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MATRIX SWITCHES AND ERROR CORRECTING 
CODES FROM BLOCK DESIGNS

Lalit Rai Bahl 

Abstract

Methods of obtaining matrix switches from block designs have been 

formulated by Singleton and Neumann. The first part of this report 

extends Singleton's method for designing unipolar switches to the design 

of bipolar switches. A new class of low noise switches is obtained by 

permutation of the winding matrix of noiseless switches and it is shown 

how these new switches are related to block designs.

The latter part of this report is concerned with methods of 

obtaining error detecting and error correcting codes from block designs. 

Some of these codes are found to be optimal.
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1. INTRODUCTION

Addressing is a significant problem in the design of random access 

magnetic memory core systems used in computers. Coincident current 

techniques for addressing are well known and widely used. In these systems 

the selected magnetic core is energized by the coincidence of currents in 

one horizontal and one vertical driver. In such systems each driver must 

provide a considerable amount of power and be bidirectional.

To avoid the need for high power drivers, load sharing matrix 

switches are used, in which the combined power output of a large number of 

drivers is received by the selected core. Such switches are noiseless if 

all the cores other than the selected core receive no excitation. The 

obvious advantage of such switches is that the power requirements of the 

drivers is greatly reduced. Moreover, such switches will continue to 

function even if a few drivers fail. However, these advantages are obtained 

at the cost of a more complex wiring system for the cores. In small 

memories, the matrix switch itself may be used for storage of information.

In larger arrays, output windings on the cores of the matrix switches can 

be used to generate the read and write pulses for a coincident current 
magnetic memory array.

Recently a number of papers have appeared on the subject of load sharing 

matrix switches. Designs for noiseless switches have been suggested by 

Constantine [l], Marcus [2] and Chien [3]. The design of matrix switches 

using block designs has been studied by Singleton [4], Neumann [5],

Minnick and Haynes [6].
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In Chapter 2 the design of noiseless switches based on balanced 

block designs is discussed. The method of design of unipolar switches 

suggested by Singleton is extended to the design of bipolar switches also.

In Chapter 3, partially balanced block designs are used to design 

low noise matrix switches. Again, some of the material is due to Singleton 

A new class of low noise switches is obtained by permuting the winding 

matrix in a particular manner. The connection between these switches and 

block designs is discussed. This part of the work appears to be original.

The connection between orthogonal matrices, error correcting codes, 

and matrix switches has been studied by Chien [7]. Bose and Shrikhande [8] 

have pointed out the connection between orthogonal Hadamard matrices, 

block designs and error correcting codes. The approach used in the above 

mentioned papers is generalized and extended to obtaining codes from block

designs in Chapter 4. In some cases the codes are found to be optimal and 
meet the Plotkin [9] bound.

Switch Notation: A magnetic matrix switch is described by its winding

matrix W - [w^], its input matrix C = [c_] for the read operation and 

its input matrix CW = [c^] for the write operation. The winding matrix 

for a switch with v outputs and b inputs (excluding the bias input) is 

given by a v-by-(b+l) matrix. The magnitude of w.. represents the number
_ th i-h 1Jof turns of the j input wire on the i core, the sign of w represents 

the direction of the winding. The (b+1) th input is for bias. In practice 

there may be two bias wires, one for read and one for write if the read and 

write bias are unequal. Sometimes it may be possible to get rid of the 
bias wires completely. The patterns used as read inputs are arranged



as the columns of the (b+1)-by-v read input matrix Cr . For most of the 

switches discussed here, the first b rows contain only 0 and + 1, i.e.

all the input drivers are assumed to have a current output of unity. The

final row contains the entries for the bias level which may be different

from 0 and + 1. The v-by-v read output matrix is given by Xr = [x"f.] = W.C

where x ^  is the excitation of the i core by the input pattern during

the read operation. Similarly the write output matrix is given by

X = Lx..] = W.C . ij
IT WA switch is unipolar if C and C have only nonnegative entires in 

their first b rows, and is bipolar if they contain negative entries also. 

The input drivers of a unipolar switch are unidirectional whereas the 

drivers of a bipolar switch are bidirectional.

A matrix switch is noiseless if for any input pattern used, only one 

output is excited, i.e. the read operation is noiseless if Xr = pi and the 

write operation is noiseless if X = -ql where I is the v-by-v identity 

matrix.

A switch is load sharing if a number of small inputs combine to give 

a large output. The load sharing factor is the ratio of the total output 

of the selected core to the output obtained if only one input driver was 

excited. If W contains only 0's and + l's then the load sharing factor 

is given by

P E wij c . . . Ji 4

The efficiency of a noiseless switch is defined as
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2 w . . c . ., iJ Ji 
T] = -J---------

2 w. . c.J. 1 ij jiJ

where c = cT. for the read operation and c.. = cW . for the writeJ1 J1 Ji Ji
operation.



5

2. BALANCED BLOCK DESIGNS AND NOISELESS SWITCHES

In a balanced incomplete block design we have v objects arranged 

in b blocks, each block containing k distinct objects. Each object occurs 

r times and each pair of objects occur together in A blocks.

Elementary conditions for the existence of a (v,k,r,b,A) balanced 
block design are

i) vr = bk

ii) A (v-1) = r(k-l) .

As a consequence of these conditions b > v. If b = v, k = r, we have 

a symmetric design, the first condition is satisfied immediately and the 
second reduces to k(k-l) = A(v-l).

Generally the above conditions are not sufficient for the existence 

of designs. Known existence theorems are discussed by Mann [10] and 
Hall [11].

A balanced incomplete block design is conveniently represented by its 
b-by-v incidence matrix S = [s ]ij

sjLj = 1 if the i block contains the j ̂  element
th v»= 0 if the i block does not contain the j element.

Each row contains k ones and each column contains r ones.

b
E s . s . , = r

j=i ja Jd
if a = d

= X if a 4 d
TTherefore the product (S) .S = (r-A)I + AU where U is a v-by-v matrix of

all ones.
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The complement of a (v,k,r,b,X) design is obtained by replacing ones by
c r c "izeros and zeros by ones in S. This gives the incidence matrix S = Ls . .J ofij

a (v,v-k,b-r ,b ,b-l-X -2r) balanced block design, and

b
s^ s °  = b-r if a=d J=1 Ja jd

= b+X-2r if a4 d

Therefore,

(SC)T - S°= (r-X)I + (b+X -2r)U

Also

b e  b Q.XL s . s . , = s . s., = 0 if a = dJ=1 Ja Jd J=1 Ja Jd
= (r-X) if a 4 d

Therefore

(SC)T - S = (S)T *SC = -(r-X)I + (r-X)U

2.1 Design of Switches Based on Balanced Block Designs

The design procedure used here is the one used by Singleton [4] for 

unipolar switches. The design procedure is. extended to bipolar switches. 

In type I switches all input windings are in the same direction. Type II 

switches have core windings in both directions.

2.1.1 Type I Switch 

a) Unipolar

where u is a row of ones and represents the bias winding.
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Xr = (S)T - S + aU = (r-X)I + (X+a)U.

Putting the bias level a = -X gives

Xr = (r-X) I

making the read operation noiseless.

Load sharing factor for read operation = Pr = (r-X).
r -XRead efficiency T| = — —  r r+x

XW = (S)T - SC + dU = -(r-X)I + (r-X+d)U.

Putting the bias level d = X-r gives

XW = -(r-X)I

making the write operation noiseless.

Load sharing factor for write operation = p = (r-X).
r -XWrite efficiency T| = --- = 1.w r-X

Such a switch has b + 2 inputs and v outputs. Two bias windings are 

required since a ^ d =/ 0. 

b) Bipolar

xr = (S)T - S - (S)T - Sc + aU 

= 2 (r-X) I + (2X-r+a)U 

Putting bias level a = r-2X gives

Xr = 2 ( r -X ) I

Load sharing factor p = 2(r-X).

Read efficiency T] = fr i .r r+|r-2X|
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If r > 2X T] = 1 r
r < 2X n = ^r a

S ince

cw = -c _w

and write efficiency 7)̂  - T| . If r = 2\ , a = 0 and no bias winding is 

required.

2.1.2 Example of Type I Switch

This switch is based on the (4,2,3,6,1) balanced block design.

S =

Unipolar switch

W =

1 1 0 0

0 0 1 1

1 0 1 0

0 1 0 1

1 0 0 1

0 1 1 0

1 0 1 0 1 0 1

1 0 0 1 0 1 1

0 1 1 0 0 1 1

0 1 0 1 1 0 1

a = -X = -1, d = X -r = -2
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cr =1

1 1 0 0

0 0 1 1

1 0 1 0

0 1 0 1

1 0 0 1

0 1 1 0

-1 <1 -1 -1

xr = 21

cw =
s- 2 u

0 0 1 1

1 1 0 0

0 1 0 1

1 0 1 0

0 1 1 0

1 0 0 1

-2 -2 -2 -2

2 0 0 0

0 2 0 0 ** ii i NJ M

0 0 2 0

0 0 0 2

and two bias inputs The number

is 4.

Load sharing factor p = p =2.r w
Read efficiency 7]̂  =

Write efficiency T) = 1.

Bipolar switch

The W matrix is the same as for the unipolar switch 

a = r-2\ = 1
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4 0 0 0

Xr = 41 = 0 4 0 0

0 0 4 0

0 0 0 4

Load sharing factor p = p = 4.r rw
Efficiency 71 =71 =1.r 'w

The switch has 7 inputs and 4 outputs.

2.1.3 Type II Switch 

a) Unipolar

Xr = (S)T - S - (SC)T ‘ S + aU 

= 2(r-X)I + (2X-r+a)U 

Putting bias level a = r-2X gives

Xr = 2(r-X)I.

Load sharing factor p̂ _ = 2(r-X).

Efficiency 7]̂  = ^+j"r-2X| = 1 if r > ^  >

= if r < 2X .

If r=2X a=0 and one bias wire can be eliminated,

Xw = (S)T - sc - (SC)T - Sc + du 

= -2(r-X)I + (3r-2X-b+d)U, 

Putting bias level d = b+2X-3r

XW = - 2 ( r -X ) I

XW = -41
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Load sharing factor p = 2(r-X)

Efficiency \  = ^ _ r) +ffca-3r| = 1  i£ 3r > b+ a

= i f 3 r < b + 2 X

If r=2X or 3r = b+2X then one of the bias windings can be eliminated since 

either a = 0 or d = 0. It is not possible to make both a and d zero.

a = 0 implies r = 2X 

d = 0 implies 3r = b+2X 

Then b = 3r-2\ = 2r.

Also vr = bk and substituting b =2r gives v = 2k.

But the condition X(v-l) = r(k-l) implies v = 2k-l which is contra

dictory to the earlier found value for v.

This switch will have at least b+1 inputs and v outputs. It is

possible to make both T] and 7] equal to 1 if r > 2X and 3r > b+2X .r w — —
Switches derived from (4t-l, 2t, 2t, 4t-l, t) and (4t-l, 2t-l, 2t-l, 4t-l, 

t-1) designs which are closely related to Hadamar.d matrices have this 

property.

b) Bipolar

w

w = I S -S 
\ u

cr = / s -s'
^ au

cw = -cr

xr = T(s)1 ,c. T ,c. T

= 4(r-X)I + (b+4\ -4r + a)U

Putting bias level a = -(b + 4X -4r)

X1- = 4 ( r -X ) I .
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Load sharing factor = 4(r-\).

Efficiency ^  ^  = 1 if b < 4(r-X).

= -4(r~^) 2b-4(r-A.) if b > 4(r-\) .

Since C “C , X -X — -4(r-\)I, T) — T) . If b = 4(r-\) a = 0, no biasr w
winding is required and the switch also has efficiency 1.

2.1.4 Example of Type II Switch

The (4,2,3,6,1) design is used again. 

Unipolar switch.

a = r-2\ = 1, d = b+2\ ~3r = -1.

1 1 0 0
0 0 1 1

1 0 1 0

* 0 1 0 1

1 0 0 1

0 1 1 0

1 1 1 1

0 0 1 1

r—1 1 0 0

.0 1 0 1

1 0 1 0

0 1 1 0

1 0 0 1

-1 -1 -1 -1
4 0 0 0

0 4 0 0

0 0 4 0

0 0 0 4

Xw -41
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Switch has 8 inputs, 4 outputs.

Load sharing factor p = p =4.r w
Efficiency T) = T] =1. y r w

Bipolar switch.

The W matrix is the same as for the unipolar switch, 

a = -(b+44-4r) = 2

cr =

X = 81 =

1 1 - 1 - 1

- 1 - 1 1 1

1 - 1 1 - 1 >

- 1 1 - 1 1

1 - 1 - 1 1

- 1 1 1 - 1

2 2 2 2

8 0 0 0

= 0 8 0 0

0 0 8 0

0 0 0 8

=  P , =  8 .

_W

w, X = -81

w
Efficiency T) = 7] =1.y r w
The class of switches published by Constantine [l] are type II unipolar

switches based on the block designs with parameters (2^ \  2^ 2^ ^-1,

2-2, 2P -1). For these designs a=l, d=-l and the designs yield switches

with 2^  ̂outputs with 2^ inputs, a load sharing factor pr = = 2^  ̂and

efficiency T| = Tj =1. The class of switches suggested by Marcus [2] r w are
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identified with symmetrical designs of the type (2P-1} 2^”^-l, 2^"^-l,

 ̂ ”1»  ̂ “1)• These switches are a subclass of the switches suggested by

Chien [3] which are type II switches based on (4t-l, 2t-l, 2t-l, 4t-l, t-1)

designs. For these switches a=l, d=0 and the switches have 4t-l outputs

with 4t inputs. The load sharing factor p = p = 2t and efficiencyr w J

\  = \  = l - These designs are closely related to Hadamard matrices.

2.2 General Design

So far only switches whose winding matrices W contain entries of 0 and 

+ 1 have been discussed. A general design procedure such that W can contain 
other entries also is outlined here, 

a) Unipolar switch

W =

cr =

QfS - $s'
)

■ (f„)
.c.TX = a(S)x- S - 3(s ) -S + aU

= (ar+0)(r-X)I + (at\ + 0X - 3r + a)U
Putting bias level a = 3r - (cH-0)\ gives

Xr = (a+P)(r-X)I

\  ‘ ar!|?̂ )-r(al$)\| = 1 lf Sr > (QHf5)\

= ( ^ r (+ ’(<i+e)X if Pr <
Xw = a (S)T.Sc - g(Sc)T -Sc + dU

= -(a+3)(r-X)I + (ar-c*\-pb-3\+23r+d)U
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Putting bias level d = p(b-r) - (CH-P)(r-X),

XW=- (af+P)(r-X)I

7] = ------- (QH-g) (r-X)__________
w P(b-r) + | P(b-r)-(CH-p)(r-X)

If (a+P)(r-X) > P(b-r), T] = 1.w

If (o?+P)(r-X) < P(b-r), T1 = (cy+PHr-X)
w 2P(b-r)-(a+p) (r-X) 

and P can be chosen to give either a=0 or d=0, hence getting rid of 

one bias winding. However, it is not possible to make both a and d zero.

a=0 gives pr = (CH-p)\

d=0 gives Pb - (QH-p)r = pr - (a+P)\ = 0.
The necessary condition vr=bk implies

Pvr = (QM-0)\v 

and Pbk = (a+P)rk.

Therefore,

(CH-P ) (X v-rk) = 0.

If (Qf+P) = 0, Xr = XW = 0, i.e. no output from the switch. If Xv=rk the 

condition X(v-l) = r(k-l) implies X=r, in which case S consists of all zeros 
or all ones.

Therefore, a unipolar switch based on a (v,k,r,b,X) design will have 

at least (b+1) inputs and since v < b the number of inputs is always larger 
than the number of outputs, 

b) Bipolar switch

- m
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Xr = <*(S)T -S - g(sc) -S - a(S)T -Sc + P(SC)-SC + aU

= 2(a+3)(r-X)l + (3b+2X (df+P) -r(CH-33)+a)U 
Putting bias level a = -(£*(&-r) + 3(b+2X-3r) ).

Xr = 2(QH-g)(r-\)I

XW = -2(a+P)(r-X)i

7] = 71 = _______ 2(or+P) (r-X)____________
r w ar + 3(b-r) + |of(2X-r) + 3(b+2X-3r)|

If (Qf(2X-r) + 3(b+2X -3r) ) < 0, 7] *71 = 1— r 'w
If (Of(2X-r) + P(b+2X-3r) ) > o, 7] =71 = -(o^+BXr-X)

r 'w a\+3(b+X-2r) ’
a-0 if o t (2 \ -r )  = 3(3r-b-2X) in. which case a bias winding is not required.
This can easily be achieved by putting

a = (3r-b~2X)

3 = (2X-r).

Both a and 0 will never be zero because 3=0 implies r=2X . Since X(v-l)=r(k-1) 

we have v=2k-l. c*=0 implies b=2r. Since vr=bk we have v=2k which is
contradictory to v=2k-l.

The number of inputs to a bipolar switch is b if the bias wires are 

eliminated. The number of outputs is v. Since b > v, the number of inputs 

cannot be less than the number of outputs. The bound b=v is achieved only 

in the case of symmetrical designs. Therefore, a unipolar switch derived 

from a balanced block design has at least v+1 inputs for v outputs and a 

bipolar switch at least v inputs for v outputs. Actually, it is easily seen 

that no noiseless switch can have more outputs than inputs. Since X = W.C 

and in a noiseless switch X = pi, the rank of X is equal to v, the number
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of outputs. Therefore, the ranks of W and C must also be at least v and 

this implies that the number of inputs must also be at least v.



18

3. PARTIALLY BALANCED BLOCK DESIGNS 
AND LOW NOISE SWITCHES

An incomplete block design is said to be partially balanced if it is an 

arrangement of v objects into b groups, each containing k <  v distinct objects 

such that

i) Each object appears in r groups,
thii) Each object has n^ i associates i = 1, 2, ...m,

thiii) Any pair of objects are i associates for some i = 1, 2,...m,
thiv) Any two objects that are i associates appear together in X. 

blocks.

If m=l, the resulting design is balanced. If m=2, designs are partially 

balanced with 2 associate classes. These designs have been studied exten

sively by Bose, Clatworthy and Shrikhande [12] and Clatworthy [13]. Designs 

with more than two associate classes have not been studied to any great 

extent.

Necessary conditions for a partially balanced incomplete block design 

with 2 associate classes are

i) vr=bk,

ii) n i +n2 = v-1>

iii) ni^i+n2^2 = r(k-l).

The condition b > v which holds in the case of balanced designs is no 

longer true and switches with more outputs than inputs can be designed using 

the same techniques as were used earlier. However, such switches will not

be noiseless.
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The incomplete block design can be represented by its incidence matrix S

X , s . s = r if a=b J=1 ja Jd

= X_ if a^b and the at*1 and b ^  objects are 
. th1 associates.

1 1  2 2To facilitate notation we define the matrices U = [u , 1 and U = [u ]Jk jk
which are v-by-v matrices such that

1 _ , . r . th , , th , . ,stUjk ~ 1> the j and k objects are 1 associates

= 0, otherwise.
2 _ r .th , . th , .  ̂ ~nd- 1, it the j and k objects are 2 associates

= 0, otherwise.
m

Therefore, the matrix E = [e .. ] = (S) * S has elementsjk
e., = r, if j=k Jk

= X. ̂ , if j^k and the j and k objects are i 

associates i=l,2.

Hence,

E = ri + X 1U1 + X 2U2.

The complement of a partially balanced incomplete block design with 2

associate classes (abbreviated to p.b.i.b(2) design) with parameters

(v,k,r,b,X^, X.2, n^, n2) is a p.b.i.b.(2) design with parameters

(v,v-k,b-r ,b,b-2r+X ̂ ,b-2r+X.2,n^,n2) and if the j*'*1 and k ^  objects are i ^
t hassociates in the original design, they are also i associates in the

ccomplimentary design. S is the incidence matrix of the complimentary 

design and is obtained by interchanging ones and zeros in S. The matrix
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F = [fjk] = (SC)T’SC has elements

fjk = b"r ’ if j=k
= b-2r+X^, if j^k and the jtb and ktb objects are 

. th1 associates.

Hence,

F = (b-r)I + (b-2r+X1)U1 + (b-2r+V 2)U2 .

The matrix G = [g = (S)T - S° = (SC)T - S has elements

gjk = 0, if j=k

^i, if j^k and the jtb and ktb objects are 
. thl associates.

Hence,

G = (r-Xpu1 + (r-X2)U2 .

Since the switches based on p.b.i.b.(2) designs are not noiseless it is 

worthwhile to discuss the bias scheme and the method for generating the 

write pulse. The bias scheme dependscn what sort of noise can be tolerated 

in the unselected cores. One possible scheme (referred to as scheme 1) is 

to choose the bias in such a way that only the selected core receives 

positive excitation, all other cores receiving zero or negative excitation. 

Another possible scheme (scheme 2) would be to minimize the magnitude of the 

excitation of the unselected cores. Scheme 2 will work satisfactorily only 

if the maximum positive excitation received by any unselected core is in

sufficient to cause it to switch from one state to the other. In both 

these schemes only the selected core gives an output if the B-H hysterisis 

loop of the cores is perfectly rectangular. Since this is not true in practice, 

the unselected cores will have a slight noise output. Other bias schemes may
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be used depending on the specifications of the particular switch.

When a read pulse is generated, only the selected core gets enough posi

tive excitation to switch from one state to the other. Now if a bias wire 

provides negative excitation to all the cores, only the one previously 

selected will switch back to its original state, thus generating a write 

pulse. This method can be employed for obtaining a write pulse. Some noise 

output will occur in the unselected core due to the deviation of the B-H 

characteristic from the perfect rectangle. Alternatively the same procedure 

as was used in noiseless switches can be used.

3.1 Design of Switches Based on p.b.i.b.(2) Designs

3.1.1 Type I Switch 

a) Unipolar

Xr = (S)T - S + aU

= (r+a)I + (^1+a)U1 + (\2+a)U2 .

Using scheme 1 for bias and using the convention put a = -X

Xr = (r-xpi - (X1-X2)U2
or using scheme 2, put a = -or using scheme 2, put a =

Load sharing factor p^ = (r+a).

If the write pulse is not generated by simply exciting a single bias
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w ir e  we can  use

XW = (S )T - Sc + du

= d l  + ( r  -X ^+d)U^ + (r-X^+d)!)^.

I f

d = -(r+ a )

xw = -x r

Load sharing factor p = (r+a)w
b) Bipolar

/ T 
» - C ) .
c" ■ ( S. 1 )
r T T c X = (S) • S - (S) -S + aU

= (r+a)I + (2XX - r+a)U1 + (2X2 -r+a)U2 .
If bias scheme 1 is employed use

a = -(2X1-r)

If bias scheme 2 is employed use

a = -(X1 + X2-r) .

XW = -(r+d)I - (2X1-r+d)U1 - (2\2-r+d)U2 .
Putting d=a gives XW = -Xr .

Load sharing factor = (r+a).

3.1.2 Example

These switches are based on a block design with parameters (v=12, r=4, 

k=6, b=8, X^=2, A.̂ =0, n^=10, n2=l) and give 9 input (including bias) - 12



output switches.

s = 1 1 1 1 1 1 0 0 0 0 0 0

0 0 0 0 1 1 1 1 1 1 0 0

1 1 0 0 0 0 0 0 1 1 1 1
0 0 1 1 0 0 1 1 0 0 1 1

1 0 1 0 1 0 0 1 0 1 0 1
0 1 0 1 1 0 1 0 1 0 0 1
1 0 0 1 0 1 0 1 1 0 1 0

0 1 1 0 0 1 1 0 0 1 1 0

For the un ipolar

3

switch, 

1 1

us ing 

1

a = 

1 1 1

-1 we get 

1 1 1 1 1
x r  = 1 3 1 1 1 1 1 -1 1 1 1 1

1 1 3 1 1 1 1 1 -1 1 1 1
1 1 1 3 1 1 1 1 1 -1 1 1
1 1 1 1 3 1 1 1 1 1 -1 1

1 1 1 1 1 3 1 1 1 1 L -1
-1 1 1 1 1 1 3 1 1 1 1 1
1 -1 1 1 1 1 1 3 1 1 1 1

1 1 -1 1 1 1 1 1 3 1 1 1

1 1 1 -1 1 1 1 1 1 3 1 1
1 1 1 1 -1 1 1 1 1 1 3 1

1 1 1 1 1 -1 1 1 1 1 1 3

Load sharing factor = 3.

For the bipolar switch, using a=2
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X" (bipolar) = 2Xr (unipolar).

Load sharing factor = 6.

3.1.3 Type II Switch 

a) Unipolar

Us ing

/  c _cC T\
w = 1 u u

V u /
r /  S \

C = i  au j
r v T c . '

X = ( S ) - S - (S )

= (r+a) I + (2X1-

! the type I bipolar

/ _ C \
r w ( S\ du J
xw = T

(s)- s c - ( sc

= -(b-r -d)I -(2X

Putting d = (b-2r-a) gives XW = -Xr .

Load sharing factor = (r+a) 

b) Bipolar

W =

c r  = \ au I
r i 2X = (b+a)I + (b-4r+4X ̂ +a)U + (b-4r+4A. 2+a)U .

Using scheme 1 for bias

a = -(b-4r+4A. ).

a = -(b-4r+2X^+2X2) in which case 

Xr = (4r-2\1-2\2)I + 2(X1-\2)U1 - 2(X1^ 2)U2 .

losing scheme 2
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Load sharing factor = (b+a).

Using C = -Cr gives XW = -xr .

3.1.4 Example

Using the same design as was used in the previous example, the unipolar 

type II switch yields a switch identical to the type I bipolar switch. The 

type II bipolar switch using a=4 gives X with diagonal entries of 12 and off 
diagonal entries of + 4. Load sharing factor = 12.

3.2 General Design

As in the case of noiseless switches, a general design procedure can 

be formed, which offers a choice of more parameters to the designer, 
a) Unipolar

Xr = a(S)T - S - P(SC)T - S + au

= (<*r+a)I + ( ^ 1+g\i-er+a)U 1 + (aX2+g>.2-Pr+a)U2 .
Us ing

X -  a ( S ) T * S C -  3 ( S C) T - S C +  dU

= - ( 3b - p r - d ) I  -  ( a \ 1+ 3\ 1+ $ b - 0' r - 23r - d ) U 1

-  (aft. 2+ 3A. 2+3 b  -O ír  - 23r - d ) U 2 .

T h e  p a r a m e t e r s  a ,  3 , a ,  d  c a n  b e  c h o s e n  t o  g i v e  t h e  m o s t  d e s i r a b l e  l o a d  

s h a r i n g ,  e f f i c i e n c y  a n d  n o i s e .



26

b) Bipolar

Xr = a(S)T - s- 8 (SC)T - S - O' ( S )T • SC+ P(SC)T . Sc+ aU

_wUsing C 
r

S-S
du

= ((3b-krr-|3r+a)I + (|3b-cyr-30r+2ck'X ̂ +2|3X ̂ +a)U 

+ (£b-<vr-3£r+2a\2+23\2+a)U2 

,w, the expression for X is obtained by replacing a by d 

in X^ and changing the signs of all the terms. Again c^j^ajd can be 

chosen as desired. Type I and type II switches are the more interesting 

and special cases of the general design.

This design procedure can be generalized to any partially balanced 

incomplete block design with m associate classes. For such a design, 

necessary conditions are

. th
i) vr =bk

m
ii) .E n. = v i=l l

m
iii) .E.. n .X . =i=l i i

th

appear together, 
cFor the S and S matrices we get the following relations.

mT(S) • S

(SC)T - Sc = (b-r)I + E (b-2r+Xi)U1

= rl + .E, X .U' i=l i

(S)
m

= (Scr- S = jS (r-x.)u1
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where U 1 is a v-by-v matrix such that

i - . _ . th , . th , , . thu ^  = 1 if j and k objects are 1 associates,

= 0 otherwise.

Now using the same procedure as for p.b.i.b.(2) designs, switches can be 

designed based on p.b.i.b.(m) designs.

3.3 A New Class of Switches

An interesting class of switches can be obtained by permuting the
rwinding matrix of a noiseless switch in a certain manner. Let W and C be 

the winding and input matrices of a v output, b+1 input noiseless switch 

based on a (v,k,r,b,X) balanced block design.

The operator P acting on any matrix A is defined as a cyclic permuta

tion operator on the rows of the matrix. If the rows of the matrix A are

{o' , . . .Oi } in that order, then the rows of P(A) are [a a  ,} ,1 2 n n i n - i
the rows of P (A) = P(P(A)) are {<* - ,<* »O' , . . .Oi J  . Obviously P (A) = A.n - 1 n 1 n-z
The operator Q acting on any matrix A is defined as a cyclic permutation

operator on the columns of the matrix. If the columns of A are

{15., .3 } in that order, the columns of Q(A) are [3 ,3, , . . . 8  ,3 etc.1 z m m i  m- i
mAgain Q (A) = A.

x iThe winding matrix W' and the read input matrix C of the new switch 

are formed in the following manner: ,
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W'

W W

W P(W)
r\

W I P (W)

*v\l/
fv
M/ 2v outputs

W v -1P (W)
^b+ 1-^ <— b+1-

*vvl/

L cr j Q(Cr) j Q2(Cr) |
£  V —9  € -----------V  — >  < -------------V  — >

_ rC b+1\1/*(Cr) b+1

- v vi/

If the first (b+1) inputs are excited, one row in each of the v W matrices 

on the left side of W' receives excitation. If the second (b+1) inputs 

are excited, one row in each of the v permuted W matrices in W* receives 

excitation. However, no two rows of W' are identical, and one and only 

one row of W' will receive excitation simultaneously due to both sets of 

(b+1) inputs. If i  is the load sharing factor of the original switch, the 

selected output will receive a total excitation of 21 units. 2(v-l) 

other rows of W' will receive H units of excitation each. If a noise 

excitation of jl units is tolerable and is insufficient to cause the switch

ing of the unselected cores, the switch can be used as it is, otherwise 

a bias wire can provide negative excitation to all the cores to bring the 

noise excitation down to an acceptable level. The write pulse can be 

generated simply by a bias wire or by obtaining a CW matrix from the CW
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rmatrix of the original switch, in a manner identical to obtaining the C 
rmatrix from the C matrix.

If we start with a n-by-n+1 noiseless switch based on a Hadamard matrix

or a (4t-l,2t-l,2t-l,4t-l,t-1) balanced block design, the permuted switch 
2has n outputs for 2n+2 inputs. Noting that two of the inputs are bias

inputs, switched on for all inputs selections, they can be combined into a

single input, reducing the total number of inputs to 2n+l. This switch
2can be compared to a basic n coincident current switch in which the cores 

are laid out in a n-by-n square with n horizontal drivers and n vertical 

drivers. Cores are selected by exciting one horizontal and one vertical 

driver. The selected core gets 2 units of excitation and 2(n-l) unselected 

cores get 1 unit of excitation. In the permuted switch, the selected core 

gets 2ji units of excitation and 2(n-l) cores get i  units of excitation.

The basic switch therefore has a load sharing factor of 2 and the permuted 

switch has a load sharing factor of 2 1 . If Si is large, the drivers for the 

permuted switch need have much smaller power output than the basic switch. 

Also, the permuted switch will function better than the basic square 

switch in the case of driver failure. If one driver fails in the basic 

square switch, the switch is inoperative because all the cores to which the 

defective driver is linked cannot be selected. In the permuted switch the 

failure of 1 driver will cause the excitation to decrease from 21 to 2i,-l 

units in some selected cores. If i  is large, the switch will continue to 

funct ion.

It can easily be shown that this switch is based on a p.b.i.b.(2) 

design. Consider the incidence matrix S of the original (v,k,r,b,\)
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balanced block design. Then the matrix S' where

S' =
-4

s I

Q ( S ) Q ( S )

s

.v-l
( S )

is  the in cid en ce  m atrix  of  a p . b . i . b . ( 2 )  design  with param eters  ( v ' j k ^ r ' ,  

b ' ,X |, X ^ , ^ ,  n p  where

= v 

= kv 

= 2r 

= 2b 

= r+X 

= 2X

= 2(v-l)

= (v-1 ) 2

For proof of this see the appendix. This p.b.i.b,(2) design yields a
2v output 2b+l input switch which is exactly the same as the permuted 

switch with winding matrix W* .
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4. BLOCK DESIGNS AND ERROR CORRECTING CODES

In the following discussion it is shown how certain binary error 

correcting and error detecting codes can be obtained from block designs. 

The reader is referred to Peterson [14] for an introduction to error- 

correcting codes.

If S is the incidence matrix of a (v,k,r,b,A.) balanced block design,

then consider the columns of S Q^, & to be binary code vectors of

length b. The number of ones in a code vector is called the weight of

the vector and is denoted by . The Hamming distance between two code

words Qf. and O', is denoted by 6 (a ., a ) and i j l j

6 («i, a\) = (ju(œ )̂ + (D(c^) - 2(0^.».)

where (Œ .O'.) is the dot product of O', and a . and is therefore the number 
1 J 1 J

of positions simultaneously occupied by ones in both (X and Oi .
1 J

For S we know that

(a^.a^) = \ for i^j,

6 (0̂ , a ) = r+r-2X = 2(r-X) ,

i.e. the distance between any two code vectors is 2(r-\). Therefore, the 

design leads to a code of minimum distance 2(r-X), the code having v 
vectors of length b bits.

cThe complimentary matrix S is the incidence matrix of a block design 

with parameters (v ' =v,k ' =v-k,r '=b-r ,b ' =b ,\ ' =b-2r-bV ) and therefore

3 .) = (b-r) + (b-r) - 2 (b-2r+\)

= 2(r-\)

where ^2’**’̂ v are the columns of S . Therefore, the complimentary
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design also leads to a code of minimum distance 2(r-X), the code having 

v vectors of length b.

Also, since

(<v P p  = 0

and (a .. 3 .) = r-Xi 3
we have

6 (a., P.) = b

6(0-., p ) = b-2(r-X).

If > 2 (r -X), i.e. b > 4(r-X), the columns of S and SC form a code

of 2v vectors of length b and minimum distance 2(r-X). If b < 4(r-X), then 

the set of vectors formed by the columns of S and S have minimum distance 

b-2(r-X ) .

Example: Consider a design with parameters (4,3,3,4,2)
—

1 1 1 0 0 0 0 1

1 1 0 1 sc = 0 0 1 0

1 0 1 1 8 0 1 0 0

r o 1 1 1 1 0 0 0

cConsider the columns of S and S to be the code vectors.

S ince

2(r -X ) = 2

and b-2(r-X) = 2 ,

the columns of S and S taken together give a code of 8 words of length 4 

and minimum distance 2. According to the Plotkin [9] bound A(4i, 2i )  < 8X 

this is an optimal code, for no code of length 4 and minimum distance 2 can
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have more than 8 code words. Since this code has minimum distance 2, it is

capable of detecting all single errors. The error detection scheme in this

case is very simple since all code words have weight one or three. A single

error will change the weight to an even number. Therefore, a simple parity

check circuit which calculates the weight of a received code word will

indicate an error if the weight is even.

Other balanced block designs also lead to the optimal codes of 44 bits

and minimum distance 24 which meet the Plotkin bound of A(44, 2ji ) < 84.

e.g. the two complimentary designs (16,6,6,16,2) and (16,10,10,16,6) yield

the same code of 32 code words, 16 bits long and minimum distance 8 .

Some codes of length 44-2 bits and minimum distance 24 which meet the

Plotkin bound of A(44-2, 24) < 24 are also generated by the columns of

block designs. For example, the designs (4,2,3,6,1), (6,3,5,10,2),

(8,4,7,14,3) and (10,5,9,18,4) all yield codes which satisfy the Plotkin

bound A(44-2, 24) = 24 for 4 = 2,3,4 and 5 respectively. As a matter of

fact, all designs with parameters (24, 4, 24-1, 44-2, 4-1) will generate

codes which meet the Plotkin bound of A(44-2, 24) = 24.

In certain cases the number of code words obtained from a block design

can be increased. Consider a matrix S' formed by adding a column of all
Tones to the incidence matrix S of a block design, i.e. S' = (€ , S) where

T€, is a row of b ones and €. is a column of all ones. If O' , O'b b 1 * 2 * v
are the columns of S

6 ( 6 ^ ,  O f . )  =  ( ! ) ( £ * . )  +  U > ( € ^ )  -  2(A) ( Q ' . )  b i v l v b v i

= b-r
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If b-r > 2(r-\) then all the columns of S' are at distance of at least 

2(r-X) from each other, and the number of code words is increased by one.

The most interesting application of this is to (4t-l,2t-l,2t-1,4t-l,t-1) 

block designs, where adding a column of all ones to S yields the 

A(4t-l,2t) = 4t optimal codes. Bose and Shrikhande [8] have discussed the 

connection between Hadamard matrices, block designs and optimal codes.

We can also consider the matrix formed by adding a column of all zeros
mto the incidence matrix S to give a new matrix S" = (Or, S) where 0, is ab b

Trow of b zeros and 0, is a column of b zeros.b
6 (0*, » i) = io(or) = r

If r > 2(r-\), then the number of code words is increased by one.

It is, however, not possible to add both a column of zeros and a 

column of ones without changing the minimum distance. If the addition of 

a column of ones does not change the minimum distance, then b-r > 2 (r-\) 

and if the addition of a column of zeros does not change the minimum distance 
then

Now

and

r > 2(r -X ) .

r > 2(r-X) implies 2X > r

b-r > 2 (r-\) implies b > 3r-2X.

For a balanced block design both these conditions cannot be simultaneously 
true.

Earlier it was shown that if o t O i ^ y . . . o i  are columns of the incidence

matrix S and (3 , Po,...0 the columns of SC then 1 2  v
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6(0^, a . )  = 2(r-X)

6(0., P.) = 2(r-X)

6(0- . ,  P ) = b - 2 ( r - X )

Suppose b < 4(r-\) and that 4(r-A.)-b = p. Now consider the new matrix
S* and its complement S*c where

s* =  ̂Upxvj

where U is a p-by-v matrix of all ones. If O'* or* . . .Of* are the columns pxv l v
of S* and -3* are the columns of S*° then

6 (°fi,Qfj) = = 2(r^)

6(3*,3*) = 6 (P.,P ) = 2(r-\)
and 6(o?*,P*) = 6(Qfi # P )+p = 2 ( r - X )

i.e. by adding p rows of ones to S, the minimum distance between columns of 

the new matrices S* and S*c is 2(r-\) if b < 4(r-X).

The above methods of construction of codes are very general and can be 

applied to any block design. A particular case of this approach has been 

used by Bose and Shrikhande [8] in the case of (4t-l,2t-l,2t-l,4t-l,t-l) 

block designs. We form a matrix S* by adding one row and one column of 

all ones i.e.

S* =/ ^ v + l  

\ 6b> s

It has been shown that if in this matrix all the zeros are changed to minus 

ones a 4t-by-4t Hadamard matrix is obtained. The columns of S* and its 

complement form an optimal code of length 4t, minimum distance 2t and number 

of code words being 8t. The codes are optimal in the sense that they meet

the Plotkin bound.
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Error correcting and error detecting codes can also be obtained from

p.b.i.b.(m) designs. The manner of construction is the same as for

balanced block designs. The particular case of p.b.i.b.(2) designs is

discussed in greater detail. If S is the incidence matrix of a p.b.i.b.(2)

design with parameters (v,k,r ,b,X ,X , n. , n„) with X . > X_ and Of.,O' ,...<*1 2  1 2  1 2  1 2  v
are the columns of S then the minimum value of 6 (of. ,Qf ) = 2(r-X„). If1 j  l '

flre the columns of S° then minimum value of 6(3.,3 ) = 2(r-X,).
1  ̂ v l j 1

Also minimum value of 6(Of̂ ,(3̂ ) = b-2(r-X2). Thus the columns of S or the
ccolumns of S will form a code of v code words, each of length b bits and 

a minimum distance of 2(r-X^). If the columns of both S and S are taken 

together then the minimum distance is 2(r-X^) or b-2(r-X2), whichever is 

smaller.

If b-2(r-X2) < 2(r-X1) and

2(r-X^) - (b-2r+2X2) = n,

then as before we can add n rows of ones to the matrix S and then the 

columns of the new matrix and its complement will have minimum distance 

2(r-X^). In certain cases a column of zeros or a column of ones or both 

can be added to S to increase the number of code words. Some interesting 

examples of codes from p.b.i.b.(2 ) designs are given below.

The block design with parameters v=10,k=4,r=2,b=5,X^=1,X2=0, n^=6,n2=3, 

has an incidence matrix S given by
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1 1 1 1 0

1 0 0 0 1

0 1 0 0 1

0 0 1 0 0

0 0 0 1 0

0 0 0 0 0

1 1 0 0 0

0 0 1 1 0

1 0 1 0 1

0 1 0 1 1

( ’ )The columns of S give the well known { 0 } code. The columns of S give 

the code. Both codes have minimum distance 2, with 10 code words of 

length 5 bits. In both codes we can add a column of all zeros and a column 

of all ones to increase the number of code words to 12 without decreasing

the minimum distance. We can also form a new matrix S given by

The columns of S and their complements yield a code having 22 code words, 

each 6 bits long and a minimum distance of 2. None of the above codes are 

optimal since the Plotkin bounds of the relevant codes are A(5,2) < 16, 

and A(6,2) < 32. In certain cases optimal codes are obtained, e.g. the code 

obtained from the columns of S* and S*c where S* is obtained from S by 

adding a column of all zeros, for the v=15 ,k=9 ,r=6 ,b=10 ,X ̂ =4 ,n^=6 ,n2=8 ,

p.b.i.b.(2) design. The code obtained meets t*he Plotkin bound A(10,4) < 32.
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APPENDIX

A Theorem for the Construction of p.b.i.b.(2) Designs 
From Balanced Block Designs

Let S be the incidence matrix of a (v,k,r,b,X) balanced block design. 

Let {3 ̂ ,&2 > • • *PV} ke the v columns of S in that order. Each column contains 

r ones and no two columns of S are identical. The dot product of the two 
columns

Oi-Pj) = r > if i=j 
= X , if i^ j .

Now consider the matrix S' which consists of 2v b-by-v submatrices

S ' * 1 1 1 “1S |  S j S r ..... S

S j Q ( S )  | Q2 ( S ) J ................. jQV _  1 ( S )

The operator Q acting on the matrix S is defined as a cyclic permutation 

operator on the columns of the matrix. The columns of Q(S) are f ’̂ 39’*‘

PV »P]_1 in that order, the columns of Q2 (S) are {3 3 ,34 , • .-3 y ,3 x ,3 23 in that 
order, etc. Obviously,

Qv(s) = s.

Since no two columns of S are identical, no two columns of S' are
2identical. Each of the v' = v columns of S' contains r ’ = 2r ones and each

of the b ' = 2b rows of S' contains k' = kv ones.

Consider any column 8 ' of the matrix S". Each half of p' is identicals s
to some column of S. Therefore, we may write 8 ' = 8  ,8 ,s n m
half of 8 ' is identical to 8 and the second half to 8 .s n m

i.e. the first
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If

then
s = pv+q 0 <q < v

m = (p+q)(mod v) , 1 < m < v.

The column 3n occurs once in each upper sub-matrix S in S' and the column
3m occurs once in each lower sub-matrix which is a permutation on the

columns of S. We take the dot product of 3g with each of the other columns

of S', i.e. (3 ' .(3 ') s^t and 1 < t < v . If 31 = 3 ,3 for some 1 < y , z <, v s t  t y z

(■W“ (en - V  + < V P «> '

Now for v-1 columns of S' 3 = 3  and for v-1 columns of S' B = 3  as ty n z m
2 2 takes on the v -1 values of t = 1,2,...s-1,s+1,...v . However, it is not

possible that 3 = 3 and 3 = 3  simultaneously for any t since that wouldy n z m
imply 3' = 3* for s^t. s t

If

and

Also if

3 = 3 , (3 .3 ) = rn y v n y
(3 -3 ) = X. since 3 ^3m z m z

and
ßm = ez ’ (V V  = X S in c e  y p y

(em-PZ> = r
Therefore if either 3 = 3 or 3 = 3 > which is true for 2(v-l) columns ofn y m rz
S' .

(3 ; . $;) = r + x.

For all other columns of S ' 3 , 3 ^3 and therefore (S' .8') = 2X.n y m z s Mty
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It is now easily seen that S' satisfies all the conditions for being

the incidence matrix of a p.b.i.b.(2) design. Let each column of S' corres-
thpond to one particular object and each row to one particular block. The s 

t hand t objects are first associates if (8' . 8') = r+A = A' and second J Vhs t 1
associates if = 2A = A^• Each object has nj = 2(v-l) first assoc-

2iates and n^ = (v-1) second associates. We have already seen that each

column of S' has r ' = 2r ones and each row of S' has k' = kv ones.
2It is seen that the parameters v'=v ,k'=kv,r ,=2r ,b ,=2b ,A |=r+A »

2nj=2(v-l),n ^ = ( y - l ) satisfy the necessary conditions for a p.b.i.b.(2)

des ign,

i) v 'r ' = b 'k ' ,

ii) nl+ n 2 = v '
iii) niX i + n2X 2

Therefore, the matrix S' is the 

we state result as the following

incidence matrix 

theorem:

of a p.b.i.b.(2) design and

Theorem: If S is the 

design, then the matrix

incidence matrix of a (v,k,r,b,A) balanced block

S' = S 1 
-\

S ! s 1....
i i- -

S 1
L  1

Q(s) ! Q2 (S)I....
1 1

.... jQV_1(S)

is the incidence matrix of 

where

a (v1, v 1 , r 1 , b 1 ,A[,A2 >n *n^) p.b.i.b. (2 ) design

v 2 
V  = V b* = 2b n| = 2(v-l)

>II¿4

x ;
= r+A = (v-1 ) 2

*2 -v' = 2r 2A
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