first 

non-zero symbols of [x] and [y] occur simultaneously.

If the sequence {y} = ,y£ ,...,y ,. . . , transformed from

the sequence [x] = x^,x^,...,x^, is such that the sequences

and-

y1>y2,...,ym ,o,o,...

are respectively the transforms of

and
X1,X2 *'' * * ^ ^  *•••

0,0,...,0,xnrfl,xnrf2,...,xs,...,
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we say that {x} possesses a resynchronizing point (RP) x lx under f.m 1 m+1
This is equivalent to saying that y ^ ^ ,̂ m-t-2 * ’ * * not ^ePenĉ upon

x ,x etc.m m-1
The concept of RP of a sequence plays a central role in the

solution of the aforestated problem. In fact, let x |x -.be an RPm 1 m+1
of {x} under f, with m < s , if we restrict our attention to the

sequences {k '} E .... », and £y'} S  y ^ . y ^ .  • •. ,7,. ™  see

that x depends at most on y ,y , , . . . ,y ,. Consequently, we may s s s- i ntT l
see that the dependence of x on previous y symbols extends back tos
the closest RP of {x} under f. This completely defines the parameter 

r mentioned in the problem statement.

It must be explicitly pointed out that the value of _r is 

by no means a characteristic of the transformation, nor of the 

sequence, but it depends jointly upon the transformation and the 

particular sequence under consideration. More precisely, for a given 

function f, any sequence {x} can be thought of as the concatenation 

of irreducible subsequences contained between consecutive RP's: if m

is the length of the longest irreducible subsequence of [x], then 

r = m-1.

The search for RP's of {x} under f is greatly simplified by

the concept of resynchronizing state (RS) of the function f. We say

that the n-tuple Z = (z ,z n, . . .,z1) is an RS of f if and only ifn n-1 1  J

the following conditions hold;
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f(0,0,...,0) = 0

f(zn ,zn-l**‘*,ZP  = f(°’0’"* » °)
f (6^,zn ,... jZy) = f(6^,0,...,0) (4)

f (6n-l’'* *,6l’Zn) f (6n-l’''’,61,0)

where ^^>^2 ’''’’̂ n-1 are arbitrary binary parameters. The previous

set of equations, referred to hereafter as "system (4)," completely

defines the RS 1 s of f. Due to the arbitrariness of 61,6o,..0,6 . ,1 2 n-l
it is evident that if (z ,z z.,) is an RS of f, {x} has x lx .n n-l l m 1 rrri-1
as RP under f if

x = z , x t = z ,x , , = z, .m n m-1 n-l m-n+1 1

Therefore, the RP's of {x} under f are obtained by sliding an n-symbol 

window along [x] and verifying whether the intercepted configuration 

coincides with any RS of f. The sets of RS!s of Boolean functions 

enjoy interesting algebraic properties, which will be carefully inves

tigated in the two following sections.

We conclude this section by noting that the unboundedness of r 

for all possible sequences {x} is another formal confirmation that 

finite-memory non-feedback decoding is not possible, in general.

The introduced formalism, however, allows an exact definition of the 

conditions under which finite-memory non-feedback decoding is possible. 

Precisely, let us consider the indefinite non-feedback decoder illus

trated in Fig. 4.



Z' STA&BS A.
n StAGrES

Fig. 4. General Form of Indefinite Non-Feedback Decoder.

If we truncate this decoder after its r-th stage, we obtain a finite- 

memory decoder which reconstructs correctly any sequence [x] which doe 

not contain any irreducible subsequence of length greater than (r+1). 

It is therefore evident that finite memory non-feedback decoding is 

possible, only at the price of some constraint on the input language. 

It conforms with our intuition that this constraint becomes weaker as 

r increases. We shall return to this topic at the conclusion of the

paper.
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HI. The Algebra of Clusters of Resynchronizing States

In this section we shall show that, generally, RS's are not

independently assignable, and that only given subsets of RS' s are

possible. These subsets are called RS-clusters, or simply clusters,

and we shall show that their set is a lattice.

Let Z = (zn ,zn_^,...,z^) be a binary n-tuple, and let z

denote the integer spelled by Z. The n-tuple Z is an RS of f, if and

only if the conditions expressed by system (4) hold for it. We have

then the following lemma.

Lemma 1: If Z is an RS of f, then z =0.n
Proof: The function f can be expressed, in ring form, as

f(2n ,2n-X’--->2l) = f0 (2n ;-” ,22) + zlfl(V  '• • ’z2)

with f^ (zr ,...,z^) not identically 0. 

in this form, we obtain

fO(6n-l,,**,6l) + Znfl(6n-1”

If we put the last row of (4)

,61^ f0 (ôn-l,” °,ôl)-

It follows that z *f (6 ,...,6,) = 0; and since f.(6 6,) isn l n - l  1 1 n-1 1
not identically 0, z = 0 QoE.D.

By lemma 1, the last row of system (4) becomes an identity, 

and is therefore omitted. After this preliminary restriction on 

possible RS's, the following lemmas estlabish the interdependences 

among them.

Lemma 2: If (0,z z..) is an RS of f, so isn- i i ’
(0,0,z ,...,z_). n-1 2
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Proof: Let us write system (4) for (0,z

set 6^ = 0, we obtain

f(0,0,.„.,0) = 0

f(0,0,zn_1>...,z2) = fj[0,0,...,0) 

£(62,0,.,.,z ) = f(6 ,0,...,0)

n-1’ .,z^) • If we

f ̂ n-2* *'0 ,G,Zn - P  f ̂ n - 2 ’ 0 ° *

which, for arbitrary 2 ’ are exact^y t îe conditions that

(0,0,z ^ ^ , ...¡Zy) be an RS of f. Q.E.D.

The lemma just given has the following direct corollary.

Corollary 1: If (0,z . ,z^) is an RS of f, so are

(0,0,z^_^,...jZ^), (0,0,0,zn_^,...z^),...,(0,0,...,0). Corollary 1 

says, in other words, that given an RS of f all the right shifts of 

it are RS's of f. A still wider set of RS1s associated with, or implied 

by, a given RS of f is given by lemma 3.

Lemma 3: If (0,z^ .,z ,0,...,0) is an RS of f, so is

(0,zn-l**’*,Zs°,Zn-l** * * ,Zr> if n-s “ C11/2]1 (r ^ s)> or
(0>zr,_i > • • • ,z >0,z - ,. . . ,z ,0, . . . ,0) if n-s < [n/2]; and vice versa.

u  1  S  LI“* J- S

Proof: Since the proofs of the two cases n-s > [n/2] and

n-s < [n/2] are identical, we shall only prove the first case and 

leave the other to the reader.

We rewrite system (4) for (0,z ^  . . . ,z ,0,...,0) and obtain

With [a] we denote the highest integer contained in a.
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f(0,0,...,0) = 0

f (6-̂ »0,.. . ,zg+  ̂,zg ,. . . ,0) = f (6̂ ,0,... ,0) (4a)

f(6n-2,**,,6l,0,zn-l) ~ f(6n-2’**-’6l’0,0)

the (r+l)-th row of (4a) reads

• • • >zr) = f ...,6^,0,...,0) .

If we let 6r_1 = 0, 6 ^  = zn_1»,,*,61 = zs> we have

f(0,Zn-l,*‘’,Zs,0,Zn-l,*’’,Zr) = f (0,zn-l *' ’ * ,Zs’°’ * * *,0) 5 

the right member of which is the left member of the 2nd row of (4a) . 

Therefore, by the transitive property of equalities,

f (0 >zn_i > • <* • 5zg »® jzn_ i 5 • • • }zr  ̂ = f (0,0, . . . ,0) .

Similarly, we consider the (r+j)th row of (4a). We let 6 , = 0,r-1
6r-2 = zn-i»•••5 6x = zs and obtain (j = l,2,...,s-3)

f(6r+j-2’" - ,6r ’0,Zn-l’" - ’Zs’° ’Zn-l’---’Zr+j-l)

f(6r+j-2’‘-'’6r ’0,zn-l’•'-,zs ,0,‘-‘

By comparing this relation with the (j+l)th row of (4a) and letting 

^r+k-1 = \  = ^k ^  = 1>2 »• • •>J-1) we obtain

f ̂6j-x» * * • *6i,°,zn-1, * * * ,zs,0,zn-1,*-’ * ,Zr+j-P = f ? '»°)
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For all possible

f (0, z -i j • • • »n-1

values of

2 , 0 , Z -a , s n-1
••>zg,0 ,„.

j , we obtain

..,z1) = f(0,0,...,0)

>zr+1) = f(6[,0,...,0)

f (6 1̂ 3,...,6[,0,zn_1,..o,zs,0zn_1) - f(6^_3,...,6^_3,...,6|,0,...,0).

If we add to this list the s-th,(s+1)-th,...,n-th rows of (4a), 

together with f(0,0,...,0) = 0, we obtain the conditions that

>^n~1,'* * *zq ’0,Zq_^,•°•,z^) he an RS of f.

The proof of the reciprocal part of the lemma follows 

exactly the steps of the one just given. Q.E.D.

It may be worth mentioning that the relation established by 

lemma 3 is an equivalence between n-tuples. Verification that the 

reflexive, symmetric and transitive properties hold is immediate, and 

is therefore omitted. Lemma 3 has the following corollary.

Corollary 2. If (0,z^^^,...,z^,0,...,0) is an RS of f, with 

zp = 1, so are (0, V l ,... ,*p,0,... . 0 , * ^ )  , (0,*^.... ,zp ,0,...,

Zn-l,Zn-2^*’* * *^ ,zn-l** *•>Zp»0>zn_i>•••>zp>0>••0>0), and vice versa.

Proof: The proof follows directly from lemma 3 when appro

priate values are assigned to zp_x»zp_2»•••>zs(s < p). Q.E.D.

An example should provide further insight into the meaning 

of lemmas 2 and 3.

Example: If 010000 is an RS of f, by Corollary 2 010001,

010010, 010100 are also RS1s of f. Further application of Corollary 2 

to 010100 shows that 010101 is also an RS of f. Therefore 010000,
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010001, 010010, 010100, 010101 are equivalent in the relation established

by lemma 3. By lemma 2, we have the following implications

010000 = >  001000, 000100, 000010, 000001, 000000
010001 ==> 001000, 000100, 000010, 000001, 000000
010010 =*> 001001, 000100, 000010, 000001, 000000
010100 = >  001010, 000101, 000010, 000001, 000000
010101 = >  001010, 000101, 000010, 000001, 000000

Therefore, the distinct RS1s implied by 010000 are

010001, 010010, 010100, 010101 
001000, 001001, 001010 
000100, 000101 
000010 
000001 
000000

It may be convenient at this point to introduce a compact

representation for the equivalence classes yielded by lemma 3. We make

partial use of the formalism of regular expressions^4]„

Let the symbol 0 denote exclusively the binary zero and let

P1,P2,P3’' "  be binary configurations beginning with a 0. The numbers

of digits vi>V2 ’V 3 >*** contained respectively in P^jP^jP ,... are

generally different, but all satisfy the condition v. < n . With the
J ~

expression
[ (P.0*)*]

J n

We recall, briefly, for the reader's convenience, that if 
A and B denote sets of sequences: 1) (A+B) is the set union of the 
sequences of A and B, 2) (A„B) is the set of sequences obtained by con
catenation of a sequence of A and of a sequence of B, 3) if A. is the 
zero-length sequence, A* is defined as

A * = \ + A + A A +  ...
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we denote the set of n-tuples obtained by truncating after n symbols

the sequences of the set (P^O*)* of length not smaller than n. We say

that Pj is a minima1 configuration if there is no other configuration

P. with v. < v. such that 
1 J

p. = r(P 0*)*1J l Jn

Therefore, for any n, it is possible to list a complete set of minimal

configurations. Hereafter, we shall refer only to minimal configurations.

Example: For n = 5, the minimal configurations are

0, 01, Oil, 0111, 01111, 01011, 001, 0011, 00111,
0001, 00011, 00001

With this formalism, lemma 2 states that if [PO*] is an RS of f son ’
are [0*PO*]n; lemma 3 states that if [PO*]^ is an RS of f, so are 

[ (PO*)*] The combination of lemmas 2 and 3 ensures that if [PO*]
n

is an RS of f, so are [0*(PO*)*] .

We can now state the following lemma, which establishes a 

further equivalence relation between RS's.

Lemma 4: If [P 0*] and [P 0*] are two RS's of f so areL n z n
[0*{(Pn0*)*(P 0*)*}*] . i 2 J n

Proof: We write the conditions that [P,0*] and TP 0*1 beI n 2 n
RS's of f. If Z is an n-tuple of [0*{ (P^*)*^^*)*}*]^, by comparing 

appropriate relations of the two systems we can prove that Z is an RS 

of f. Since the details of the proof are very similar to those used 

for proving lemma 3, they are omitted. Q.E.D.

Example: If Px = 01, P = Oil and n = 5 we have
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[0*(010*)*]5 = 01000, 01001, 01010, 00100, 00101, 00010,
00001, 00000.

[0*(0110*)*]5 = 01100, 01101, 00110, 00011, 00001, 00000.

In addition to the distinct n^tuples belonging to [0*(010*)*] and to 

£0*(0110*)*j, the set [0*{(010*)**(0110*)*}*]^ also contains 01011.

We now make the incidental remark that, although we have 

referred so far to RS1s of f, the interdependence among n-tuples as 

RS s is not related to a particular function. In fact system (4) 

expresses a pairwise association of binary n-tuples under the condition 

that Z be a RS; and lemmas 2,3,4, which express the interdependence 

between RS's, are entirely based on this pairwise association. Therefore, 

the original problem of finding the RS's of a given function, leads to 

the following dual problem: to find the functions that have a given

set of RS's. The solutions of these two problems, the latter of which 

is just now taking shape, will be given in the following section.

At this stage, we only state that sets of RS's can be considered auto

nomously, and this standpoint will be assumed in the rest of the paper.

Returning now to our main theme, we define basic RS-clusters, 

or basic clusters of order n as the sets of n-tuples identified by 

[0*(P0*)*]n , for every minimal configuration P. Basic clusters are 

denoted with the capital letter B. Given r basic clusters B^ = 

[0*(P10*)*]n , B2 = [0*(P20*)*]n ,..., Br = [0*(Pro*)*]n> we define as

join of B B ,...,B the set C = [0*{(P 0*)*(Po0*)*...(P 0*)*}*] and
L Jl z r n

denote it with the expression

C = B U B U ... U B i 2 r
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which is not to be confused with the usual set union. Clusters of

order n are the basic clusters of order n and all their possible

distinct joins. Clusters are generally designated with the capital

letter C. A cluster [0*(PO*)*] is said to be of level ]l, if z. isn Yj

the highest indexed non-zero variable of [P0*1 . The cluster 00...0n
is conventionally of level 0.

We define as the meet of two clusters C^ and C^ the usual

set intersection of C^ and , and denote it with C^ fj . For any 

clusters C^, C^, C^ of order n we notice that

1) (reflexive property)

2) if C1 2  ^ 2 and ^ 2 — Cl’ t'rien ^ 2 = ^1 (antisymmetric property)

3) if C1 2  C2 abd C2 2  C3> then 3 (transitive property)

The set of clusters is therefore partly ordered. Further, from the

definitions of the join and meet operations, 

verify that

we can immediately

a) ci u ci = cx , cx n cx = c: (idempotent law)

b) C1 U C2 = C2 U Cl* ci n c2 = c2 n Ci (commutative law)

c) C1 U (C2 U C3} = (C1 U C2) U C3’ C1 n (c2 n c3) = (c1 n c2> n c

(associative law)

d) C1 U (C1 n V  = Cl> C1 n (C1 U C2} “ C1
(absorption law)

Since 1, 2, 3, abed are verified, we conclude that the set of clusters 

of order n form a lattice [5],

Example: We designate an n-tuple with the integer it spells.

The basic clusters of order 4 are (0), (1,0), (2,1,0), (3,1,0),
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(5,4,2,1,0), (6,3,1,0), (7,3,1,0) and the lattice diagram [see 5,6] is 

given in Fig. 5. Each vertex represents a cluster, which contains the 

n-tuples given in parentheses. Encircled vertices denote basic clusters, 

and clusters with the same number of 4-tuples are drawn on the same 

horizontal line.

Fig. 5. Diagram of the Lattice of RS-Clusters of Order 4.
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Further insight into the structure of cluster lattices is

provided by the following considerations. Basic clusters B ,B ,...;,B
1 2  lc

are said to be independent if for any pair of distinct indices i,j

(i,j = l,2,...,k) neither one of the relations B„ C  B or B zd B holds
2 J i j

We can now prove the following decomposition theorem.

_2. Each cluster C of order n has a unique expression

as join of basic independent clusters.

Proof: Cluster C certainly has an expression as

C = B U B. U ... U B. .
J1 32 Js

Suppose now ,that C has some other expression

C = B. U B. U ... UB.
X1 L2 Lr

We now select B. and form the -join 
Lh

B. U ... UB .  U B. ,

and still obtain C. Since B. is a basic cluster, it cannot be the
h

join of any two clusters: therefore, there is some B such that
jk

B. ZD B (5)

If we now form the join

B. U ... U B. U B. f i i j.1 r Jk

by similar reasoning we find

B. ZD B (5a)

By the transitive property, (5) and (5a) yield

B. ZD B.1 “  1, m h



22

Since all B^'s are independent, it follows that

It can be similarly proved that every element of the set {b } coincides
i

with an element of the set {Bj} , whence the thesis. Q.E0D.

Our previous discussion (lemmas 2, 3, 4, and the concept of

cluster) shows that any cluster is an admissible set of Rs. Suppose

now that a choice of RS1s is made (for instance, by giving a function

f and solving system (4) for all possible n-tuples) and their set is

denoted with D: D is certainly an admissible set of RS. We now prove

the stronger statement that D is a cluster. In fact let Zl,zn)...sz1 2  k
be the elements (n-tuples) of D. We express each z. in the form

J
[(PO*)*]^, with minimal P, and form the cluster C = [0*(PO*)*] . 

Further we form the join

W = Cx U c2 u . . .  u ck .

Certainly W contains each element of D, i„e„, in set theory notation, 

W 3  D. Suppose that z' e W but that z' £ D. The n=tuple z’ is an RS 

(lemmas 2, 3, 4). This, however, contradicts the hypothesis that D 

contains all RS's, hence W = D. This result is summarized by the 

following theorem.

Theorem 3: Every admissible set of RS's of n-variables is

a cluster of order n.

Theorem 3 completely describes the freedom of selection of 

n-variables RS’s. In the next section we shall characterize the 

correspondence between sets of Boolean function and RS-clusters.
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—^ •— The_Relation Between RS-Clusters and Sets of Boolean Functions

This section is devoted to the characterization of the set 

of the Boolean functions which possess a givep RS-cluster. A central 

role in this link is played by a matrix M(C) associated with each

cluster C, which we shall now introduce.

Let z be the integer spelled by the binary n-tuple 
Z = (znzn-1’*°* 9zl^* denote with <j z the 2n-component column vector,

the only non-zero component of thich is its (z+l)-th one.

Let b be a 2n component column vector, the (i+l)-th component
in i-n-1 "̂1of which is z^ ,zn_^ ,...,z^ with _i = (i^,i^_^,,..,i ). The vector 

representation of a Boolean function f of n variables, in ring form, is 

a row vector v 1 such that

v ' ° b = f ,

Finally, let be a 2 y2 matrix given by the following recursive 

relation — — —

Sn-1 Sn-1
with =

1 1

0 Sn-1 0 1

(for a more extensive definition of S , see T7]n
With this nomenclature, if zt and w are two distinct n-tuples,

the equations
f(z) = f(w) , f(z) = 0

are replaced respectively by the following vectorial expressions over 

GF(2)
v'“S ° (a + a ) = 0 , v'S'cr = 0 ,n z w n z

We further denote with cr the vector a + c , with the convention thatzw z w
z <w.
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Let us now consider system (4) written for a basic cluster 

B of level (n-1). We notice that the 2nd, 3rd, ..., n-th rows of (4)
n _

express, globally, 2 -1 pairing relations. Each of them can therefore

be put into the form

v 1 -S -ct =0. n zw

We order all vectors a in ascending order according to the index z,

and, for fixed z, in descending order according to w. This ordered

collection of vectors forms a 2° x (2° 1-1) matrix A . (B). The matrixn-1
M(B), associated with the cluster B, is then given by the following 

relation
M(B) = Sn*[<V An-l(B)]* (6)

Example: The cluster B = [0*(010*)*] contains the 4-tuples:

0100, 0101, 0010, 0001, 0000 .

System (4) can be written with reference to any of the equivalent 

4-tuples 0100, 0101. Let us choose 0100. We have then

(4b)

f(0,0,0,0) = 0 
f(0,1,0,0) = f(0,0,0,0) 
f(61,0,1,0) = f(61,0,0,0) 
f(62,61,0,1) = f(62,61,0,0) .

Depending upon the values given to 6^,62> t îe last 3 rows of (4b) 

express 7 pairing relations. These are summarized by the following 

matrix
A4(B) “ ^a04’CT02’CT01’CT4,5,CT8,10,CJ8,9,a12,13^

M(B) is then given by
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M(B) = S4[a0>A4(t) = S4.

1 1 1 1 0 0 0 0

0 0 0 1

0 0 1 0

0
0 1°

0
-°H

0 1 0

0 0 1

0 0

0 0 0

0
_ _

1 1

0 0 1

0 1 0

0 0 0 0

0 0 1

0 0 1

0 0 0

0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0

0 0 0 1 1 0 1 1

0 0 1 0 0 1 0 0

0 0 0 0 0 0 0

1 0 0 0

0 1 1

0 0

0

0 0 0

0 1 1

1 0 0

0 0

0 0

0 1

0 0

0 0 0 0 0 0 0 0

It is worth noticing that, by selecting 0101 instead of 0100, we should 

have obtained a matrix M(B) column equivalent to the one just given.

We now prove the following statement.

Theorem 4: If the basic cluster B has order n and level (n-1),

M(C) has rank 2n-1

Proof: We first show that A _(B) has rank 2n_1-l. To thisn-1
end, we note that if A (B) contains the column a., (j < 2n"1), it

n  — jl J *

also contains a , , (depending upon the value assigned to the
2 +2 +j

6 parameter appearing in most significant position of the n-tuples in 

(4)). Therefore if m 0 is the (n-l)-th level n-tuple used in writing 

system (4), A^_^(B) has the following structure
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an m 5 An 9 0u , [Hq n-1

V i < B) =
n-2

Similarly, if m^ = [mQ/2], we have
l A Q 0

A , (B) = n-1v

n“3
0 >m0 ,CT0,m1’ |-------

L °
A . n-3

0

0 An-2

(7)

The same decomposition can be carried out exhaustively, until we obtain

(See, for reference, the example given above.)

Due to this iterative structure, if cr» cannot be a linear
°>mo

combination of the remaining columns, the columns of A .(B) are linearly in-n-1 J

dependent. We notice therefore that the column a~ contains a single 1
n-2 n-1 ---between its (2 +l)-th and 2 -th positions: the only other columns whose

non-zero terms are (only) in the same positions are those belonging to the

submatrix An_^ enclosed within heavy lines in (7). But, since each of these

columns contains two l's, any linear combination of them contains an even
n_ "ĵ

number of l's: hence the rank of A (B) is 2 -1.n-1v '
By the same argument we can prove that is linearly independent of

the columns of A (B) , and, due to the non-singularity of S , the thesis follows n-i ° n
Q.E.D.

If A is an rXs matrix and B an rXt matrix (s >t), we indicate with the 

notation A > B that B is column equivalent to a proper subset of the columns of A 

Let B^ be a basic cluster of order n of the maximal level, and let B 

a basic cluster of order n such that B^ ^  B. This entails
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that the pairing relations between n-tuples required by contain all 

the pairing relations required by B. In other words, we may say that 

M(B^) > M(B). We have then the following corollary of Theorem 4.

Corollary 3: The rank of the matrix M(B) of an n-th order,

r-th level basic cluster B, is 2r.

Proof: If r = n-1 we have theorem 4. If r < n-1, there is

a cluster B^ of maximal order (n-1), such that B^ z> B. Hence M ^ )  >

M(B). But since M(B^) has rank 2n \  the columns of M(B) are linearly 

independent. Since they are 2 in number, the statement is proved. Q.E.D.

To complete the characterization of the matrix M(C), we have 

to consider the case of non-basic clusters (i.e., of joint clusters).

The solution of this problem follows easily after lemma 5.

Lemma 5: If B^ and B^ are two basic clusters of level r

(r = 2,3,...,n-1) and s < r is the level of B^ = B^ f| » the rank of 

M(B1 U B ) is 2r + 2r'S - 1.

Proof: If we write system (4) for both B^ and B , we notice

that only the 2-nd, 3-rd,...,(r-s+1)-th rows of the two systems are

distinct. Therefore to the 2 relations determined by B.. , B adds
J 1 2£•- g

2 -1 pairing relations. To prove that the column vectors repre-
r  IT*” Ssenting these 2 + 2  -1 relations are linearly independent, we con

struct the matrix A^(B^ U B^) according to the same criterion given at 

the beginning of the section. Then the proof follows exactly the lines 

of that of Theorem 4, and is therefore omitted. Q.E.D.

Lemma 5 yields a significant corollary.

Corollary 4: If B^ and B^ are two basic clusters of levels
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rl and r2 resPectively (r1 > r2) > and s < r2 is the level of B (1 B ,
r r - s

the rank of M(B]L U B ) is 2 1 + 2 2 - 1.
k

Proof: Let be an r^-th level basic cluster such that
* ,v

^ 2 ^2 * ^ince the columns of M(B^ U B^) are linearly independent, so
JL

are the columns of M(B^ U B^) < M(Bl u b “). It is now easy to verify
rl r2 Sthat to the 2 conditions required by B^jB^ adds 2 - 1 pairing

relations. Q.E.D.

Given the basic clusters B-,B0,...,B , let D. denote the
i l m k

join B^ U U ••• U  ̂ (k = 2,3,...,m). We can now state the 

following theorem.

Theorem 5: Let B1,B ,...,B be basic cluster and r, > r1 2 m  1 —
... > r be their respective levels. If s. is the level of D fj B - m j k
(k = 2,3,...,m), we have

k

in r  . - s  .
rank{M(B^ l) U ... U B )] = 2 + J (2 - I). (8)

Proof: If m = 2, corollary 5 reduces to corollary 4 (or

lemma 5). If m > 2, B^ only adds the conditions not already required
10 — s

by B1U B2 = D3. If s3 is the level of D3 fl B3> B3 exactly add 2 3 3 -1

new pairing relations: their corresponding vectors are shown, as in

Theorem 4, to be linearly independent of the columns of M(B1 (J B ).

This argument is then..iteratively applied to B.,...,B . Q.E.D.4 m
Theorem 5 summarizes all previous partial results, and, 

since each cluster C is the unique join of a subset of basic independent 

clusters, it provides a simple formula to compute the rank of the 

matrix H(C) associated with any given cluster C. It is worth noticing,
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at this point, that only the levels, and not the order of the clusters 

participate in the determination of the rank of M(C).

Particular case: It is convenient to compute the rank of

M(U), if U is the unity element of the cluster lattice (i.e., for every 

C ± U, e c u ) .

The cluster U contains all n-tuples which are 0 in their most

significant position. Every such n-tuple is expressible as a unique

concatenation of the (n-1) digit sequences 01, Oil,...,01...1.

Therefore, letting B - = [0*(010*)*] , B _ = [0*(0110*)*] ,...,6, =n-i n n-2 n 1
[0*(01...1)] , U is obviously given by the relation

U = B U B U . . .  U B 1 1 2  n-1

B-, ,B , . . . ,B are all of level n-1. We construct now D„,D^,...,D 1 2  n-1 2 ’ 3 n-1
The level of fl B^ = B^ f| B^ is n-2, of fj B^ is n-3, etc. In 

general, the level of f| B^ is n-j for j = 2,3,...,n-1. If we now 

use relation (8) to compute the rank of U, we obtain

rank M(U) = 2n_1 + 2 (2n-1"n+j - 1) = 2n - n
j-2

M(U) is a 2° x (2n-n) matrix.”̂

The definition of M(C) and the analysis of its rank jointly 

yield the following important result.

Theorem 6: The set of Boolean functions which possess the

cluster C as set of RS1s is the null space of M(C), i.e., a vector

It is worthwhile mentioning that any function which pos
sesses U induces a resynchronizing point after each 0 of the input 
sequence.
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subspace of dimension 2° - w, if w is the rank of M(C).

Theorem 6 provides a solution to the problem of finding all 

functions which possess a given RS-cluster C. In fact from C we can 

immediately construct M(C) and from this derive a basis of the vector 

subspace of the Boolean functions which possess C. Before solving 

its reciprocal problem we need some simple additional results.

For every C ^ U, M(C) < M(U), i.e., a proper subset of the 

columns of M(U) is column equivalent to M(C). Let v' represent a 

function which possesses C. It follows that

v'-M(C) = 0 .

If we now postmultiply v' by M(U) we obtain an (2n~1)-component vector

u(v1) = v * -M(U)

which, by analogy with a similar concept in the theory of error cor

recting codes, we call the syndrome of v !. Obviously u(v') is 0 at 

least in the positions corresponding to the subset of the columns of 

M(U) which is equivalent to M(C).

We also say that, if u and w are two vectors of the same 

space over GF(2), u covers w if and only if u has 0's at least in those 

positions in which w has 0's (i.e., the 0's of w are a subset, proper 

or improper, of the 0's of u)*

Finally, we say that the function _v1 possesses C as maximal 

RS-cluster if it does not have any other RS outside C.

With this nomenclature, we can now give a solution to the 

problem of determining all the RS's of a given function v.
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Let be the basic clusters of order n. With

each B. we associate a (2 -1)-component syndrome vector u. which is 0 only 
J J

in the positions corresponding to the subset of the columns of M(U) which 

is equivalent to M(B^) . The following theorem follows directly from our 

definitions.

Theorem 7; A function v' possesses C = B. U B. U .... U B
L1 X2 ik

as maximal cluster if and only if u(v’) covers only u. ,u. ,««„,u. in the
L1 12 Xk

It should be noted that at this point if the test for coverage

is carried over the entire set u-,u_,...,u„, the selected set B ,B .... B
1 2 N ii i2 ik

is, in general, not composed of independent basic clusters (in fact any time 

a high level cluster satisfies the test, the lower level basic clusters it 

contains necessarily satisfy it). To avoid the selection of a redundant 

set of B^'s and to reduce the length of the process, the exhaustive 

"single stage" test, consisting of N comparisons, may be profitably replaced 

by a more elaborate sequential test« In the latter, by properly choosing 

the order of the comparisons, and using the knowledge provided by previous 

comparisons to direct the test, it is possible to obtain a non-redundant 

set of B^'s in a minimal number of steps (on the average, considerably 

smaller than N). This subject, however, although formally elegant, will 

not be analyzed in this paper.

V. Final Remarks - Conclusion

At the end of Section II, we showed that finite-memory non

feedback decoding is feasible only if the input sequence {x} is composed
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or irreducible subsequences of bounded length. This, it was noted, imposes 

a definite constraint on the symbol generating source, in the sense that 

some interdependence is established between consecutive symbols of {x} if 

the source is to match the adopted decoder.

This constraint can be expressed in a quantitative form in terms 

of the entropy loss per generated symbol (in bit/digit). A preliminary study 

has been conducted in which relations have been established between the 

selected RS-cluster, the decoder length and the source entropy. Although a 

deeper analysis is felt necessary it appears that for a reasonable number 

r_ of stages of the decoder (4n < r < lOn) the entropy loss becomes 

negligible. From a different point of view, it seems possible to evaluate 

the error rate if an unconstrained sequence is decoded by a finite-memeory 

device. These preliminary results, however, because of their incompleteness 

and for the sake of brevity, are not reported in the present paper.

As regards the circuit implementation of the decoding process,

it appears convenit to illustrate in Fig. 6 a realization of the finite-

memory decoder which is possible if the clock rate is uniform and the

required circuit speed is attainable. Each time unit, of constant duration,

is subdivided into (r-j-1) intervals, identified by a set of periodic timing

signals Tq 9t 1}...,T , with period equal to the time unit. The symbol

y is entered into the decoder at time T and the decoded x is emitted b U s
at time T .r
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Fig. 6. A Realization of a Finite-Memory Non-Feedback Decoder.

The inclusion of the n-stage feedback shift-register as a 

portion of the decoder should not be misleading to the reader. The 

decoder, in its entirety, is in fact without feedback: the feedback

shift-register, which is reset to 0 any time a new symbol of {y} is 

received, only performs an iterative operation on digits contained in 

the r-stage delay line* In this way erroneous symbols of {y} will 

produce erroneous symbols of the decoded {x} only as long as they are 

contained in the delay line. It is therefore evident that a single 

error on the {y} sequence may affect at most r consecutive digits of 

the {x} sequence.
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The reasonable simplicity of implementation of sequence 

transformations by means of finite-memory non-feedback shift-registers 

appears as a sufficient motivation of interest. The theoretical 

analysis given in the previous section provides a formal tool for the 

selection of the numbers n and r of encoder and decoder stages, 

respectively, and, as the need may be, of adequately wide classes of 

transformations possessing "good" resynchronizing properties. It is 

felt that further analysis may show a useful formal connection between 

choices of RS-clusters and constraints on the input sequences.
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