A TOPOLOGICAL TECHNIQUE FOR ANALYSIS OF ACTIVE NETWORKS
 John T. Barrows, Jr.

- This work was supported wholly by the Joint Services Electronics Programs (U. S. Army, U. S. Navy, and U. S. Air Force) under Contract No. DA 28043 AMC 00073(E).

Reproduction in whole or in part is permitted for any purpose of the United States Government.

DDC Availability Notice: Qualified requesters may obtain copies of this report from DDC. May be released to OTS.

A TOPOLOGICAL TECHNIQUE FOR ANALYSIS OF ACTIVE NETWORKS

John T. Barrows, Jr.

ABSTRACT

This paper presents a generalization of Fuessner's method for the analysis of active networks. This method makes it possible to determine system functions of any network in a simple and straightforward manner.

In the usual topological analysis of networks it is necessary to list all possible trees or co-trees and the signs of their tree admittance products as well as determining the set of 2 -tree products and their signs for the network function in question. Usually two graphs, a current and a voltage graph, are used to implement this process when dependent sources are present in the network. The method presented here utilizes solely the original topology and the assigned branch current directions to determine these terms and their sign. Justification of the technique is given for the cases of one and two dependent sources present in a network with the summary of the method for each case. The analysis of a network with an arbitrary number of dependent sources is seen to follow directly. Finally an example of a network with two dependent sources is given which illustrates the method.

INTRODUCTION

The early methods of Kirchhoff ${ }^{4,5}$, Maxwe 11^{9} and Feussner ${ }^{2,7,11}$ demonstrate the practicability and simplicity of topological techniques used in the determination of network functions of passive networks. This paper is concerned with the application of topological techniques to active (nonseparable) networks with the discussion in terms of branch impedances and admittance functions. Specifically, Feussner's method is extended to networks containing dependent voltage sources which depend on current in other branches of the network. By using elementary source transformations, both dependent current sources and dependent voltage sources with arbitrary dependencies can also be treated.

The discussion will be restricted to resistive networks for simplicity and uniformity but applies directly to general R, L, C networks. In fact, networks with mutual inductance can be treated if the coupling is represented by appropriate dependent sources ${ }^{9}$. Also, networks containing only one independent source will be considered since the Principle of Superposition can be applied. Each element will be considered as a separate branch except for voltage sources (both dependent and independent) in series with a passive element.

Since Feussner's method and the Method of Residual Networks after R. Seacat ${ }^{7}$ are basic to the discussion, a brief summary of these will be given prior to the main results.

1. Feussner's Method and the Method of Residual Networks

Feussner's method provides an easy means for finding the co-trees of a passive network and since the determinant of the mesh-impedance matrix of a network yields the sum of the co-tree products, this provides a simple way of calculating the denominator of the response functions of the network.

The current response in the k^{0} th mesh of an mesh network containing a single voltage source in mesh 1 is given by

$$
\begin{equation*}
I_{k}=E_{1} \Delta_{1 k / \Delta} \tag{1}
\end{equation*}
$$

where Δ is the network determinant and $\Delta_{1 k}$ is the cofactor obtained from Δ by crossing out the first row and the k 'th column.

Calculation of the Denominator

If R_{a} appears only in terms on the main diagonal of the system determinant (this can always be done by a suitable choice of mesh currents), Δ can be expressed as

$$
\Delta=R_{a} \Delta_{a}+\Delta_{a^{\prime}}
$$

where Δ_{a} is the cofactor obtained by crossing out the row and column containing R_{a} and Δ_{a}, is the original determinant with R_{a} equal to zero. Upon inspection of Δ_{a} it is apparent that it is the determinant of a network N_{a} which is identical to the original network except that R_{a} has been replaced by an open circuit. Also $\Delta_{a^{\prime}}$ is the determinant of a network $N_{a^{\prime}}$ which is the same as the original network with R_{a} replaced by a short circuit.

Now N_{a} and N_{a}, can be considered as new networks and their determinants can be expanded similarly, say with respect to element R_{b}. Thus

$$
\begin{equation*}
\Delta=R_{a} R_{b} \Delta_{a b}+R_{a} \Delta_{a b^{\prime}}+R_{b} \Delta_{a^{\prime} b}+\Delta_{a^{\prime} b^{\prime}} \tag{2}
\end{equation*}
$$

This process can be continued until the original network has been reduced to a set of primitive networks whose system determinants can be found by inspection. These primitive networks, their system determinant, and the topological graph corresponding to the principle determinant are shown in Figure 1. From Figure 1 it is apparent that a graph which is connected but which has no circuits has a determinant equal to unity (see graph (a), Δ_{a}; and graph (c), Δ_{a}); a graph which contains a "double short" has a zero determinant (see graph (a), $\Delta_{a^{0}}$; and graph (b), $\Delta_{a^{0}}$); and a graph which is separated has a zero determinant (see graph (e), $\Delta_{a^{p} b^{p} c^{p} \text {). The source can be }}$ shorted without affecting the determination of Δ.

In this manner it is possible and quite simple to find all the terms of the denominator of an admittance function directly. This is a self-checking method which eliminates the tedious cancellation of terms in the solution of the system determinant by conventional techniques.

For passive networks containing inductors and capacitors the Method of Residual Networks due to R. Seacat ${ }^{7}$ provides a means of directly calculating the denominator (and numerator) in the form of a polynomial, and yields any coefficient of the polynomial essentially by inspection. (This fact can be used nicely in active networks to ascertain the presence and dependence of any degeneracy due to the active elements as well as indicating ordinary degeneracies due to all-capacitor and all-inductor loops and cut-sets). In this method the expansion is done in terms of all the inductors and capacitors of the network by replacing each of these elements by switches. Since the expansion is done in terms of all the reactive elements, residual networks containing only resistors are left and Feussner's primitive-graph correspondences are used to ascertain the complete coefficient. If a particular L-switch is

$$
\begin{aligned}
\Delta & =R_{o} \\
\Delta_{a} & =1 \\
\Delta_{a^{\prime}} & =0
\end{aligned}
$$

(a)

(b)

$$
\begin{aligned}
& \Delta=R_{\mathrm{a}}+R_{b} \\
& \Delta_{\mathrm{a}}=\Delta_{\mathrm{b}}=1 \\
& \Delta_{\mathrm{a}^{\prime}}=R_{b}
\end{aligned}
$$

(c)

$\Delta=R_{a} R_{b} R_{c}$
$\Delta=R_{c}\left(R_{b}+R_{c}\right)+R_{b} R_{c}$
$\Delta_{0}=R_{b} R_{c}$
$\Delta_{a}=R_{b}+R_{c} ; \Delta_{a^{\prime}}=R_{b} R_{c}$
$\Delta_{a^{\prime}}=0$

open (L is extremized to infinity), L appears in a product of terms in a coefficient, and doesn ${ }^{\circ} t$ appear if its switch is closed; alternatively if a particular C-switch is closed (C is extremized to infinity) C appears in a coefficient and doesn ${ }^{\prime} t$ appear if its switch is opened. To make this clear, suppose we have a network containing two capacitors C_{1} and C_{2} and one inductor L_{3}. The denominator will be of the form

$$
\begin{align*}
& =\frac{1}{s^{2} C_{1} c_{2}}\left[s^{3}\left\{c_{1} c_{2} L_{3} \Delta_{1^{\prime} 2^{\prime} 3^{\prime}}\right\}+s^{2}\left\{c_{1} c_{2} \Delta_{1^{\prime} 2^{\prime} 3^{\prime}}\right.\right. \\
& \left.+c_{1^{\prime}} L_{3^{\prime}} \Delta_{1^{\prime} 23}+c_{2} L_{3} \Delta_{12^{\prime} 3^{\prime}}\right\}+s\left\{c_{1^{\prime}} \Delta_{1^{\prime} 23^{\prime}}\right. \\
& \left.\left.+c_{2} \Delta_{12^{\prime} 3^{\prime}}+L_{3} \Delta_{123^{\prime}}\right\}+\Delta_{123^{\prime}}\right] \tag{3}
\end{align*}
$$

where for example $\Delta_{1^{\prime} 2^{\circ} 3}$ is the determinant of the residual network which is obtained by shorting switches C_{1} and C_{2} and opening switch L_{3}.

The term $S^{2} C_{1} C_{2}$ which appears in the denominator of this expression will also appear in the same manner in the numerator of all admittance functions and therefore can be disregarded.

Calculation of the Numerator

The underlying theory for the method of calculation of the numerator given here, which is due to Kirchhoff, will be deferred and taken up in the next section in conjunction with the analysis of active networks and only the technique is given at this point.

This calculation involves the concept of a path current which is defined as a current flowing from the source through the network in a single closed loop. The algebraic sum of all path currents through a particular branch equals that branch current. The number of path currents in a network
due to a single source will in general be greater than or equal to the number of independent mesh currents.

Since this concept is best explained by an example, let us calculate the admittance function I_{2} / E_{1} of the network of Figure $2 a$ which can be written as

$$
I_{2} / E_{1}=\Delta_{12} / \Delta .
$$

In this simple example only one path current flows through the source and branch 2 , and in completing its path it flows through R_{1}, R_{3} and $R_{2} . \Delta$ can be expanded in terms of these three elements:

$$
\begin{equation*}
\Delta=R_{1} R_{2} R_{3} \Delta(123)+R_{1^{2}} R_{2} \Delta\left(123^{\prime}\right)+\ldots+R_{3^{\Delta}}{\left(11^{\prime} 2^{\prime} 3\right)}+\Delta \Delta_{\left(1^{\prime} 2^{\prime} 3^{\prime}\right)} \tag{4}
\end{equation*}
$$

Similarly Δ_{12} can be expanded with respect to these same elements:

$$
\begin{align*}
\Delta_{12}= & R_{1} R_{2} R_{3} \Delta_{12(123)}+R_{1} R_{2} \Delta_{12\left(123^{\prime}\right)}+\cdots+ \\
& R_{3} \Delta_{12\left(1^{\prime} 2^{\prime} 3\right)}+\Delta_{12\left(1^{\prime} 2^{\prime} 3^{\prime}\right)} \tag{5}
\end{align*}
$$

By definition of this method of expansion, it is obvious that the only term which contributes to Δ_{12} is the term $\Delta_{12\left(1^{\prime} 2^{\prime} 3^{\prime}\right)}$ which is the residual determinant obtained from the original network by shorting R_{1}, R_{2} and R_{3}. All of the other terms indicate that one or more of these three resistors have been opened and therefore won't allow this path current to flow. Therefore to topologically determine the terms in Δ_{12} arising from a path current J, open the terminals of the source and short all elements in path J and determine the determinant of the resultant primitive network using Feussner's method (see Figure 2c).

Figure 2

Thus the expression for any branch current is obtained by algebraically summing the residual contributions of each path current flowing through the branch in question.

So far nothing has been said about the signs of these terms. For uniformity all path currents will be drawn through the source from the negative to the positive terminal. Branch current directions are assigned, where possible, to agree with the direction that a positive E would drive a positive current through a particular branch. Now the contribution of a single path current through the branch in question will be positive if its direction agrees with the branch current direction, negative otherwise.

The determination of path currents using the method of residual networks for passive R, L, C networks follows directly with all the Lswitches and C-switches in a path under consideration necessarily being shorted and the determinant of the residual network calculated as above.

2. Extension to Active Networks

We now justify the techniques presented in Section I and extend them to active networks. The network to be considered has b branches, $b_{1}, b_{2}, \ldots, b_{b}$, and n nodes, $a_{1}, a_{2}, \ldots, a_{m}, a_{n}$ with node a_{n} to be taken as datum and where $m=n-1$. Branch b_{j} will be denoted by j whenever the context is such that no confusion will arise.

We will utilize, in the analysis, the matrix equation ${ }^{11}$

(6)
where \mathbb{E} is the $m \times 1$ node voltage matrix
II is the $\mathrm{b} \times 1$ branch current matrix
A is the $m \times b$ reduced incidence matrix
\mathbb{R} is the $\mathrm{b} x \mathrm{~b}$ branch resistance matrix which for a passive network is diagonal; for an R, L, C, M network with dependent sources \mathbb{R} is replaced by \mathbb{Z} which is not diagonal in general.

$$
\text { Denoting the }(m \times b)^{\text {th }} \text { order matrix by } \mathbb{D} \text { we have }
$$

We want to find, topologically, the network junction $I_{i / E_{b}}$ which can be written as

$$
\begin{equation*}
\frac{I_{i}}{E_{b_{1}}}=\frac{\Delta_{b_{1} i}^{o} \pm \sum_{j} \mu_{j} \Delta_{b_{1}} i_{j} d_{j} \pm \cdots \pm \mu_{1} \mu_{2} \ldots \mu_{s} \Delta_{b_{1} i_{1} d_{1}}::: s d_{s}}{\Delta^{o} \pm \sum_{j} \mu_{j} \Delta_{j d_{j}} \pm \sum_{j<k} \mu_{j} \mu_{k} \Delta_{j d_{j}} k d_{k} \cdots \pm \mu_{1} \cdot \mu_{s} \Delta_{1 d_{1}} \ldots s d_{s}} \tag{8}
\end{equation*}
$$

where

$$
\begin{aligned}
\Delta^{\circ}= & |\mathbb{D}| \text { with all } \mu^{\prime} s \text { in } \mathbb{D} \text { (and in the network) set to zero; } \\
\Delta_{b_{1} i}^{\circ}= & \left|\mathbb{D}_{b_{1} i}\right| \text { where row } b_{1} \text { and column } b_{i} \text { are crossed out in } \mathbb{D} \\
& \text { and all } \mu^{\prime} \text { s set to zero; } \\
\Delta_{j d_{j}}= & \left|\mathbb{D}_{j d_{j}}\right| \text { where row } b_{j} \text { and column } d_{j} \text { are crossed out in } \mathbb{D} \\
& \text { and all } \mu \text {-source (dependent source) voltages set to zero } \\
& \quad \text { except } \mu_{j} I_{d_{j}} ; \text { etc. }
\end{aligned}
$$

The ambiguity of signs as well as the signs of terms within each cofactor will be resolved in the sequel.
A. Determination of Δ°
$\Delta^{0}=||D|$ with all dependent sources set to zero, (i.e. shorted) leaving a passive resistive network. Therefore \mathbb{R} is diagonal and \mathbb{D} can be expanded by Laplace's rule to yield the sum of co-tree products of the network. The details of this expansion will be omitted here since the topological determination of Δ° has been discussed and justified in section I.
B. Determination of $E_{1} \Delta_{b_{1}}^{\circ}$ and $\mu_{j} \Delta_{j d_{j}}$
$\Delta_{b_{1} i}^{o}=\left|\left|D_{b_{1} i}\right|\right.$ with all dependent sources set to zero in the network and therefore corresponds to the numerator of the network junction $I_{i / E_{1}}$ for a purely passive network. Without loss of generality it will be assumed that the desired network junction is $I_{2 / E}$ and the cofactor to be found is Δ_{12}.

It is apparent that the analysis for $E_{1} \Delta_{12}$ applies equally well to the denominator term $\pm \mu_{1} \Delta_{12}$ where the independent source and all dependent sources
have been set to zero except $\mu_{1} I_{2}$. Thus in general, the analysis to follow applies to the term $\pm \mu_{j} \Delta_{j d_{j}}$ which arises from a single dependent source in branch b_{j} depending on current in branch $d_{j}=b_{k}$ for some k.

As indicated above, a dependent source voltage will be written as $\mu_{j} I_{j}$ which means that μ_{j} effectively has units of resistance. It is assumed for simplicity that R_{j} and $R_{d_{j}}$ are nonzero although the theory will hold if either or both are zero. Also the voltage $\mu_{j} I_{d}$ is to appear in branch b_{j} preceded by a plus sign with the voltage reference signs to be adjusted accordingly.

We expand $\left|\left|D_{12}\right|\right.$ by Laplace's rule by first crossing out row b_{1} and column b_{2} of \mathbb{D}. Using the first m rows of \mathbb{D}_{12} (i.e. all the rows of $A \mathbb{}$) we consider all minors D_{α} of order m that can be found from the rows and columns of $A^{(2)}$ which is A with column b_{2} crossed out. There are $\binom{b}{b}$ possible minors. Since the rows $a_{1}, a_{2}, \ldots, a_{m}$ are the same for all such minors we denote a particular minor D_{α} by the ordered m-tuple of its column numbers as given in $\mid D$ taken in order of increasing magnitude. Therefore $D_{\alpha}=\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{m}\right)$ where $\alpha_{i}=b_{j}$ for some j and is actually the $\left(m+\alpha_{i}\right)^{\text {th }}$ column of $\mid D$; also row a_{i} of D_{α} is the $i^{\text {th }}$ row of \mathbb{D}.

For each minor D_{α} there is a corresponding algebraic complement $(-1) \eta^{\alpha} D^{\alpha}$ obtained from $\mid D$ by crossing out the rows and columns chosen in D_{α}, where η is the sum of the numbers of the rows and columns contained in D_{α}. Therefore

$$
\begin{equation*}
\left|\mathrm{D}_{12}\right|=(-1)^{\mathrm{b}_{1}+\mathrm{b}_{2}} \Sigma(-1)^{\eta} \mathrm{D}_{\alpha} \mathrm{D}^{\alpha} \tag{9}
\end{equation*}
$$

Now

$$
D^{\alpha}=\left|\left[A^{T}\right]_{(1)}\right| \mathbb{R}^{\alpha} \mid
$$

where \mathbb{R}^{α} is obtained by crossing out row b_{1}, column b_{2} and columns $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{m}$ of \mathbb{R}. It is more convenient to work with

$$
D^{\alpha}=\left|\begin{array}{|l}
\mathbb{A}^{(1)} \\
\hdashline \mathbb{R}_{\alpha}
\end{array}\right|
$$

where $\mathbb{R}_{\alpha}=\left[\mathbb{R}^{\alpha}\right]^{T}$ and can be obtained from \mathbb{R} by crossing out column b_{1}, row b_{2}, and rows $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{m}$. Applying Laplace's rule to the expansion of D^{α} considering all minors D_{β} of order m obtained from $A l^{(1)}$ we have

$$
D^{\alpha}=\sum_{\beta}(-1)^{\nu} D_{\beta} R_{\alpha}^{\beta}
$$

where $D_{\beta}=\left(\beta_{1}, \beta_{2}, \ldots, \beta_{m}\right)$ and R_{α}^{β} is the minor of \mathbb{R} formed by crossing out rows $b_{2}, \alpha_{1}, \alpha_{2}, \ldots, \alpha_{m}$ and columns $b_{1}, \beta_{1}, \beta_{2}, \ldots, \beta_{m}$. As before, ν is the sum of the numbers of the rows and columns contained in D_{β}. Therefore

$$
\begin{equation*}
\Delta_{12}=(-1)^{b_{1}+b_{2}} \Sigma(-1)^{\eta+\nu} D_{\alpha} D_{\beta} R_{\alpha}^{\beta} \tag{10}
\end{equation*}
$$

Since D_{α} and D_{β} are $m^{\text {th }}$ order determinants taken from the reduced incidence matrix and R_{α}^{β} is not diagonal in general for arbitrary choices of D_{α} and D_{β}, some of the terms in this expansion will be zero. Considering just one term in this summation we have

Proposition 1. $\quad D_{\alpha} D_{\beta} R_{\alpha}^{\beta}$ is nonzero only if D_{α} and D_{β} are $m^{\text {th }}$ order minors which both correspond to trees of the network.

Proposition 2. $D_{\alpha} D_{\beta} R_{\alpha}^{\beta}$ is nonzero if and only if D_{α} corresponds to a tree and contains column b_{1}, D_{β} corresponds to a tree containing branch (column) b_{2} and the remaining $m-1$ columns of D_{α} are identical to the last $m-1$ columns of D_{β} in the same order.

Proof: Crossing out row b_{1} and column b_{2} of \mathbb{D} leaves a submatrix \mathbb{R}_{12} which is not diagonal and has only resistive terms for its nonzero entries. The rows and columns of \mathbb{R}_{12} which are subsequently eliminated appear as columns of D_{β} and D_{α}, respectively. Thus crossing out row b_{2} and column b_{1} leaves a diagonal submatrix whose determinant is therefore nonzero. Similarly for every row eliminated in \mathbb{R}_{12}, the corresponding column must also be crossed out if the resulting minor is to remain diagonal and therefore nonzero.

> Q.E.D.

Letting $\alpha_{1}=b_{1}$ and $\beta_{1}=b_{2}$ we have

$$
\mathrm{D}_{\alpha}=\left(\mathrm{b}_{1}, \alpha_{2}, \ldots, \alpha_{m}\right)
$$

and

$$
D_{\beta}=\left(b_{2}, \beta_{2}, \ldots, \beta_{m}\right)
$$

where $\alpha_{i}=\beta_{i}$ for $i \neq 1$. Also R_{α}^{β} is a positive product of ($b-m-1$) resistances which appear in the tree complements of D_{α} and D_{β}.

In the case of a μ-source depending on its own branch current, i.e., $\mu_{1} I_{1}$, a term in the summation is nonzero if and only if D_{α} and D_{β} both correspond to trees and all their columns are identical. (This case can be regarded as passive with total resistance $R_{1} \pm \mu_{1}$ in branch b_{1}.)

Now with these conditions and the fact that the original column numbers have been used to designate D_{α} we have

$$
\begin{align*}
\eta & =\left[a_{1}+a_{2}+\ldots a_{m}\right]+\left[\left(m+b_{1}\right)+\left(m+\alpha_{2}-1\right)+\ldots+\left(m+\alpha_{m}-\right.\right. \\
& =\frac{m(m+1)}{2}+m^{2}+b_{1}+\left(\alpha_{2}-1\right)+\left(\alpha_{3}-1\right)+\ldots+\left(\alpha_{m}-1\right) \tag{11}
\end{align*}
$$

since the column numbers of \mathbb{D}_{12} have decreased by one after column b_{2} because b_{2} has been crossed out. Similarly

$$
\begin{align*}
v & =\left[a_{1}+a_{2}+\ldots a_{m}\right]+\left[\left(b_{2}-1\right)+\left(\beta_{2}-1\right)+\ldots+\left(\beta_{m}-1\right)\right] \\
& =\frac{m(m+1)}{2}+\left(b_{2}-1\right)+\left(\beta_{2}-1\right)+\cdots+\left(\beta_{m}-1\right) \tag{12}
\end{align*}
$$

since row b_{1} has been crossed out and therefore the row numbers of D_{β}^{T} are decreased by one after row b_{1} from their original numbers in \mathbb{D}. Thus since $\alpha_{i}=\beta_{i}, i=2,3, \ldots, m$ we have

$$
\begin{aligned}
(-1)^{\eta+\nu} & =(-1)^{m(m+1)+m^{2}+b_{1}+\left(b_{2}-1\right)+2\left(\alpha_{2}-1\right)+2\left(\alpha_{3}-1\right)+\ldots 2\left(\alpha_{m}-1\right)} \\
& =(-1)^{m^{2}}(-1)^{b_{1}+b_{2}-1}
\end{aligned}
$$

It is apparent that the factor $(-1)^{\mathrm{m}^{2}}$ will appear in every term in both numerator and denominator of the network function and will therefore cancel. However, it is convenient for the rest of the discussion if m is assumed an even number which means $(-1)^{m^{2}}=+1$. Therefore the t erm becomes

$$
\begin{align*}
(-1)^{b_{1}+b_{2}(-1)^{\eta+\nu} D_{\alpha} D_{\beta} R_{\alpha}^{\beta}} & =(-1)^{b_{1}+b_{2}(-1)^{b_{1}+b_{2}-1} D_{\alpha} D_{\beta} R_{\alpha}^{\beta}} \\
& =-D_{\alpha} D_{\beta} R_{\alpha}^{\beta} \tag{13}
\end{align*}
$$

Now all that remains is to determine the sign of $D_{\alpha} D_{\beta}$. Since $D_{\alpha}= \pm 1$ and $D_{\beta}= \pm 1$ it is sufficient to determine the sign of D_{β} with respect to D_{α}.

Noting that $D_{\alpha}=\left(b_{1}, \alpha_{2}, \alpha_{3}, \ldots, \alpha_{m}\right)$ and $D_{\beta}=\left(b_{2}, \alpha_{2}, \alpha_{3}, \ldots, \alpha_{m}\right)$, when the two trees corresponding to these minors are coupled, a subnetwork is obtained which has exactly one loop containing both branch b_{1} and branch b_{2}. Call this loop, J, and let its branches be labeled $b_{1}, b_{2}, \gamma_{1}, \gamma_{2}, \ldots, \gamma_{p}$ where $p \leq m-1$. The branches $\gamma_{1}, \gamma_{2}, \ldots, \gamma_{p}$ appear as columns in both D_{α} and D_{β}.

In D_{β}, add column $\gamma_{j}(j=1,2, \ldots, p)$ to column b_{2} if branch currents $I_{b_{2}}$ and $I_{\gamma_{j}}$ have the same directions around the loop; subtract γ_{j} from b_{2} otherwise. The result of these operations which don't change the value of D_{β} yields a column in position 1 which is plus or minus column b_{1}, the leading column of D_{α}. This first column of D_{β} equals minus b_{1} if and only if $I_{b_{1}}$ is in the same direction as $I_{b_{2}}$ around the loop and in this case $D_{\beta}=-D_{\alpha}$ and $D_{\alpha} D_{\beta}=-1$; otherwise $D_{\alpha}=D_{\beta} \cdot D_{\beta}=+1$. Thus since $(-1)^{b_{1}+b_{2}}(-1)^{\eta+\nu}=-1$, equation 13 becomes $+R_{\alpha}^{\beta}$ if branch currents $I_{b_{1}}$ and $I_{b_{2}}$ have the same sense around loop J and is $-R_{\alpha}^{\beta}$ otherwise.

Now the method given in Section 1 follows directly from the above and the terms of $E_{1} \Delta_{12}$ can be found topologically: open the terminals of E_{1} and draw a path current through E_{1} and R_{2}; set all elements in this path to zero (short-circuit them) and find the residual network terms by Feussner's method. The sign of these terms is plus if both I_{1} and I_{2} are in the same sense around the loop; otherwise the sign is minus. Since branch current directions are assigned in a natural way with respect to E_{1} without loss of generality, the sign determination can be simplified. Draw the path current J from - to + through E_{1} traversing branch b_{2}; the sign of the terms is positive if the path current direction agrees with the direction of I_{2}; otherwise the sign is negative. This eliminates the comparing of directions of the two branch currents I_{1} and I_{2}.

Drawing all possible path currents through the opened terminals of E_{1} traversing branch b_{2} one at a time, finding the residual terms as above and adding these terms algebraically yields $E_{1} \Delta_{12}^{\circ}$.

By replacing E_{1} with $\left(-\mu_{1}\right)$ we have the denominator term $-\mu_{1} \Delta_{12}$ due to a single dependent source $\mu_{1} I_{2}$. This replacement is valid since, by the
convention of assigning branch current directions, $+\mathrm{E}_{1}$ appears in position $d_{b_{1}} b_{2}$ of $\mid D$ in the determination of I_{2} by Cramer's rule whereas a voltage rise across the dependent source in the direction of positive I_{1} appears in this same position as $-\mu_{1}$.

Thus the ambiguity of sign is eliminated in equation 8 . That is, the sign preceding a cofactor in either numerator of denominator is + if the cofactor is multiplied by an even number of $\mu^{\prime} s$ and is minus otherwise.
C. Determination of $\left(-\mu_{j}\right)\left(-\mu_{k}\right) \Delta_{j d_{j}} k d_{k}$ and $E_{1}\left(-\mu_{k}\right) \Delta_{1 i k d_{k}}$

$$
\Delta_{j d_{j} k d_{k}}=\left|\left|D_{j d_{j} k d_{k}}\right|\right.
$$

where all but two dependent source voltages, $\mu_{j} I_{d}$ and $\mu_{k} I_{d_{k}}$, have been set to zero in the network. There are various configurations for these two μ-sources:

1. both μ-sources in distinct branches, each depending on distinct branch currents;
2. both μ-sources in distinct branches, one depending on current in a distinct branch and the other depending on the branch current through either of the two μ-sources;
3. both μ-sources in distinct branches each depending on current in their own branches or on the current in each other's branch. This cofactor is zero if both μ-sources are in the same branch since $j=k$ and both appear in the same row of $\mid D$. Also the cofactor is zero if both depend on current in the same branch since then $d_{j}=d_{k}$ and both μ_{j} and μ_{k} appear in the same column of $1 D$.

Case 1: Again, without loss of generality, we can relabel the branches and consider $\mu_{1} I_{3}$ and $\mu_{2} I_{4}$ and the cofactor Δ_{1324} where rows b_{1} and b_{2} and columns b_{3} and b_{4} have been eliminated from ID. Expanding Δ_{1324} by Laplace's rule, we have as before

$$
\begin{equation*}
\left(-\mu_{1}\right)\left(-\mu_{2}\right) \Delta_{1324}=\mu_{1} \mu_{2}(-1)^{b_{1}+b_{2}+b_{3}+b_{4} \sum_{\alpha, \beta}(-1)^{\eta+\nu} D_{\alpha} D_{\beta} R_{\alpha}^{\beta} . . . ~ . ~} \tag{14}
\end{equation*}
$$

The same reasoning used in Proposition 2 applies to this expansion also and we have

Proposition 3: $D_{\alpha} D_{\beta} R_{\alpha}^{\beta}$ is nonzero if and only if D_{α} corresponds to a tree and contains columns (branches) b_{1} and b_{2} and D_{β} corresponds to a tree which contains branches b_{3} and b_{4}, the other $m-2$ columns of D_{α} and D_{β} being identical.
R_{α}^{β} now is a product of ($b-m-2$) resistors which appear in the complement of D_{α} and D_{β} and

$$
\begin{aligned}
& D_{\alpha}=\left(b_{1}, b_{2}, \alpha_{3}, \ldots, \alpha_{m}\right) \\
& D_{\beta}=\left(b_{3}, b_{4}, \beta_{3}, \ldots, \beta_{m}\right)
\end{aligned}
$$

where

$$
\begin{align*}
& \beta_{i}=\alpha_{i}=b_{j} \text { for some } j \neq 1,2,3,4 \text {. Also } \\
& \eta=\frac{m(m+1)}{2}+\left(m+b_{1}\right)+\left(m+b_{2}\right)+\left(m+\alpha_{3}-2\right)+\ldots+\left(m+\alpha_{m}-2\right) \tag{15}
\end{align*}
$$

and

$$
\begin{equation*}
v=\frac{m(m+1)}{2}+\left(b_{3}-2\right)+\left(b_{4}-2\right)+\left(\beta_{3}-2\right)+\cdots+\left(\beta_{m}-2\right) \tag{16}
\end{equation*}
$$

Therefore $(-1)^{\eta+\nu}=(-1)^{m^{2}}(-1)^{b_{1}+b_{2}+\left(b_{3}-2\right)+\left(b_{4}-2\right)}$ and since m is assumed even, we have

$$
\begin{equation*}
(-1)^{b_{1}+b_{2}+b_{3}+b_{4}}(-1)^{\eta+\nu} D_{\alpha} D_{\beta} R_{\alpha}^{\beta}=+D_{\alpha} D_{\beta}^{R} R_{\alpha}^{\beta} \tag{17}
\end{equation*}
$$

We again consider the sign of D_{β} with respect to D_{α} in the sign determination of $D_{\alpha} D_{\beta}$. Because of the characteristics of D_{α} and D_{β}, it is apparent that when their corresponding trees are coupled, a subnetwork containing two loops is obtained. Actually more than two loops may exist but there are only two with a single μ-source in each. Both branches b_{3} and b_{4} may appear in the same loop with a single μ-source but then only one of b_{3} or b_{4} can belong to the second loop. Branches b_{1} and b_{2} cannot both appear in two loops, and branches b_{3} and b_{4} cannot both appear in two loops. These last two possibilities have interesting interpretations when considered topologically as will be seen.

Therefore there are effectively two possibilities to consider for D_{α} and D_{β} nonzero:
(a) one loop, J_{1}, contains branches b_{1} and b_{3}; the second loop, J_{2}, contains b_{2} and b_{4}. Call this the normal case.
(b) one loop, J_{1}^{p}, contains branches b_{1} and b_{4}; the second loop, J_{2}^{p}, contains b_{2} and b_{3}. Call this the permuted case.
(a) Normal case: Loop J_{1} contains branches b_{1}, b_{3} and $\delta_{1}, \delta_{2}, \ldots, \delta_{p}$, $\mathrm{p} \leq \mathrm{m}-2$; loop J_{2} contains branches $\mathrm{b}_{2}, \mathrm{~b}_{4}$ and $\gamma_{1}, \gamma_{2}, \ldots, \gamma_{q}, \mathrm{q} \leq m-2$ where $\delta_{i}=b_{j}$ for some $b_{j} \in\left\{b_{4}, \alpha_{3}, \alpha_{4}, \ldots, \alpha_{m}\right\}, i=1,2, \ldots, p$ and $\gamma_{i}=b_{k}$ for some $b_{k} \in\left\{b_{3}, \alpha_{3}, \alpha_{4}, \ldots, \alpha_{m}\right\} \quad i=1,2, \ldots, q$. It is possible that $\delta_{i}=b_{4}$ or $\gamma_{i}=b_{3}$, not both.

$$
\begin{aligned}
& D_{\alpha}=\left(b_{1}, b_{2}, \alpha_{3}, \ldots, \alpha_{m}\right) \\
& D_{\beta}=\left(b_{3}, b_{4}, \alpha_{3}, \ldots, \alpha_{m}\right)
\end{aligned}
$$

In D_{β} add column $\delta_{i}(i=1,2, \ldots, p)$ to column b_{3} if the branch currents $I_{b_{3}}$ and $I_{\delta_{i}}$ have the same sense in loop J_{1}; subtract it otherwise. The resulting column in the first position of D_{β} is the same as column b_{1}, the first column of D_{α}, if $I_{b_{3}}$ and $I_{b_{1}}$ have opposite senses in loop J_{1} and is the negative of column b_{1} otherwise. Similarly, adding or subtracting column $\gamma_{i}(i=1,2, \ldots, q)$ to column b_{4} of D_{β} yields plus column b_{2} in this second column position of D_{β} if $I_{b_{4}}$ and $I_{b_{2}}$ have opposite senses around loop J_{2} and yields minus column b_{2} otherwise.

Thus if the branch current pair $I_{b_{1}}, I_{b_{3}}$ have the same direction around loop J_{1} and the pair $I_{b_{2}}, I_{b_{4}}$ have the same direction around loop J_{2} or if both pairs have opposite senses in the respective loops, then $D_{\alpha}=D_{\beta}$, $D_{\alpha} D_{\beta}=+1$ and from equation 17 the resulting term is $+R_{\alpha}^{\beta}$; otherwise $D_{\beta}=-D_{\alpha}$ and the term is $-R_{\alpha}^{\beta}$.

Applying the simplification discussed for the one μ-source case, the topological determination follows directly from the above analysis: open the terminals of both μ-sources and draw path current J_{1} from - to + through μ_{1}, going through R_{3} and path current J_{2} from - to + through μ_{2} and going through R_{4}; set all elements in both paths to zero and calculate the residual terms using Feussner ${ }^{\circ}$ s method. The sign of these terms is positive if J_{1} traverses R_{3} in the same direction as $I_{b_{3}}$ and J_{2} traverses R_{4} in the same direction as $\mathrm{I}_{b_{4}}$ or if both J_{1} and J_{2} have opposite directions with respect to $I_{b_{3}}$ and I_{b} respectively; otherwise the sign is negative. Drawing all possible path current pairs, J_{1} and J_{2}, finding the residual terms corresponding to each pair and adding these set of terms algebraically yields terms in $\Delta_{1324^{\circ}}$

This procedure does not necessarily yield all the terms in Δ_{1324} as will be seen in the discussion of the permuted case. Therefore identify all terms obtained from this normal case as $\Delta_{1324^{\circ}}^{\mathrm{N}}$
(b) Permuted Case: When the trees of D_{α} and D_{β} are coupled a subnetwork with (at least) two loops is obtained which may associate branches b_{1} and b_{4} with loop 1 and branches b_{2} and b_{3} with loop 2. Therefore terms in $\Delta_{13,24}$ can be thought of as arising either from the μ-source pair $\mu_{1} I_{3}$, $\mu_{2} I_{4}$ or from the pair, $\mu_{1} I_{4}, \mu_{2} I_{3}$. In this case we write

$$
\begin{aligned}
& D_{\alpha}=\left(b_{1}, b_{2}, \alpha_{3}, \ldots, \alpha_{m}\right) \\
& D_{\beta}^{P}=\left(b_{4}, b_{3}, \alpha_{3}, \ldots, \alpha_{m}\right)
\end{aligned}
$$

where the first and second columns of D_{β} have been permuted to yield D_{β}^{P}.
Now the procedure for comparing D_{β}^{P} with D_{α} is the same as in the normal case and the resulting sign of $D_{\alpha} D_{\beta}^{P}$ is exactly the negative of the sign of $D_{\alpha} D_{\beta}$ determined in the normal case since some of the columns of D_{β} have been permuted an odd number of times.

Thus the topological determination of these terms is effected by opening the terminals of both μ-sources and drawing a path current $J_{1}{ }^{P}$ from - to + through μ_{1} traversing branch b_{4} and a path current $J_{2}{ }^{P}$ from - to + through μ_{2} traversing b_{3}; the rest of the procedure is the same as for the normal case. The result is a set of signed terms which will be denoted as $\Delta_{1324}^{\mathrm{P}}$ and the effect of the (odd) permutation is accounted for by multiplying this "cofactor" by -1 .

An alternate way of describing the set of terms obtained in this case is

$$
-\Delta_{13,24}^{\mathrm{P}}=+\Delta_{14,23}^{\mathrm{N}}
$$

and $\Delta_{14,23}^{N}$ can be determined from the normal case analysis associated with the μ-source pair of $\mu_{1} I_{4}$ and $\mu_{2} I_{3}$. (The sign of $(-1)^{\eta+\nu}$ changes if this idea is used and the two descriptions are seen to be equivalent.)

Thus a μ-path current can be thought of as a loop containing the μ-source and the branch from which it takes its dependence.

The sets of terms found in (a) and (b) constitute all of the terms in the cofactor. In the topological determination of Δ_{1324}, there is a possibility that the same term appears in both Δ_{1324}^{N} and Δ_{1324}^{P} but these terms will always cancel since this case arises when b_{3} and b_{4} appear in both loops J_{1} and J_{2} and thus appear in both J_{1}^{P} and J_{2}^{P} also with relative current directions remaining the same. This agrees with the analysis of $\Delta_{13,24}$ by Laplace's rule since this term has $D_{\alpha} D_{\beta}=0$ and therefore doesn't appear in the expansion. Thus when both b_{3} and b_{4} appear in J_{1} and in J_{2} the resulting term can be neglected by inspection. The similar possibility of b_{1} and b_{2} appearing in two loops does not arise topologically if we agree that a path current due to one μ-source cannot travel through another μ-source (or E-source) because the terminals of the μ-sources have been opened.

For the dependent source configuration of Case 2, we consider $\Delta_{12,23}$ or $\Delta_{13,22}\left(\right.$ recall $\Delta_{12,23}^{\mathrm{N}}=-\Delta_{13,22}^{\mathrm{P}}$). D_{α} now must contain column b_{1}, D_{β} must contain column b_{3}, and the remaining m-1 columns of D_{α} and D_{β} must be identical. In Case 3, only $\mu_{1} I_{1}, \mu_{2} I_{2}$ need be considered which results in the cofactor $\Delta_{11,22}\left(\Delta_{12,21}^{N}=-\Delta_{11,22}^{\mathrm{P}}\right)$. In this case all columns of D_{α} and D_{β} must be identical. The analysis for both Case 2 and Case 3 is essentially the same as for Case 1.

Now we can find topologically the network determinant of a network containing two dependent sources:

$$
\begin{equation*}
\Delta=\Delta^{\circ}-\mu_{1} \Delta_{13}-\mu_{2} \Delta_{24}+\mu_{1} \mu_{2}\left[\Delta_{1324}^{N}-\Delta_{1324}^{P}\right] \tag{18}
\end{equation*}
$$

where both $\mu_{1} \equiv 0$ and $\mu_{2} \equiv 0$ to find $\Delta^{\circ} ; \mu_{2} \equiv 0$ for the determination of $\mu_{1} \Delta_{13}$, etc.

As in the one μ-source case, if $\left(-\mu_{1}\right)$ is replaced by $\left(+E_{1}\right)$ the above analysis applies directly to the terms in the numerator of the branch current I_{3} which are multiplied by μ_{2}. Thus the network function $I_{3 / E}$ with one dependent voltage source, $\mu_{2} I_{4}$, is given by

$$
\begin{equation*}
\frac{I_{3}}{E_{1}}=\frac{\Delta_{13}^{o}-\mu_{2} \Delta_{1324}}{\Delta^{o}-\mu_{2} \Delta_{24}} \tag{19}
\end{equation*}
$$

The general case of s dependent voltage sources present in a network is treated in essentially the same manner as for two μ-sources. Consider the topological determination of

$$
\begin{equation*}
\left(-\mu_{1}\right)\left(-\mu_{2}\right) \ldots\left(-\mu_{s}\right) \Delta_{1 d_{1}} 2 d_{2} 3 d_{3} \ldots s d_{s} \tag{20}
\end{equation*}
$$

where $\mu_{1} I_{d_{1}}, \mu_{2} I_{d_{2}}, \ldots, \mu_{s} I_{d}$ are the dependent source voltages. We will assume that $s \leq b-n+1$ since for a network with n nodes and b branches, the network determinant consists of terms which are products of $b-n+1$ elements.

To find $\Delta_{1 d_{1}}, 2 d_{2}, \ldots, s d_{s}$ all s ! permutations of the branches $d_{i}(i=1,2, \ldots, s)$ have to be considered. Since there are $\frac{s!}{2}$ even and $\frac{s!}{2}$ odd permutations, let P_{i} denote an even permutation if i is even; an odd permutation otherwise. Thus

$$
\begin{equation*}
\Delta_{1 d_{1} 2 d_{2} \ldots s d_{s}}=\sum_{i=0}^{s!-1}(-1)^{i} \Delta_{1 d_{1}}^{P_{i}} d_{2} \ldots s d_{s} \tag{21}
\end{equation*}
$$

where

$$
\Delta_{1 d_{1} \ldots s d_{s}}^{P_{o}}=\Delta_{1 d_{1} \ldots s d_{s}}^{N}
$$

$$
s!-1
$$

There are a total of $s!\sum_{i=0} N_{i}$ path current combinations that have to be checked where N_{i} is the number of sets of path current possibilities for the $i^{\text {th }}$ permutation of μ-source dependences.

The sign of a term within any of the permutation-cofactors is negative if an odd number of path currents traverse their respective permuted dependent branches in the opposite sense of the assumed branch current direction; otherwise it is positive.

By replacing $\left(-\mu_{1}\right)$ by E_{1} we obtain the terms in the numerator function $I_{d_{1} / E_{1}}$ which are multiplied by $\mu_{2} \mu_{3} \ldots \mu_{s}$. Thus the complete topological determination of a network function $I_{i / E}$ with a $s-1$ dependent voltage sources present is at hand. The proof for the general case is necessarily rather involved and will be omitted here.

CONCLUSION

The method given in this paper provides an easy means of analyzing network functions of arbitrary networks and facilitates the determination of the effect of any circuit element on the network. Specifically the effect of dependent sources can be ascertained immediately and independently without the necessity of calculating the entire network function.

Further investigation in this area would seem to lie in the direction of utilizing the insight and simplicity offered by this method in network synthesis.

The following example clarifies the arguments given above and illustrates the simplification effected by this method.

Example

We wish to find the network function

$$
Y_{16}=\frac{I_{6}}{E_{1}}=\frac{\Delta_{16}^{\circ}-\mu_{2} \Delta_{1624}-\mu_{3} \Delta_{1635}+\mu_{2} \mu_{3} \Delta_{162435}}{\Delta^{o}-\mu_{2} \Delta_{24}-\mu_{3} \Delta_{35}+\mu_{2} \mu_{3} \Delta_{2435}}
$$

$\Delta^{\circ}:$
Expand by R_{1} and R_{2}

$$
\Delta^{\circ}=R_{1} R_{2} \Delta_{(12)}+R_{1^{\prime}} \Delta_{(12 \prime)}+R_{2} \Delta_{\left(1^{\prime} 2\right)}+\Delta_{\left(1^{\prime} 2^{\prime}\right)}
$$

$$
\Delta_{(12)}=R_{3}+R_{4}+R_{5}+R_{6}
$$

$$
\Delta_{\left(12^{\prime}\right)}=\left(R_{3}+R_{4}\right)\left(R_{5}+R_{6}\right)
$$

$$
\Delta_{\left(1^{\prime} 2\right)}=\left(R_{3}+R_{5}\right)\left(R_{4}+R_{6}\right)
$$

$$
\Delta{\left(1{ }^{\prime} 2^{\prime}\right)}=R_{3}\left[R_{4}\left(R_{5}+R_{6}\right)+R_{5} R_{6}\right]+R_{4} R_{5} R_{6}
$$

Therefore

$$
\begin{gathered}
\Delta^{0}=R_{1} R_{2}\left(R_{3}+R_{4}+R_{5}+R_{6}\right)+R_{1}\left(R_{3}+R_{4}\right)\left(R_{5}+R_{6}\right)+R_{2}\left(R_{3}+R_{5}\right)\left(R_{4}+R_{6}\right) \\
+R_{3} R_{4}\left(R_{5}+R_{6}\right)+R_{5} R_{6}\left(R_{3}+R_{4}\right)
\end{gathered}
$$

$-\mu_{2} \Delta_{24}:$

$$
\Delta_{24}^{(1)}=-\left[R_{1}\left(R_{5}+R_{6}\right)+R_{5} R_{6}\right]
$$

$\Delta_{24}^{(2)}=-R_{3} R_{6}$

Therefore

$$
-\mu_{2} \Delta_{24}=\mu_{2}\left[R_{1}\left(R_{5}+R_{6}\right)+R_{6}\left(R_{3}+R_{5}\right)\right]
$$

$$
-\mu_{3} \Delta_{35}:
$$

$$
\Delta_{35}^{(1)}=-\left[R_{2}\left(R_{4}+R_{6}\right)+R_{4} R_{6}\right]
$$

$$
\Delta_{35}^{(2)}=-R_{1} R_{2}
$$

Therefore

$$
-\mu_{3} \Delta_{35}=+\mu_{3}\left[R_{2}\left(R_{1}+R_{4}\right)+R_{6}\left(R_{2}+R_{4}\right)\right]
$$

$\mu_{2}{ }^{\mu}{ }_{3}{ }_{2435}:$

$\Delta_{2435}^{N}(1)=+R_{6}$

$(-1)^{1} \Delta_{2435}^{P}=(-1)\left(-R_{1}\right)=R_{1}$

Therefore

$$
\mu_{2} \mu_{3} \Delta_{2435}=\mu_{2} \mu_{3}\left(R_{1}+R_{6}\right)
$$

$\Delta_{16}^{0}:$

$$
\Delta_{16}^{(2)}=+R_{4} R_{5}
$$

Therefore

$$
\Delta_{16}^{\circ}=R_{2}\left(R_{3}+R_{5}\right)+R_{5}\left(R_{3}+R_{4}\right)
$$

$$
-\mu_{2} \Delta_{1624}:
$$

$$
\Delta_{1624}^{\mathrm{N}}(1)=-\mathrm{R}_{5}
$$

Therefore

$$
-\mu_{2} \Delta_{1624}=\mu_{2}\left[R_{3}+R_{5}\right]
$$

$-\mu_{3} \Delta_{1635}:$

$$
\Delta_{1635}^{\mathrm{N}}(1)=-\mathrm{R}_{2}
$$

(-1) $\Delta_{1635}^{P}(1)=0$

$$
-\mu_{3} \Delta_{1635}=+\mu_{3} R_{2}
$$

$\mu_{2} \mu_{3}{ }^{\Delta}{ }_{162435}:$
By inspection $\quad \Delta_{162435}^{\mathrm{N}}=\Delta_{162435}^{\mathrm{P}_{4}}=\Delta_{162435}=0$

Therefore

$$
\mu_{2} \mu_{3} \Delta_{162435}=\mu_{2} \mu_{3}[1+1-1]=\mu_{2} \mu_{3}
$$

Finally

$$
\frac{I_{6}}{E_{1}}=\frac{R_{2}\left(R_{3}+R_{5}\right)+R_{5}\left(R_{3}+R_{4}\right)+\mu_{2}\left(R_{3}+R_{5}\right)+\mu_{3} R_{2}+\mu_{2} \mu_{3}}{\Delta^{0}+\mu_{2}\left[R_{1}\left(R_{5}+R_{6}\right)+R_{6}\left(R_{3}+R_{5}\right)\right]+\mu_{3}\left[R_{2}\left(R_{1}+R_{4}\right)+R_{6}\left(R_{2}+R_{4}\right)\right]+\mu_{2} \mu_{3}\left(R_{1}+R_{6}\right)}
$$

ACKNOWLEDGMENT

The author is indebted to Professors S. Seshu and R. T. Chien of the University of Illinois for constructive criticism of the present work.

REFERENCES

1. A. A. Ali, "On the Sign of a Tree Pair", IEEE Trans. on Circuit Theory, Vol. CT-11, No. 2 (correspondence), pp. 294-296; June, 1964.
2. W. Feussner, "Zur Berechnung der Stromstarke in Netzformigen Leitern", Annalen der Physik, Vol. 15, Fourth Series, pp. 365-374; 1904.
3. W. H. Kim, "Application of Graph Theory to the Analysis of Active and Mutually Coupled Networks", J. Franklin Inst., Vol. 271, pp. 200-221; March, 1961.
4. G. Kirchhoff, "On the Solution of the Equations Obtained from the Investigation of the Linear Distribution of Galvanic Currents", (translated by J. B. O'Toole), IRE Trans. on Circuit Theory, Vol. СТ-5, pp. 4-7; March, 1958.
5. W. Mayeda, "Topological Formulas for Active Networks", University of Illinois, Urbana, Illinois, Interim Report No. 8, Contract No. DA-11-022-ORD-1893; 1958.
6. W. Mayeda and S. Seshu, "Topological Formulas for Network Functions", Bulletin No. 446, University of Illinois Engineering Experiment Station, 1957.
7. R. H. Seacat, "A Method of Network Analysis Using Residual Networks", Proc. First Annual Allerton Conference on Circuit and System Theory, University of Illinois, 1963.
8. R. H. Seacat and E. D. Merk1, "The Application of Topological Methods to Active Networks", Proc. of the 8th Midwest Symposium on Circuit Theory, Colorado State University, June 14-15, 1965.
9. S. Seshu and M. B. Reed, "Linear Graphs and Electrical Networks", Addison-Wesley Pub1. Co., Reading, Mass., 1961.
10. A. Talbot, "Topological Analysis of General Linear Networks", Proc. of the 6th Midwest Symposium on Circuit Theory, University of Wisconsin, pp. EE1-19, May 6-7, 1963.
11. L. Weinberg, "Kirchhoff's 'Third and Fourth' Laws", IRE Trans. on Circuit Theory, Vol. CT-5, pp. 8-30; March, 1958.
12. L. Weinberg, "Network Analysis and Synthesis", McGraw-Hill Book Co., Inc., New York, N. Y., 1962.

Distribution list as of March 1, 1965

Dr. Chalmers Sherwin
Deputy Director (Research \& Technology)
DDGRE Rm 3E1060
The Pentagon
ashington, D. C. 20301
Dr. Edward M. Reilley
Asst. Director (Research)
Ofc. of Defense Res $\&$ Eng
Department of Defense
Washington, D. C. 20301
Dr. James A. Ward
ffice of Deputy Director (Research and Information Rm 3D1037)
Department of Defense The Pentagon
Washington, D. C. 20301
1 Director
Advanced Research Projects Agency Department of Defense
Washington, D. C. 20301

1 Mr. Charles Yost, Director for Materials Sciences Department of Defense Washington, D. C. 20301
20 Defense Documentation Center Cameron Station, Bldg. 5 Attn: TISIA
1 Director
National Security Agency
Fort George G. Meade, Maryland 20755
Attn: Librarian C-332
Chief of Research and Development headquarters, Department of the Army Washington, D. C. 20310
Attn: Physical Sciences Division $P \& E$
Chief of Research and Development Headquarters, Department of the Army Washington, D. C. 20310
Attn: Mr. L. H. Geiger Attn: Mr. L. H. Geiger, Rm 34442 Research Plans Office
U. S. Army Research Office
3045. Columbia Pike
Arlington, Virginia 22204

Commanding General
U. S. Army Materiel Comman

Washington, D. C. 20315
Commanding General
U. S. Army Strater
U. S. Army Strategic Communications

Washington, D. C. 20315
Commanding officer
U. S. Army Materials Research Agency

Watertown Arsenal

Commanding Officer
U. S. Army Ballistics Research Lab

Aberdeen Proving Ground
Aberdeen, Maryland 21005
Attn: V. W. Richards
Commanding officer
. S. Army Ballistics Research Lab Aberdeen Proving Ground
Aberdeen, Maryland 21005
Attn: Keats A. Pullen, Jr
nding officer
J. S. Army Ballistics Research Lab

Aberdeen Proving Ground
Attn: George C. Francis, Computing Lab.

dant

U. S. Army Air Defense School
P. O. Box 9390

Fort Bliss, Texas 79916
Attn: Missile
Attn: Missile Sciences Div., CAS Dept.
S. Army Missile Command

Redstone Arsenal, Alabama 35809 Attn: Technical Library
Commanding General
Philadelphia, Pa, 19137
Attn: SMUFA-1310 (Dr. Sidney Ross)
1 Cormanding General
Frankford Arsenal
Philadelphia, Pa.
Attn: SMUFA-1300
1 U. S. Army Munitions Command
Picatinney Arsenal
Dover, New Jersey 07801

1 Commanding of ficer
Harry Diamond Laboratories
Connecticut Ave. \& Van Ness St., N.W
Washington, D. C. 20438
Attn: Mr. Berthold Altman
Commanding officer
Harry Diamond Laboratories
Attn: Library
Connecticut Ave, \& Van Ness St., N.W. Washington, D. C. 20438

Commanding officer
U. S. Army Security Agency
Arlington Hall

Arlington, Virginia 22212
Commanding officer
U. S. Army Limited War Laboratory
U. S. Army Limited War Lab
Aberdeen Proving Ground

Aberdeen, Maryland 21005
Commanding officer
Human Engineering Laboratories Aberdeen Proving Ground, Maryland 21005
U. S. Army EngineerGeodesy. Intelligence and Mapping, Research \& Devel. Agency Fort Belvoir, Virginia 22060

Commandant
U. 8 . Army
. Staff College Army Cond and
Fort Leavenworth, Kansas 66207
Attn: Secretary
Attn: Secretary
Dr. H. Robl, Deputy Director
U. S. Army Research Office (Durham)

Durham, North Carolina 27706
Commanding Officer
U. S. Army Research Office (Durham)
U. S. Army Research Office (Du
p. O. Box CM, Duke Station
Durham, North Carolina 27706 Durham, North Carolina 27706
Attn: CRD-AA-IP (Richard 0. U1sh)
Commanding General
U. S. Army Electronics Command

Attn: AMSEL-SC
Director
U. S. Army Electronics Laboratories Fort Monmouth, New Jersey 07703
Attn: Dr. S. Benedict Levin, Director Institute for Exploratory Research

Director
U. S. Army Electronics Laboratories Fort Monmouth, New Jersey 07703
Attn: Mr. Robert O. Parker, Executive Secretary, JSTAC (AMSEL-RD-X)

Super intendent
U. S. Military Academy

The Walter Reed Institute of Research Walter Reed Army Medical Center Washington, D. C. 20012

Director
U. S. Army Electronics Laboratories Fort Monmouth, New Jersey 07703
Attn: AMSEL-RD-DR

Director
U. S. Army Electronics Laboratories

Attn: AMSEL-RD-X

Director
U. S. Army Electronics Laboratories Fort Monmouth, New Jersey 07703
Attn: AMSEL-RD-XE

Director
U. S. Army Electronics Laboratories Fort Monmouth, New Jersey 07703 Attn: AMSEL-RD-XC
Director
U. S. Army Electronics Laboratories Fort Monmouth, New Jersey 07703
Attn: AMSEL-RD-XS
Director
U. S. Army Electronics Laboratories

Attn: AMSEL-RD-NR
Director
U. S. Army Electronics Laboratories Fort Monmouth, New Jersey 07703
Attn: AMSEL-RD-NE

Director
U. S. Army Electronics Laboratories Fort Monmouth, New Jersey 07703 Attn: AMSEL-RD-NO

Director
U. S. Army Electronics Laboratories fort Monmouth, New Jersey 07703

Director
U. S. Army Electronics Laboratories U. S. Army Electronics Laboratori
Fort Monmouth, New Jersey 07703 Attn: AMSEL-RD-SA

Director
U. S. Army Electronics Laboratories

Attn: AMSEL-RD-SE

Director

U. S. Army Electronics Laboratorie Fort Monmouth, New Jersey 07703

Director
U. S. Army Electronics Laboratories
ort Monmouth, New Jersey 07703
Attn: AMSEL-RD-SS

Director
U. S. Army Electronics Laboratories Fort Monmouth, New Jersey 07703
Attn: AMSEL-RD-PE

Director
U. S. Army Electronics Laboratories Fort Monmouth, New Jersey 07703
Attn: AMSEL-RD-PF

Director
U. S. Army Electronics Laboratories Fort Monmouth, New Jersey 07703
Attn: AMSEL-RD-PR AtEn: AMSEL-RD-PR
Director
Fort. Army Electronics Laboratories Attn: AMSEL-RL-GF

Director
U. S. Army Electronics Laboratories

Fort Monmouth, New Jersey 07703
Actn. AMSEL-RD-ADT
U. S. Army Electronics Laboratories

Fort Monmouth, New Jersey 07703
Attn: AMSEL-RD-FU/F1
1 Commanding Officer
U. S. Army Electronics R\&D Activity

Commanding officer
U. S. Army Engineers R\& D Laboratory Fort Belvoir, Virginia 22060
Attn: STINFO Branch Attn: STINFO Branch
1 Commanding Officer
White Army Electronics Rum Missile Range
New Mexico 88002
Director
Human Resources Research office The George Washington University 300 N . Washington Street

Commanding officer
Commanding Officer
U. S. Army Personnel
Washington 25 , D. C. Research office
W.
Commanding officer
U. S. Army Medical Research Laboratory
Fort Knox, Kentucky
ding General
Commanding General
Attn: Army Signal Center and School
Attn: Chief, Office of Academic
Fort Monmouth, New Jersey 07703
2 Dr, Richard H. Wilcox, Code 437 Department of the Navy
Washington, D. C. 20360
Chief, Bureau of Weapons
Attn: Technical Library, DL1-3 Department of the Navy
Washington, D. C. 20360
1 Chief, Bureau of Ships Department of the Navy
Washington, D. C. 20360 Washington, D. C
Attn: Code 680

1 Chief, Bureau of Ships Department of the Navy Washington, D. C. 20360
Attn: Code 732 .

Commander
U. S. Naval
U. S. Naval Air Development Center

Johnsville, Pennsylvania
Attn: NADC Library
Commanding officer Naval Electronics Laboratory
San Diego, California 92052 Attn: Code 2222 (Library)
1 Commanding officer Naval Electronics Laboratory Attn: Code 2800 , C. S. Manning
1 Commanding officer and Director
(Code 142 Library)
David W. Taylor Mo
Washington, D. C. 20007
6 Director
Naval Research Laboratory
Washington, D.
Attn: Technical Information office (Code 2000)
1 Commanding officer
Office of Naval Research Branch Office
Chicago, Illinois 60604
1 Chief of Naval Operations
Department of the Navy
Washington
Washington, D. C. 20350
1 Chief of Naval Operations
Department of the Navy
Washington, D. C. 20350
Attn: OP-03EG

Commanding Officer
ffice of Naval Research Branch office
San Francisco, California 94109
1 Commanding officer
U. S. Naval Weapons Laboratory

Asst. Director for Computatio
Attn: G. H. Gleissner (Code K-4)
1 Inspector of Naval Material
Bureau of Ships Technical Representative
1902 West Minnehaha Avenue
5 Lt. Col, E. T. Gaines, SREE Directorate of Engineering Sciences
Air Force Office of Scientific Researc
Washington, D. C. 20333
director of Science \& Technology
Depu
USAF
Washington, D. C.
Director of Science \& Technology
Deputy Chief of Staff ($R \& D$)
USAF
Washington, D. C.
Attn: AFRST-SC.
Kar1 M. Fuechsel
Electronics Division
Director of Engineering Sciences
Director of Engineering Sciences
Air Force Office of Scientific Research
Washington, D. C. 20333
Lt. Col. Edwin M. Myers
Headquarters, USAF (AFRDR)
Headquarters,
Washington 25, D. C.
Director, Air University Library Maxwe 11 Air Force Base
Attobama \quad CR-4803a
1 Commander
Research \& Technology Division
Research \& Technology Divisi
AFSC (Mr. Robert L. Feik)
office of the Scientific Director
Bolling AFB 25, D. C.
Commander
Research \& Technology Division
Research \& Technology Division
Office of the Scientific Director
Bolling AFB 25, D. C.
Attn: RTHR
1 Commander
Air Force Cambridge Research Laboratories
Attn: Research Library
L. G. Hanscom Field

Bedford, Massachusetts 01731
Dr. Lloyd Hollingsworth
AFCRL Hanscom Field
L. G. Hanscom Field
Bedford, Massachusetts 01731

1 Commander
Air Force Cambridge Research Laboratories
Attn: Data Sciences Lab
L. G. Hanscom Field

Bedford, Massachusetts 01731
Air Force Systems Command
Office of the Chief Scientist
(Mr. A. G. Wimer)
Andrews AFB, Maryland
20331
1 Commander
Air Force Missile Development Center Attn: MDSGO/Major Harold Wheeler, Jr.
Holloman Air Force Base, New Mexico

Commander
Research \& Technology Division
Research \& Technology Division
Attn: MAYT (Mr. Evans)
Wright-Patterson Air Force Base
Ohio 45433
Directorate of Systems Dynamics Analysis Aeronautical Systems Division
Wright-Patterson AFB, Ohio
$1 \quad \begin{array}{ll}\text { Hgs. Aeronautical Systems Division } \\ \text { AF Systems }\end{array}$
AF Systems Command Navigation \& Guidance Labora
Attn: Navigation \& Guidance Laborat
Wright-Patterson AFB, Ohio 45433
Commander
Rome Air Development Center
Attn: Documents
Attn: Documents Library, RAALD
Griffiss Air Force Base
Rome, New York 13442
Commander
Rome Air Development Center
Attn: RAWI-Major W. HUHarris
Griffiss Air Force Base
Rome, New York 13442
1 Lincoln Laboratory
Massachusetts Institute of Technology
P. O. Box 73
P. O. Box 73

Lexington 73, Massachusetts
Continued next page

REVISED U. S. ARMY DISTRIBUTION LIST
(As received at the Coordinated Science Laboratory 27 July 1965)

1 Dr. Chalmers Sherwin
Deputy Director (Research \& Technology)
DD\&RE Rm 3E1060
The Pentagon
Washington, D. C. 20301
1 Dr. Edward M. Reilley Asst. Director (Research) Ofc. of Defense Res, \& Eng. Department of Defense Washington, D. C. 20301
1 Dr. James A. Ward
Office of Deputy Director (Research and Information Rm 3D1037)
Department of Defense
The Pentagon
Washington, D. C. 20301
1 Director
Advanced Research Projects Agency
Department of Defense
Department of Defense
Washington, D. G. 20301
1 Mr. E. I. Salkovitz, Director
for Materials Sciences Advanced Research Projects Agency Department of Defense Washington, D. C. 20301
1 Colonel Charles C. Mack Headquarters
Defense Communications Agency (333) The Pentagon Washington, D. C. 20305
20 Defense Documentation Center Attn: TISIA
Cameron Station, Building 5
Alexandria, Virginia 22314
1 Director
National Security Agency
Attn: Librarian C-332
Fort George G. Meade, Maryland 20755
1 U. S. Army Research Office
Attn: Physical Sciences Division 3045 Columbia Pike Arlington, Virginia 22204
1 Chief of Research and Development Headquarters, Departinent of the Army
Attn: Mr. L. H. Geiger, Rm 3D442 Attn: Mr. L. H. Geiger, Rm 3D442 Washington, D. C. 20310
1 Research Plans Office U. S. Army Research Office 3045 Columbia Pike Arlington, Virginia 22204

1 Commanding General
U. S. Army Materiel Command

Attn: AMCRD-RS-PE-E
Washington, D. C. 20315
1 Commanding General
U. S. Army Strategic Communications Command Washington, D. C. 20315
1 Commanding officer
U. S. Army Materials Research Agency Watertown Arsenal Watertown, Massachusetts 02172
1 Commanding Officer
U. S. Army Ballistics Research Laboratory Attn: V. W. Richards
Aberdeen Proving Ground
Aberdeen, Maryland 21005
1 Commanding officer
U. S. Army Ballistics Research Laboratory

Attn: Keats A. Pullen, Jr.
Aberdeen Proving Ground
Aberdeen, Maryland 21005
1 Commanding Officer
U. S. Army Ballistics Research Laboratory Attn: George C. Francis, Computing Lab. Aberdeen Proving Ground, Maryland 21005

1 Commandant
U. S. Army Air Defense School

Attn: Missile Sciences Division, C\&S Dept.
P. O. Box 9390

Fort Bliss, Texas 79916
1 Commanding General
U. S. Army Missile Command

Attn: Technical Library
Redstone Arsenal, Alabama 35809
1 Commanding General
Frank ford Arsenal
Attn: SMUFA-1310 (Dr. Sidney Ross)
Philadelphia, Pennsylvania 19137

1 Commanding General
Frankford Arsenal
Attn: SMUFA-1300
Philadelphia, Pennsylvania 19137
1 U. S. Army Munitions Command Attn: Technical Information Branch Picatinney Arsenal
Dover, New Jersey 07801
1 Commanding officer Harry Diamond Laboratories Attn: Mr. Berthold Altman Connecticut Avenue and Van Ness St., N.W. Washington, D. C. 20438
1 Commanding Officer
Harry Diamond Laboratories
Attn: Library
Connecticut Avenue and Van Ness St., N.W.
Washington, D. C. 20438
1 Commanding Officer
U. S. Army Security Agency Arlington Hall
Arlington, Virginia 22212
1 Commanding officer
U. S. Army Limited War Laboratory

Attn: Technical Director
Aberdeen Proving Ground
Aberdeen, Maryland 21005
1 Commanding officer
Human Engineering Laboratories Aberdeen Proving Ground, Maryland 21005
1 Director
U. S. Army Engineer Geodesy,

Intelligence \& Mapping
Research and Development Agency
Fort Belvoir, Virginia 22060
1 Commandant
U. S. Army Command and General Staff College Attn: Secretary
Fort Leavenworth, Kansas 66207
1 Dr. H. Robl, Deputy Chief Scientist U. S. Army Research Office (Durham) Box CM, Duke Station Durham, North Carolina 27706
1 Commanding officer
U. S. Army Research Office (Durham)

Attn: CRD-AA-IP (Richard O. Ulsh)
Box CM, Duke Station
Durham, North Carolina 27706
1 Superintendent
U. S. Army Military Academy

West Point, New York 10996
1 The Walter Reed Institute of Research Walter Reed Army Medical Center Washington, D. C. 20012
1 Commanding officer
U. S. Army Electronics R\&D Activity Fort Huachuca, Arizona 85163
1 Commanding officer
U. S. Army Engineers R\&D Laboratory Attn: STINFO Branch
Fort Belvoir, Virginia 22060
1 Commanding officer
U. S. Army Electronics R\&D Activity White Sands Missile Range, New Mexico 88002
1 Director
Human Resources Research Office
The George Washington University
300 N . Washington Street
Alexandria, Virginia 22300
1 Commanding officer
U. S. Army Personnel Research office Washington, D. C.
1 Commanding Officer
U. S. Army Medical Research Laboratory Fort Knox, Kentucky 40120
1 Commanding General
U. S. Army Signal Center and School

Fort Monmouth, New Jersey 07703
Attn: Chief, Office of Academic Operations
1 Dr. S. Benedict Levin, Director
Institute for Exploratory Research
U. S. Army Electronics Command Fort Monmouth, New Jersey 07703

1 Director
Institute for Exploratory Research
U. S. Army Electronics Command

Attn: Mr. Robert O. Parker, Executive
Secretary, JSTAC (AMSEL-XL-D)
Fort Monmouth, New Jersey 07703
1 Commanding General
U. S. Army Electronics Command

Fort Monmouth, New Jersey 07703
Attn: AMSEL-SC
RD-D
RD-G
RD-MAF-I
RD-MAT
RD-GF
XL-D (Marine Corps LnO)
$\mathrm{XL}-\mathrm{D}$
$\mathrm{XL}-\mathrm{E}$
$\mathrm{XL}-\mathrm{E}$
$\mathrm{XL}-\mathrm{C}$

$\mathrm{XL}-\mathrm{S}$
HLL
HL

HL-
HL-J
HL-P
HLLO
HLLR
NL-D
NL-A
NL-P
NL-P
NL-R
NL-S
$\mathrm{KL}-\mathrm{D}$
KLLE
$\mathrm{KLL-}$
$\mathrm{KL-T}$
$\mathrm{VL}-\mathrm{D}$
WL-D
1 Mr. Charles F. Yost
Special Assistant to the Director of Research
National Aeronautics \& Space Admin. Washington, D. C. 20546
1 Director
Research Laboratory of Electronics Massachusetts Institute of Technology Cambridge, Massachusetts 02139

1 Polytechnic Institute of Brooklyn 55 Johnson Street
Brooklyn, New York 11201
Attn: Mr. Jerome Fox
Research Coordinator
1 Director
Columbia Radiation Laboratory
Columbia University
538 West 120 th Street
1 Director
Stanford Electronics Laboratories
Stanford University
Stanford, California 94301
1 Director
Electronics Research Laboratory
University of California
Berkeley, California 94700
1 Director
Electronic Sciences Laboratory University of Southern California Los Angeles, California 90007

1 Professor A. A. Dougal, Director Laboratories for Electronics and Related Science Research University of Texas
Austin, Texas 78712
1 Professor J. K. Aggarwal
Department of Electrical Engineering University of Texas
Austin, Texas 78712
1 Division of Engineering and Applied Physics 210 Pierce Hall
Harvard University
Cambridge, Massachusetts 02138

Distribution list as of March 1, 1965 (Cont'd.)

1 Lincoln Laboratory
Massachusetts Institute of Technology
P. O. Box 73

Aexington 73, Massachusetts
1 APGC (PGAPI)
Eglin Air Force Base
Mr. Alan Barnum
Rome Air Development Center
Rome, New York 13442
1 Director
Research Laboratory of Electronics
Massachusetts Institute of Technology
Cambridge, Massachusetts 02139
1 Polytechnic Institute of Brooklyn
55 Johnson Street
Brooklyn, New York 11201
Attn: Mr. Jerome Fox
Director
Columbia Radiation Laboratory
Columbia University
538 West 120th Street
New York, New York 10027
1 Director
Coordinated Science Laboratory University of Illinois
Urbana, Illinois 61803

1 Director
Stanford Electronics Laboratories
Stanford University
Stanford, California
1 Director
Electronics Research Laboratory
University of California
Berkeley 4, California
1 Professor A. A. Dougal, Director Science Research
Slectronics and Related
University of Texas
Austin, Texas 78712
1 Professor J. K. Aggarwal
Department of Electrical Engineering University of Texas
Austin, Texas 78712
1 Director of Engineering \& Applied Physics 210 Pierce Hall
Cambridge, Massachusetts 02138
1 Capt. Paul Johnson (USN Ret.) National Aeronautics \& Space Agency 1520 H. Street, N. W.
Washington 25, D.

1 NASA Headquarters Office of Applications 400 Maryland Avenue, S Washington 25, D. C. Attn: Code FC Mr. A. M. Greg Andrus

1 National Bureau of Standards Research Information Center and Advisory Serv. on Info. Processing
Data Processing Systems Data Processing Systems Division
Washington 25, D. C.

1 Dr. Wallace Sinaiko
Institute for Defense Analyses
Research \& Eng. Support Div. 1666 Connecticut Avenue, N. W.

1 Data Processing Systems Division National Bureau of Standards
Conn. at Van Ness Conn. at Van Ness
Room 239, B1dg. 10
Washington 25, D. C.
Washington 25, D. C.
Attn: A. K. Smi low
1 Exchange and Gift Division The Library of Congress
Washington 25, D. C.

1 Dr. Alan T. Waterman, Director Dr. Alan T. Waterman, Directo
National Science Foundation Washington 25, D. C.
H. E. Cochran Oak Ridge National Laboratory . O. Box X Oak Ridge, Tennessee
U. S. Atomic Energy Commission ffice of Technical Information Extension P. O. Box 62

Mr. G. D. Watson Defense Research Member Canadian Joint Staff
2450 Massacht 2450 Massachusetts Avenue, N. W.

Martin Company
p. 0 . Box 5837

Orlando, Florida
Laboratories for Applied Sciences 6220 South of Chicago
6220 South Drexel
Chicago, Illinois 60637

Librarian
School of Electrical Engineering Pardae University, Indiana
1 Donald L. Epley
Dept. of Electrical Engineering Iowa City, Iowa of Iowa

1 Instrumentation Laboratory Massachusetts Institute of Technology
68 Albany Street 68 Albany Street
Cambridge 39, Massachusetts
Attn: Library WI-109
Sylvania Electric Products, Inc. Electronics System
Waltham Lats. Library
100 First Avenue
Hughes Aircraft Company
Centinela and Teale Streets Culver City, California
Attn: K. C. Rosenberg, Supervisor
3 Autonetics
9150 East Imperial Highway Downey, California
Attn: Tech. Library, 3041-11
1 Dr. Arnold T. Nordsieck
General Motors Corporation
Defense Research Laboratories
6767 Holliseter 6767 Hollis ster Avenue

1 University of California
Lawrence Radiation Laboratory
P. O. Box 808
P. O. Box 808

Livermore, California
Mr. Thomas L. Hartwick
Aerospace Corporation
P. O. Box 95085
Los Angeles 45, California
Lt. Col. Willard Levin Aerospace Corporat
P. O. Box 95085
Los Angeles 45, California
1 Sylvania Electronic Systems-West Electronic Defense Laboratories M. O. Box 205

Attn: Documents Center
1 Varian Associates
611 Hansen Way
Palo Alto, California 94303
Attn: Tech. Library
1 Huston Denslow
Library Supervisor
Jet Propulsion Laboratory
California Institute of Technology
Pasadena, Californía
1 Professor Nicholas George
California Institute of Technology
Electrical Engineering Department
Pasadena, California
1 Space Technology Labs., Inc.
One Space Park
Redondo Beach, California
Attn: Acquisitions Group
Attn: Acquisitions Group
STL Technical Library
1 The Rand Corporation
1700 Main Street
Santa Monica, California
Attn: Library
1 Miss F. Cloak
Radio Corp. of America
RCA Laboratories
David Sarnoff Research Center
Princeton, New Jersey
1 Mr, A. A. Lundstrom
Bell Telephone Laboratories
Room 2E-127
Room 2E-127
Whippany Road
Whippany, New Jersey
1 Cornell Aeronautical Laboratory, Inc. 4455 Genesee Street
Buffalo 21, New York
Buffalo 21, New York
Attn: J. P. Desmond, Librarian
Sperry Gyroscope Company
155 Glenn Cove Road
Carle Place, L. I., New York
Attn: Miss Barbara Judd
1 Library
Light Military Electronics Dept.
General Electric Company
Armament \& Control Products Section
Johnson City, New York
Dr. E. Howard Holt
Director
Plasma Research Laboratory
Rennselaer Polytechnic Institute
Troy, New York
Battele-DEFENDER
Battelle Memorial Institute
Battelie Memorial
505 King Avenue

1 Laboratory for Electroscience Research
New York University
University Heights
1 National Physical Laboratory
Teddington, Middlesex
Eng1and
Attn: Dr. A. M. Uttley, Superintendent,
Autonomics Division
1 Dr, Lee Huff
Advanced Research Projects Agency
The Pentagon (Room 3E175)
Washington, D. C. 20301
1 Dr. Glenn L. Bryan
Head, Personnel and Training Branch
Office of Naval Research
Navy Department
Washington
D
1 Instituto de Fisica Aplicado "L. Torres quevedo" High Vacuum Laboratory Madrid, Spain
Attn: Jose L. de Segovia
1 Stanford Research Institute Attn: G-037 External Reports Menlo Park, California 94025

DD FORM 1473

1. ORIGINATING ACTIVITY: Enter the name and address of the contractor, subcontractor, grantee, Department of Defense activity or other organization (corporate author) issuing the report.

2a. REPORT SECURITY CLASSIFICATION: Enter the overall security classification of the report. Indicate whether "Restricted Data" is included. Marking is to he in accordance with appropriate security regulations.

2b. GROUP: Automatic downgrading is specified in DoD Direc tive 5200.10 and Armed Forces Industrial Manual. Enter the group number. Also, when applicable, show that optional markings have been used for Group 3 and Group 4 as authorized.
3. REPORT TITLE: Enter the complete report title in all capital letters. Titles in all cases should be unclassified. If a meaningful title cannot be selected without classification, show title classification in all capitals in parenthesis immediately following the title.
4. DESCRIPTIVE NOTES: If appropriate, enter the type of report, e.g., interim, progress, summary, annual, or final. Give the inclusive dates when a specific reporting period is covered.
5. AUTHOR(S): Enter the name(s) of author(s) as shown on or in the report. Enter last name, first name, middle initial. If military, show rank and branch of service. The name of the principal author is an absolute minimum requirement.
6. REPORT DATE: Enter the date of the report as day, month, year; or month, year. If more than one date appears on the report, use date of publication.
7a. TOTAL NUMBER OF PAGES: The total page count should follow normal pagination procedures, i.e., enter the number of pages containing information.

7b. NUMBER OF REFERENCES: Enter the total number of references cited in the report.

8a. CONTRACT OR GRANT NUMBER: If appropriate, enter the applicable number of the contract or grant under which the report was written.

8b, 8c, \& 8d. PROJECT NUMBER: Enter the appropriate military department identification, such as project number, subproject number, system numbers, task number, etc.

9a. ORIGINATOR'S REPORT NUMBER(S): Enter the official report number by which the document will be identified and controlled by the originating activity. This number must be unique to this report.

9b. OTHER REPORT NUMBER(S): If the report has been assigned any other report numbers (either by the originator or by the sponsor), also enter this number (s).
10. AVAILABILITY/LIMITATION NOTICES: Enter any limitations on further dissemination of the report, other than those imposed by security classification, using standard statements such as:
(1) "Qualified requesters may obtain copies of this report from DDC."
(2) "Foreign announcement and dissemination of this report by DDC is not authorized."
(3) "U. S. Government agencies may obtain copies of this report directly from DDC. Other qualified DDC users shall request through
(4) "U. S. military agencies may obtain copies of this report directly from DDC. Other qualified users shall request through
\qquad ."
(5) "All distribution of this report is controlled. Qualified DDC users shall request through
\qquad -"

If the report has been furnished to the Office of Technical Services, Department of Commerce, for sale to the public, indicate this fact and enter the price, if known.
11. SUPPLEMENTARY NOTES: Use for additional explanatory notes.
12. SPONSORING MILITARY ACTIVITY: Enter the name of the departmental project office or laboratory sponsoring (paying for) the research and development. Include address.
13. ABSTRACT: Enter an abstract giving a brief and factual summary of the document indicative of the report, even though it may also appear elsewhere in the body of the though it may also appear elsewhere in the body of the tinuation sheet shall be attached

It is highly desirable that the abstract of classified reports be unclassified. Each paragraph of the abstract shall end with an indication of the military security classification of the information in the paragraph, represented as (TS), (S), (C), or (U).

There is no limitation on the length of the abstract. However, the suggested length is from 150 to 225 words.
14. KEY WORDS: Key words are technically meaningful, terms or short phrases that characterize a report and may be used as index entries for cataloging the report. Key words must be selected so that no security classification is required Identifiers, such as equipment model designation, trade name, military project code name, geographic location, may be used as key words but will be followed by an indicay of technical context. The assignment of links, roles, and weights is optional.

