

MATRIX SWITCHES AND ERROR CORRECTING CODES FROM BLOCK DESIGNS

Lalit Rai Bahl

This work was supported in part by the Joint Services Electronics Program (U,S. Army, U.S. Navy, and U.S. Air Force) under Contract DA 28043 AMC 00073(E); and in part by the Nation Science Foundation under Grant NSF GK-690.

Reproduction of this report in whole or in part is permitted for any purpose of the United States Government.

Distribution of this report is unlimited. Qualified requesters may obtain copies of this report from DDC.

MATRIX SWITCHES AND ERROR CORRECTING CODES FROM BLOCK DESIGNS

Lalit Rai Bah1

Abstract

Methods of obtaining matrix switches from block designs have been formulated by Singleton and Neumann. The first part of this report extends Singleton's method for designing unipolar switches to the design of bipolar switches. A new class of low noise switches is obtained by permutation of the winding matrix of noiseless switches and it is shown how these new switches are related to block designs.

The latter part of this report is concerned with methods of obtaining error detecting and error correcting codes from block designs. Some of these codes are found to be optimal.

ACKNOWLEDGMENT

I wish to express my gratitude to Professor R. T. Chien for his guidance, invaluable advice and suggestions throughout the period of research for this report. Thanks are extended to Mrs. Divona Keel for her preparation of this manuscript.

TABLE OF CONTENTS

Page

1. INTRODUCTION 1
2. BALANCED BLOCK DESIGNS AND NOISELESS SWITCHES 5
2.1 Design of Switches Based on Balanced Block Designs 6
2.2 General Design 14
3. PARTIALLY BALANCED BLOCK DESIGNS AND LOW NOISE SWITCHES 18
3.1 Design of Switches Based on p.b.i.b. (2) Designs 21
3.2 General Design 25
3.3 A New Class of Switches 27
4. BLOCK DESIGNS AND ERROR CORRECTING CODES 31
APPENDIX 38
LIST OF REFERENCES 41

1. INTRODUCTION

Addressing is a significant problem in the design of random access magnetic memory core systems used in computers. Coincident current techniques for addressing are well known and widely used. In these systems the selected magnetic core is energized by the coincidence of currents in one horizontal and one vertical driver. In such systems each driver must provide a considerable amount of power and be bidirectional.

To avoid the need for high power drivers, load sharing matrix switches are used, in which the combined power output of a large number of drivers is received by the selected core. Such switches are noiseless if all the cores other than the selected core receive no excitation. The obvious advantage of such switches is that the power requirements of the drivers is greatly reduced. Moreover, such switches will continue to function even if a few drivers fail. However, these advantages are obtained at the cost of a more complex wiring system for the cores. In small memories, the matrix switch itself may be used for storage of information. In larger arrays, output windings on the cores of the matrix switches can be used to generate the read and write pulses for a coincident current magnetic memory array.

Recently a number of papers have appeared on the subject of load sharing matrix switches. Designs for noiseless switches have been suggested by Constantine [1], Marcus [2] and Chien [3]. The design of matrix switches using block designs has been studied by Singleton [4], Neumann [5], Minnick and Haynes [6].

In Chapter 2 the design of noiseless switches based on balanced block designs is discussed. The method of design of unipolar switches suggested by Singleton is extended to the design of bipolar switches also.

In Chapter 3, partially balanced block designs are used to design low noise matrix switches. Again, some of the material is due to Singleton. A new class of low noise switches is obtained by permuting the winding matrix in a particular manner. The connection between these switches and block designs is discussed. This part of the work appears to be original.

The connection between orthogonal matrices, error correcting codes, and matrix switches has been studied by Chien [7]. Bose and Shrikhande [8] have pointed out the connection between orthogonal Hadamard matrices, block designs and error correcting codes. The approach used in the above mentioned papers is generalized and extended to obtaining codes from block designs in Chapter 4. In some cases the codes are found to be optimal and meet the Plotkin [9] bound.

Switch Notation: A magnetic matrix switch is described by its winding matrix $W=\left[w_{i j}\right]$, its input matrix $C^{r}=\left[c_{i j}^{r}\right]$ for the read operation and its input matrix $C^{W}=\left[c_{i j}^{w_{0}^{*}}\right]$ for the write operation. The winding matrix for a switch with v outputs and b inputs (excluding the bias input) is given by $a \operatorname{v-by}-(b+1)$ matrix. The magnitude of $w_{i j}$ represents the number of turns of the $j^{\text {th }}$ input wire on the $i^{\text {th }}$ core, the sign of $w_{i j}$ represents the direction of the winding. The $(b+1)^{\text {th }}$ input is for bias. In practice there may be two bias wires, one for read and one for write if the read and write bias are unequal. Sometimes it may be possible to get rid of the bias wires completely. The patterns used as read inputs are arranged
as the columns of the $(b+1)-b y-v$ read input matrix C^{r}. For most of the switches discussed here, the first b rows contain only 0 and ± 1, i.e. all the input drivers are assumed to have a current output of unity. The final row contains the entries for the bias level which may be different from 0 and ± 1. The v-by-v read output matrix is given by $x^{r}=\left[x_{i j}^{r}\right]=W . C^{r}$ where $x_{i j}^{r}$ is the excitation of the $i^{\text {th }}$ core by the $j^{\text {th }}$ input pattern during the read operation. Similarly the write output matrix is given by $X^{W}=\left[x_{i j}^{w}\right]=W . C^{w}$.

A switch is unipolar if C^{r} and C^{W} have only nonnegative entires in their first b rows, and is bipolar if they contain negative entries also. The input drivers of a unipolar switch are unidirectional whereas the drivers of a bipolar switch are bidirectional.

A matrix switch is noiseless if for any input pattern used, only one output is excited, i.e. the read operation is noiseless if $X^{r}=p I$ and the write operation is noiseless if $\mathrm{X}^{\mathrm{W}}=-\mathrm{qI}$ where I is the v -by-v identity matrix.

A switch is load sharing if a number of small inputs combine to give a large output. The load sharing factor is the ratio of the total output of the selected core to the output obtained if only one input driver was excited. If W contains only 0 's and ± 1 's then the load sharing factor is given by

$$
p=\sum_{j} w_{i j} c_{j i}
$$

The efficiency of a noiseless switch is defined as

$$
\eta=\frac{\left|\sum_{j} w_{i j} c_{j i}\right|}{\sum_{j}\left|w_{i j} c_{j i}\right|}
$$

where $c_{j i}=c_{j i}^{r}$ for the read operation and $c_{j i}=c_{j i}^{w}$ for the write operation.

2. BALANCED BLOCK DESIGNS AND NOISELESS SWITCHES

In a balanced incomplete block design we have v objects arranged in b blocks, each block containing k distinct objects. Each object occurs r times and each pair of objects occur together in λ blocks.

Elementary conditions for the existence of $a(v, k, r, b, \lambda)$ balanced block design are
i) $\mathrm{vr}=\mathrm{bk}$
ii) $\lambda(v-1)=r(k-1)$.

As a consequence of these conditions $b \geq v$. If $b=v, k=r$, we have a symmetric design, the first condition is satisfied immediately and the second reduces to $k(k-1)=\lambda(v-1)$.

Generally the above conditions are not sufficient for the existence of designs. Known existence theorems are discussed by Mann [10] and Hall [11].

A balanced incomplete block design is conveniently represented by its $b-b y-v$ incidence matrix $S=\left[s_{i j}\right]$

$$
\begin{aligned}
s_{i j} & =1 \text { if the } i^{\text {th }} \text { block contains the } j^{\text {th }} \text { element } \\
& =0 \text { if the } i^{\text {th }} \text { block does not contain the } j^{\text {th }} \text { element. }
\end{aligned}
$$

Each row contains k ones and each column contains r ones.

$$
\begin{aligned}
\sum_{j=1}^{b} s_{j a} s_{j d} & =r & & \text { if } a=d \\
& =\lambda & & \text { if } a \neq d .
\end{aligned}
$$

Therefore the product $(S)^{T} \cdot S=(r-\lambda) I+\lambda U$ where U is a $v-b y-v$ matrix of all ones.

The complement of a ($\mathrm{v}, \mathrm{k}, \mathrm{r}, \mathrm{b}, \lambda$) design is obtained by replacing ones by zeros and zeros by ones in S. This gives the incidence matrix $S^{c}=\left[s_{i j}^{c}\right]$ of a ($v, v-k, b-r, b, b+\lambda-2 r)$ balanced block design, and

$$
\begin{aligned}
\sum_{j=1}^{b} s_{j a}^{c} s_{j d}^{c} & =b-r \quad \text { if } a=d \\
& =b+\lambda-2 r \text { if } a \neq d
\end{aligned}
$$

Therefore,

$$
\left(S^{c}\right)^{T} \cdot S^{c}=(r-\lambda) I+(b+\lambda-2 r) U
$$

Also

$$
\begin{aligned}
\sum_{j=1}^{b} s_{j a}^{c} s_{j d}=\sum_{j=1}^{b} s_{j a} s_{j d}^{c} & =0 \quad \text { if } a=d \\
& =(r-\lambda) \text { if } a \neq d
\end{aligned}
$$

Therefore

$$
\left(S^{c}\right)^{T} \cdot S=(S)^{T} \cdot S^{c}=-(r-\lambda) I+(r-\lambda) U
$$

2.1 Design of Switches Based on Balanced Block Designs

The design procedure used here is the one used by Singleton [4] for unipolar switches. The design procedure is extended to bipolar switches. In type I switches all input windings are in the same direction. Type II switches have core windings in both directions.

2.1.1 Type I Switch

a) Unipolar

$$
\mathrm{W}=\binom{\mathrm{s}}{\mathrm{u}}^{\mathrm{T}}
$$

where u is a row of ones and represents the bias winding.

$$
\begin{aligned}
& c^{\mathrm{r}}=\binom{\mathrm{s}}{\mathrm{au}} \\
& \mathrm{c}^{\mathrm{w}}=\binom{\mathrm{s}^{\mathrm{c}}}{\mathrm{du}}
\end{aligned}
$$

$$
x^{r}=(S)^{T} \cdot S+a U=(r-\lambda) I+(\lambda+a) U
$$

Putting the bias level $a=-\lambda$ gives

$$
x^{r}=(r-\lambda) I
$$

making the read operation noiseless.
Load sharing factor for read operation $=p_{r}=(r-\lambda)$.
Read efficiency $\eta_{r}=\frac{r-\lambda}{r+\lambda}$

$$
x^{W}=(S)^{T} \cdot S^{c}+d U=-(r-\lambda) I+(r-\lambda+d) U
$$

Putting the bias level $d=\lambda-r$ gives

$$
x^{W}=-(r-\lambda) I
$$

making the write operation noiseless.
Load sharing factor for write operation $=p_{w}=(r-\lambda)$.
Write efficiency $\eta_{w}=\frac{r-\lambda}{r-\lambda}=1$.
Such a switch has $\mathrm{b}+2$ inputs and v outputs. Two bias windings are required since $a \neq d \neq 0$.
b) Bipolar

$$
\begin{aligned}
W & =\binom{S}{u}^{T} \\
C^{r} & =\binom{s-S^{c}}{a u} \\
C^{w} & =-C^{r} \\
x^{r} & =(S)^{T} \cdot S-(S)^{T} \cdot s^{c}+a U \\
& =2(r-\lambda) I+(2 \lambda-r+a) U
\end{aligned}
$$

Putting bias level $a=r-2 \lambda$ gives

$$
x^{r}=2(r-\lambda) I
$$

Load sharing factor $p_{r}=2(r-\lambda)$.
Read efficiency $\eta_{r}=\frac{2(r-\lambda)}{r+|r-2 \lambda|}$.

$$
\text { If } \begin{array}{rll}
\mathrm{r} & \geq 2 \lambda & \eta_{r}=1 \\
r & <2 \lambda & \eta_{r}=\frac{r-\lambda}{\lambda}
\end{array}
$$

Since

$$
c^{W}=-c^{r}, x^{w}=-x^{r}=-2(r-\lambda) I
$$

and write efficiency $\eta_{w}=\eta_{r}$. If $r=2 \lambda, a=0$ and no bias winding is required.

2.1.2 Example of Type I Switch

This switch is based on the $(4,2,3,6,1)$ balanced block design.

$$
S=\left[\begin{array}{llll}
1 & 1 & 0 & 0 \\
0 & 0 & 1 & 1 \\
1 & 0 & 1 & 0 \\
0 & 1 & 0 & 1 \\
1 & 0 & 0 & 1 \\
0 & 1 & 1 & 0
\end{array}\right]
$$

Unipolar switch

$$
\begin{gathered}
\mathrm{W}=\binom{\mathrm{S}}{\mathrm{u}}^{\mathrm{T}}=\left[\begin{array}{lllllll}
1 & 0 & 1 & 0 & 1 & 0 & 1 \\
1 & 0 & 0 & 1 & 0 & 1 & 1 \\
0 & 1 & 1 & 0 & 0 & 1 & 1 \\
0 & 1 & 0 & 1 & 1 & 0 & 1
\end{array}\right] \\
a=-\lambda=-1, \quad d=\lambda-r=-2
\end{gathered}
$$

$$
\left.C^{r}=\binom{s}{-u}=\left[\begin{array}{cccc}
1 & 1 & 0 & 0 \\
0 & 0 & 1 & 1 \\
1 & 0 & 1 & 0 \\
0 & 1 & 0 & 1 \\
1 & 0 & 0 & 1 \\
0 & 1 & 1 & 0 \\
-1 & -1 & -1 & -1
\end{array}\right], \quad \begin{array}{cccc}
\\
0 & 0 & 1 & 1 \\
1 & 1 & 0 & 0 \\
0 & 1 & 0 & 1 \\
1 & 0 & 1 & 0 \\
0 & 1 & 1 & 0 \\
1 & 0 & 0 & 1 \\
0 & 2 & 0 & 0 \\
0 & 0 & 2 & 0 \\
0 & 0 & 0 & 2
\end{array}\right]
$$

The switch has six regular inputs and two bias inputs. The number of outputs is 4.

Load sharing factor $p_{r}=p_{W}=2$.
Read efficiency $\eta_{r}=\frac{1}{2}$.
Write efficiency $\eta_{w}=1$.
Bipolar switch
The W matrix is the same as for the unipolar switch
$a=r-2 \lambda=1$
$C^{r}=\binom{S-S^{c}}{u}=\left[\begin{array}{rrrr}1 & 1 & -1 & -1 \\ -1 & -1 & 1 & 1 \\ 1 & -1 & 1 & -1 \\ -1 & 1 & -1 & 1 \\ 1 & -1 & -1 & 1 \\ -1 & 1 & 1 & -1 \\ 1 & 1 & 1 & 1\end{array}\right] .\left[\begin{array}{rrr} \\ C^{W}\end{array}\right]$

$$
X^{r}=4 I=\left[\begin{array}{llll}
4 & 0 & 0 & 0 \\
0 & 4 & 0 & 0 \\
0 & 0 & 4 & 0 \\
0 & 0 & 0 & 4
\end{array}\right] \quad x^{w}=-4 I
$$

Load sharing factor $p_{r}=p_{w}=4$.
Efficiency $\eta_{r}=\eta_{w}=1$.
The switch has 7 inputs and 4 outputs.

2.1.3 Type II Switch

a) Unipolar

$$
\begin{aligned}
W & =\binom{s-S^{c}}{u}^{T} \\
C^{r} & =\binom{s}{a u} \\
C^{w} & =\binom{s^{c}}{d u} \\
x^{r} & =(S)^{T} \cdot s-\left(S^{c}\right)^{T} \cdot s+a U \\
& =2(r-\lambda) I+(2 \lambda-r+a) U
\end{aligned}
$$

Putting bias leve1 $a=r-2 \lambda$ gives

$$
x^{r}=2(r-\lambda) I
$$

Load sharing factor $p_{r}=2(r-\lambda)$.
Efficiency $\eta_{r}=\frac{2(r-\lambda)}{r+|r-2 \lambda|}=1$ if $r \geq 2 \lambda$,

$$
=\frac{r-\lambda}{\lambda} \text { if } r<2 \lambda \text {. }
$$

If $\mathrm{r}=2 \lambda \mathrm{a}=0$ and one bias wire can be eliminated,

$$
\begin{aligned}
x^{W} & =(S)^{T} \cdot S^{c}-\left(S^{c}\right)^{T} \cdot S^{c}+d U \\
& =-2(r-\lambda) I+(3 r-2 \lambda-b+d) U .
\end{aligned}
$$

Putting bias leve $1 \mathrm{~d}=\mathrm{b}+2 \lambda-3 \mathrm{r}$

$$
\mathrm{x}^{\mathrm{W}}=-2(\mathrm{r}-\lambda) I
$$

Load sharing factor $\mathrm{p}_{\mathrm{w}}=2(\mathrm{r}-\lambda)$
Efficiency $\eta_{w}=\frac{2(r-\lambda)}{(b-r)+|b+2 \lambda-3 r|}=1$ if $3 r \geq b+2 \lambda$

$$
=\frac{r-\lambda}{b+\lambda-2 r} \text { if } 3 r<b+2 \lambda
$$

If $r=2 \lambda$ or $3 r=b+2 \lambda$ then one of the bias windings $c a n$ be eliminated since either $\mathrm{a}=0$ or $\mathrm{d}=0$. It is not possible to make both a and d zero.

$$
\begin{aligned}
& a=0 \text { implies } r=2 \lambda \\
& d=0 \text { implies } 3 r=b+2 \lambda
\end{aligned}
$$

Then $b=3 r-2 \lambda=2 r$.
Also $\mathrm{vr}=\mathrm{bk}$ and substituting $\mathrm{b}=2 \mathrm{r}$ gives $\mathrm{v}=2 \mathrm{k}$.
But the condition $\lambda(v-1)=r(k-1)$ implies $v=2 k-1$ which is contradictory to the earlier found value for v.

This switch will have at least $b+1$ inputs and v outputs. It is possible to make both η_{r} and η_{w} equal to 1 if $r \geq 2 \lambda$ and $3 r \geq b+2 \lambda$. Switches derived from ($4 t-1,2 t, 2 t, 4 t-1, t)$ and $(4 t-1,2 t-1,2 t-1,4 t-1$, t-1) designs which are closely related to Hadamard matrices have this property.
b) Bipolar

$$
\begin{aligned}
W & =\binom{S-S^{c}}{u}^{T} \\
C^{r} & =\binom{S-S^{c}}{a u} \\
C^{W} & =-C^{r} \\
X^{r} & =(S)^{T} \cdot S+\left(S^{c}\right)^{T} \cdot S^{c}-(S)^{T} \cdot S^{c}-\left(S^{c}\right)^{T} \cdot S+a U \\
& =4(r-\lambda) I+(b+4 \lambda-4 r+a) U
\end{aligned}
$$

Putting bias level $\mathrm{a}=-(\mathrm{b}+4 \lambda-4 \mathrm{r})$

$$
x^{r}=4(r-\lambda) I .
$$

Load sharing factor $\mathrm{p}_{\mathrm{r}}=4(\mathrm{r}-\lambda)$.
Efficiency $\eta_{r}=\frac{4(r-\lambda)}{b+|b+4 \lambda-4 r|}=1$ if $b \leq 4(r-\lambda)$.

$$
=\frac{4(r-\lambda)}{2 b-4(r-\lambda)} \text { if } b>4(r-\lambda) .
$$

Since $C^{W}=-C^{r}, X^{W}=-X^{r}=-4(r-\lambda) I, \eta_{r}=\eta_{W}$. If $b=4(r-\lambda) \quad a=0$, no bias winding is required and the switch also has efficiency 1.

2.1.4 Example of Type II Switch

The $(4,2,3,6,1)$ design is used again.
Unipolar switch.

$$
W=\binom{\mathrm{S}-\mathrm{S}^{c}}{\mathrm{u}}^{T}=\left[\begin{array}{rrrrrrr}
1 & -1 & 1 & -1 & 1 & -1 & 1 \\
1 & -1 & -1 & 1 & -1 & 1 & 1 \\
-1 & 1 & 1 & -1 & -1 & 1 & 1 \\
-1 & 1 & -1 & 1 & 1 & -1 & 1
\end{array}\right]
$$

$$
a=r-2 \lambda=1, d=b+2 \lambda-3 r=-1
$$

$$
C^{r}=\left[\begin{array}{cccc}
1 & 1 & 0 & 0 \\
0 & 0 & 1 & 1 \\
1 & 0 & 1 & 0 \\
\cdots & 1 & 0 & 1 \\
1 & 0 & 0 & 1 \\
0 & 1 & 1 & 0 \\
1 & 1 & 1 & 1
\end{array}\right], \quad C^{w}=\left[\begin{array}{cccc}
0 & 0 & 1 & 1 \\
1 & 1 & 0 & 0 \\
0 & 1 & 0 & 1 \\
1 & 0 & 1 & 0 \\
0 & 1 & 1 & 0 \\
1 & 0 & 0 & 1 \\
-1 & -1 & -1 & -1
\end{array}\right]
$$

$$
X^{r}=4 I=\left[\begin{array}{llll}
4 & 0 & 0 & 0 \\
0 & 4 & 0 & 0 \\
0 & 0 & 4 & 0 \\
0 & 0 & 0 & 4
\end{array}\right], X^{W}=-4 I
$$

Switch has 8 inputs, 4 outputs.
Load sharing factor $p_{r}=p_{w}=4$.
Efficiency $\eta_{r}=\eta_{w}=1$.
Bipolar switch.
The W matrix is the same as for the unipolar switch.

$$
\begin{aligned}
& a=-(b+4 \lambda-4 r)=2 \\
& C^{r}=\left[\begin{array}{rrrr}
1 & 1 & -1 & -1 \\
-1 & -1 & 1 & 1 \\
1 & -1 & 1 & -1 \\
-1 & 1 & -1 & 1 \\
1 & -1 & -1 & 1 \\
-1 & 1 & 1 & -1 \\
2 & 2 & 2 & 2 \\
x^{r} & =8 I=C^{w}=-C^{r} \\
0 & 0 & 0 & 0 \\
0 & 8 & 0 & 0 \\
0 & 0 & 8 & 0 \\
0 & 0 & 0 & 8
\end{array}\right], x^{w}=-8 I
\end{aligned}
$$

Load sharing factor $P_{r}=p_{W}=8$.
Efficiency $\eta_{r}=\eta_{w}=1$.
The class of switches published by Constantine [1] are type II unipolar switches based on the block designs with parameters $\left(2^{p-1}, 2^{p-2}, 2^{p-1}-1\right.$, $\left.2^{p}-2,2^{p-2}-1\right)$. For these designs $a=1, d=-1$ and the designs yield switches with 2^{p-1} outputs with 2^{p} inputs, a load sharing factor $p_{r}=p_{w}=2^{p-1}$ and efficiency $\eta_{r}=\eta_{w}=1$. The class of switches suggested by Marcus [2] are
identified with symmetrical designs of the type $\left(2^{\mathrm{p}}-1,2^{\mathrm{p}-1}-1,2^{\mathrm{p}-1}-1\right.$, $2^{\mathrm{p}}-1,2^{\mathrm{p}-2}-1$). These switches are a subclass of the switches suggested by Chien [3] which are type II switches based on (4t-1, $2 t-1,2 t-1,4 t-1, t-1$) designs. For these switches $a=1, d=0$ and the switches have $4 t-1$ outputs with $4 t$ inputs. The load sharing factor $p_{r}=p_{w}=2 t$ and efficiency $\eta_{r}=\eta_{w}=1$. These designs are closely related to Hadamard matrices.

2.2 General Design

So far only switches whose winding matrices W contain entries of 0 and ± 1 have been discussed. A general design procedure such that W can contain other entries also is outlined here.
a) Unipolar switch

$$
\begin{aligned}
\text { switch } \\
\begin{aligned}
W & =\binom{\alpha S}{u}^{c} \\
C^{r} & =\binom{S}{a u} \\
C^{W} & =\binom{S^{c}}{d u} \\
X^{r} & =\alpha(S)^{T} \cdot S-\beta\left(S^{c}\right)^{T} \cdot S+a U \\
& =(\alpha+\beta)(r-\lambda) I+(\alpha \lambda+\beta \lambda-\beta r+a) U
\end{aligned}
\end{aligned}
$$

Putting bias level $a=\beta r-(\alpha+\beta) \lambda$ gives

$$
\begin{aligned}
\mathrm{x}^{\mathrm{r}}= & (\alpha+\beta)(\mathrm{r}-\lambda) \mathrm{I} \\
\eta_{\mathrm{r}}=\frac{(\alpha+\beta)(\mathrm{r}-\lambda)}{\alpha r+|\beta r-(\alpha+\beta) \lambda|} & =1 \text { if } \beta r \geq(\alpha+\beta) \lambda \\
& =\frac{(\alpha+\beta)(r-\lambda)}{(\alpha-\beta) r+(\alpha+\beta) \lambda} \text { if } \beta r<(\alpha+\beta) \lambda \\
x^{\mathrm{W}} & =\alpha(\mathrm{S})^{T} \cdot s^{c}-\beta\left(S^{c}\right)^{T} \cdot s^{c}+d U \\
& =-(\alpha+\beta)(r-\lambda) I+(\alpha r-\alpha \lambda-\beta b-\beta \lambda+2 \beta r+d) U
\end{aligned}
$$

Putting bias level $d=\beta(b-r)-(\alpha+\beta)(r-\lambda)$,

$$
\begin{aligned}
& \mathrm{X}^{\mathrm{W}}=-(\alpha+\beta)(r-\lambda) I \\
& \eta_{\mathrm{w}}=\frac{(\alpha+\beta)(r-\lambda)}{\beta(b-r)+|\beta(b-r)-(\alpha+\beta)(r-\lambda)|}
\end{aligned}
$$

If $(a+\beta)(r-\lambda) \geq \beta(b-r), \eta_{w}=1$.

If $(\alpha+\beta)(r-\lambda)<\beta(b-r), \eta_{w}=\frac{(\alpha+\beta)(r-\lambda)}{2 \beta(b-r)-(\alpha+\beta)(r-\lambda)}$
α and β can be chosen to give either $a=0$ or $d=0$, hence getting r id of one bias winding. However, it is not possible to make both a and d zero.

$$
\begin{aligned}
& a=0 \text { gives } \beta r=(\alpha+\beta) \lambda \\
& d=0 \text { gives } \beta b-(\alpha+\beta) r=\beta r-(\alpha+\beta) \lambda=0
\end{aligned}
$$

The necessary condition $v r=b k$ implies

$$
\begin{aligned}
\beta v r & =(\alpha+\beta) \lambda v \\
\text { and } \beta b k & =(\alpha+\beta) r k
\end{aligned}
$$

Therefore,

$$
(\alpha+\beta)(\lambda v-r k)=0
$$

If $(\alpha+\beta)=0, X^{r}=X^{W}=0$, i.e. no output from the switch. If $\lambda v=r k$ the condition $\lambda(v-1)=r(k-1)$ implies $\lambda=r$, in which case S consists of all zeros or all ones.

Therefore, a unipolar switch based on $a(v, k, r, b, \lambda)$ design will have at least $(b+1)$ inputs and s ince $v \leq b$ the number of inputs is always larger than the number of outputs.
b) Bipolar switch

$$
\begin{aligned}
& W=\binom{\alpha_{S}-\beta S^{c}}{u}^{T} \\
& C^{r}=\binom{S-S^{c}}{a u}, C^{W}=-C^{r}
\end{aligned}
$$

$$
\begin{aligned}
X^{r} & =\alpha(S)^{T} \cdot S-\beta\left(S^{c}\right) \cdot S-\alpha(S)^{T} \cdot S^{c}+\beta\left(S^{c}\right) \cdot S^{c}+a U \\
& =2(\alpha+\beta)(r-\lambda) I+\left(\beta_{b+2 \lambda(\alpha+\beta)-r(\alpha+3 \beta)+a) U}\right.
\end{aligned}
$$

Putting bias level $a=-(\alpha(2 \lambda-r)+\beta(b+2 \lambda-3 r))$.

$$
\begin{aligned}
& x^{r}=2(\alpha+\beta)(r-\lambda) I \\
& x^{W}=-2(\alpha+\beta)(r-\lambda) I
\end{aligned}
$$

$$
\eta_{r}=\eta_{w}=\frac{2(\alpha+\beta)(r-\lambda)}{\alpha r+\beta(b-r)+|\alpha(2 \lambda-r)+\beta(b+2 \lambda-3 r)|}
$$

If $(\alpha(2 \lambda-r)+\beta(b+2 \lambda-3 r)) \leq 0, \eta_{r}=\eta_{w}=1$.
If $(\alpha(2 \lambda-r)+\beta(b+2 \lambda-3 r))>0, \eta_{r}=\eta_{w}=\frac{(\alpha+\beta)(r-\lambda)}{\alpha \lambda+\beta(b+\lambda-2 r)}$.
$a=0$ if $\alpha(2 \lambda-r)=\beta(3 r-b-2 \lambda)$ in which case a bias winding is not required.
This can easily be achieved by putting

$$
\begin{aligned}
& \alpha=(3 r-b-2 \lambda) \\
& \beta=(2 \lambda-r) .
\end{aligned}
$$

Both α and β will never be zero because $\beta=0$ implies $r=2 \lambda$. Since $\lambda(v-1)=r(k-1)$ we have $v=2 k-1 . \alpha=0$ imp1ies $b=2 r$. Since $v r=b k$ we have $v=2 k$ which is contradictory to $\mathrm{v}=2 \mathrm{k}-1$.

The number of inputs to a bipolar switch is b if the bias wires are eliminated. The number of outputs is v. Since $b \geq v$, the number of inputs cannot be less than the number of outputs. The bound $b=v$ is achieved only in the case of symmetrical designs. Therefore, a unipolar switch derived from a balanced block design has at least $v+1$ inputs for v outputs and a bipolar switch at least v inputs for v outputs. Actually, it is easily seen that no noiseless switch can have more outputs than inputs. Since $\mathrm{X}=\mathrm{W} . \mathrm{C}$ and in a noiseless switch $X=p I$, the rank of X is equal to v, the number
of outputs. Therefore, the ranks of W and C must also be at least v and this implies that the number of inputs must also be at least v.

3. PARTIALLY BALANCED BLOCK DESIGNS AND LOW NOISE SWITCHES

An incomplete block design is said to be partially balanced if it is an arrangement of v objects into b groups, each containing $\mathrm{k}<\mathrm{v}$ diṣtinct objects such that
i) Each object appears in r groups,
ii) Each object has $n_{i} i^{\text {th }}$ associates $i=1,2, \ldots m$,
iii) Any pair of objects are $i^{\text {th }}$ associates for some $i=1,2, \ldots m$,
iv) Any two objects that are $i^{\text {th }}$ associates appear together in λ_{i} blocks.

If $\mathrm{m}=1$, the resulting design is balanced. If $\mathrm{m}=2$, designs are partially balanced with 2 associate classes. These designs have been studied extensively by Bose, Clatworthy and Shrikhande [12] and Clatworthy [13]. Designs with more than two associate classes have not been studied to any great extent.

Necessary conditions for a partially balanced incomplete block design with 2 associate classes are
i) $\mathrm{vr}=\mathrm{bk}$,
ii) $n_{1}+n_{2}=v-1$,
iii) $n_{1} \lambda_{1}+n_{2} \lambda_{2}=r(k-1)$.

The condition $\mathrm{b} \geq \mathrm{v}$ which holds in the case of balanced designs is no longer true and switches with more outputs than inputs can be designed using the same techniques as were used earlier. However, such switches will not be noiseless.

The incomplete block design can be represented by its incidence matrix S b

$$
\begin{aligned}
\sum_{j=1} s_{j a} s_{j d} & =r \text { if } a=b \\
= & \lambda_{i} \text { if } a \neq b \text { and the } a^{\text {th }} \text { and } b^{\text {th }} \text { objects are } \\
& i^{\text {th }} \text { associates. }
\end{aligned}
$$

To facilitate notation we define the matrices $U^{1}=\left[u_{j k}^{1}\right]$ and $U^{2}=\left[u_{j k}^{2}\right]$ which are $v-b y-v$ matrices such that

$$
\begin{aligned}
u_{j k}^{1} & =1, \text { if the } j^{\text {th }} \text { and } k^{\text {th }} \text { objects are } 1^{\text {st }} \text { associates } \\
& =0 \text {, otherwise. } \\
u_{j k}^{2} & =1, \text { if the } j^{\text {th }} \text { and } k^{\text {th }} \text { objects are } 2^{\text {nd }} \text { associates } \\
& =0, \text { otherwise. }
\end{aligned}
$$

Therefore, the matrix $E=\left[e_{j k}\right]=(S)^{T} \cdot S$ has elements

$$
\begin{aligned}
& e_{j k}= r, \text { if } j=k \\
&= \lambda_{i}, \\
& \text { if } j \neq k \text { and the } j^{\text {th }} \text { and } k^{\text {th }} \text { objects are } i^{\text {th }} \\
& \text { associates } i=1,2 .
\end{aligned}
$$

Hence,

$$
E=r I+\lambda_{1} U^{1}+\lambda_{2} U^{2}
$$

The complement of a partially balanced incomplete block design with 2 associate classes (abbreviated to p.b.i.b(2) design) with parameters ($v, k, r, b, \lambda_{1}, \lambda_{2}, n_{1}, n_{2}$) is a p.b.i.b. (2) design with parameters $\left(v, v-k, b-r, b, b-2 r+\lambda_{1}, b-2 r+\lambda_{2}, n_{1}, n_{2}\right)$ and if the $j^{\text {th }}$ and $k^{\text {th }}$ objects are $i^{\text {th }}$ associates in the original design, they are also $i^{\text {th }}$ associates in the complimentary design. S^{c} is the incidence matrix of the complimentary design and is obtained by interchanging ones and zeros in S. The matrix

$$
\begin{aligned}
& F=\left[f_{j k}\right]=\left(S^{c}\right)^{T} \cdot S^{c} \text { has elements } \\
& \qquad \begin{aligned}
f_{j k} & =b-r, \text { if } j=k \\
& =b-2 r+\lambda_{i}, \\
& \text { if } j \neq k \text { and the } j^{\text {th }} \text { and } k^{\text {th }} \text { objects are } \\
& i^{\text {th }} \text { associates. }
\end{aligned}
\end{aligned}
$$

Hence,

$$
F=(b-r) I+\left(b-2 r+\lambda_{1}\right) U^{1}+\left(b-2 r+\lambda_{2}\right) U^{2}
$$

The matrix $G=\left[g_{j k}\right]=(S)^{T} \cdot S^{c}=\left(S^{c}\right)^{T} \cdot S$ has elements

$$
\begin{aligned}
g_{j k} & =0 \text {, if } j=k \\
= & r-\lambda \\
i, & \text { if } j \neq k \text { and the } j^{\text {th }} \text { and } k^{\text {th }} \text { objects are } \\
& i^{\text {th }} \text { associates. }
\end{aligned}
$$

Hence,

$$
G=\left(r-\lambda_{1}\right) U^{1}+\left(r-\lambda_{2}\right) U^{2}
$$

Since the switches based on p.b.i.b.(2) designs are not noiseless it is worthwhile to discuss the bias scheme and the method for generating the write pulse. The bias scheme depends an what sort of noise can be tolerated in the unselected cores. One possible scheme (referred to as scheme 1) is to choose the bias in such a way that only the selected core receives positive excitation, all other cores receiving zero or negative excitation. Another possible scheme (scheme 2) would be to minimize the magnitude of the excitation of the unselected cores. Scheme 2 will work satisfactorily only if the maximum positive excitation received by any unselected core is insufficient to cause it to switch from one state to the other. In both these schemes only the selected core gives an output if the B-H hysterisis loop of the cores is perfectly rectangular. Since this is not true in practice, the unselected cores will have a slight noise output. Other bias schemes may
be used depending on the specifications of the particular switch.
When a read pulse is generated, only the selected core gets enough positive excitation to switch from one state to the other. Now if a bias wire provides negative excitation to all the cores, only the one previously selected will switch back to its original state, thus generating a write pulse. This method can be employed for obtaining a write pulse. Some noise output will occur in the unselected core due to the deviation of the $B-H$ characteristic from the perfect rectangle. Alternatively the same procedure as was used in noiseless switches can be used.

3.1 Design of Switches Based on p.b.i.b.(2) Designs

3.1.1 Type I Switch

a) Unipolar

$$
\begin{aligned}
W & =\binom{S}{u}^{T} \\
C^{r} & =\binom{S}{a u} \\
X^{r} & =(S)^{T} \cdot S+a U \\
& =(r+a) I+\left(\lambda_{1}+a\right) U^{1}+\left(\lambda_{2}+a\right) U^{2} .
\end{aligned}
$$

Using scheme 1 for bias and using the convention $\lambda_{1}>\lambda_{2}$, put $a=-\lambda_{1}$

$$
x^{r}=\left(r-\lambda_{1}\right) I-\left(\lambda_{1}-\lambda_{2}\right) U^{2}
$$

or using scheme 2 , put $a=-\frac{\left(\lambda_{1}+\lambda_{2}\right)}{2}$

$$
X^{r}=\left(r-\frac{\lambda_{1}-\lambda_{2}}{2}\right) I+\left(\frac{\lambda_{1}^{-\lambda} 2}{2}\right) U^{1}-\left(\frac{\lambda_{1}^{-\lambda} 2}{2}\right) U^{2}
$$

Load sharing factor $P_{r}=(r+a)$.
If the write pulse is not generated by simply exciting a single bias
wire we can use

$$
\begin{aligned}
c^{w} & =\binom{s^{c}}{d u} \\
x^{w} & =(s)^{T} \cdot s^{c}+d U \\
& =d I+\left(r-\lambda_{1}+d\right) U^{1}+\left(r-\lambda_{2}+d\right) U^{2}
\end{aligned}
$$

If

$$
\begin{aligned}
& d=-(r+a) \\
& x^{w}=-x^{r}
\end{aligned}
$$

Load sharing factor $\mathrm{p}_{\mathrm{w}}=(\mathrm{r}+\mathrm{a})$.
b) Bipolar

$$
\begin{aligned}
W & =\binom{S}{u}^{T} \\
C^{r} & =\binom{S-S^{c}}{a u} \\
x^{r} & =(S)^{T} \cdot S-(S)^{T} \cdot S^{c}+a U \\
& =(r+a) I+\left(2 \lambda_{1}-r+a\right) U^{1}+\left(2 \lambda_{2}-r+a\right) U^{2}
\end{aligned}
$$

If bias scheme 1 is employed use

$$
a=-\left(2 \lambda_{1}-r\right) .
$$

If bias scheme 2 is employed use

$$
\begin{aligned}
a & =-\left(\lambda_{1}+\lambda_{2}-r\right) \\
c^{w} & =-\binom{s-S^{c}}{d u} \\
x^{w} & =-(r+d) I-\left(2 \lambda_{1}-r+d\right) U^{1}-\left(2 \lambda_{2}-r+d\right) U^{2}
\end{aligned}
$$

Putting $d=a$ gives $X^{w}=-X^{r}$.
Load sharing factor $=(r+a)$.

3.1.2 Example

These switches are based on a block design with parameters (v=12, $r=4$, $\mathrm{k}=6, \mathrm{~b}=8, \lambda_{1}=2, \lambda_{2}=0, \mathrm{n}_{1}=10, \mathrm{n}_{2}=1$) and give 9 input (including bias) - 12
output switches.

$$
S=\left[\begin{array}{llllllllllll}
1 & 1 & 1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 & 1 & 1 & 0 & 0 \\
1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 \\
0 & 0 & 1 & 1 & 0 & 0 & 1 & 1 & 0 & 0 & 1 & 1 \\
1 & 0 & 1 & 0 & 1 & 0 & 0 & 1 & 0 & 1 & 0 & 1 \\
0 & 1 & 0 & 1 & 1 & 0 & 1 & 0 & 1 & 0 & 0 & 1 \\
1 & 0 & 0 & 1 & 0 & 1 & 0 & 1 & 1 & 0 & 1 & 0 \\
0 & 1 & 1 & 0 & 0 & 1 & 1 & 0 & 0 & 1 & 1 & 0
\end{array}\right]
$$

For the unipolar switch, using $a=-\left(\frac{\lambda_{1}+\lambda_{2}}{2}\right)=-1$ we get

$$
\mathrm{X}^{\mathrm{r}}=\left[\begin{array}{rrrrrrrrrrrr}
3 & 1 & 1 & 1 & 1 & 1 & -1 & 1 & 1 & 1 & 1 & 1 \\
1 & 3 & 1 & 1 & 1 & 1 & 1 & -1 & 1 & 1 & 1 & 1 \\
1 & 1 & 3 & 1 & 1 & 1 & 1 & 1 & -1 & 1 & 1 & 1 \\
1 & 1 & 1 & 3 & 1 & 1 & 1 & 1 & 1 & -1 & 1 & 1 \\
1 & 1 & 1 & 1 & 3 & 1 & 1 & 1 & 1 & 1 & -1 & 1 \\
1 & 1 & 1 & 1 & 1 & 3 & 1 & 1 & 1 & 1 & 1 & -1 \\
-1 & 1 & 1 & 1 & 1 & 1 & 3 & 1 & 1 & 1 & 1 & 1 \\
1 & -1 & 1 & 1 & 1 & 1 & 1 & 3 & 1 & 1 & 1 & 1 \\
1 & 1 & -1 & 1 & 1 & 1 & 1 & 1 & 3 & 1 & 1 & 1 \\
1 & 1 & 1 & -1 & 1 & 1 & 1 & 1 & 1 & 3 & 1 & 1 \\
1 & 1 & 1 & 1 & 1 & -1 & 1 & 1 & 1 & 1 & 1 & 3
\end{array}\right]
$$

Load sharing factor $=3$.
For the bipolar switch, using $a=2$,

$$
x^{r}(\text { bipolar })=2 x^{r}(\text { unipolar })
$$

Load sharing factor $=6$.

3.1.3 Type II Switch

a) Unipolar

$$
\begin{aligned}
W & =\binom{S-S^{c}}{u}^{T} \\
C^{r} & =\binom{S}{a u} \\
X^{r} & =(S)^{T} \cdot S-\left(S^{c}\right)^{T} \cdot S+a U \\
& =(r+a) I+\left(2 \lambda_{1}-r+a\right) U^{1}+\left(2 \lambda_{2}-r+a\right) U^{2}
\end{aligned}
$$

which is the same as the type I bipolar switch.
Using

$$
\begin{aligned}
C^{W} & =\binom{S^{c}}{d u} \\
x^{W} & =(S)^{T} \cdot S^{c}-\left(S^{c}\right)^{T} \cdot S^{c}+d U \\
& =-(b-r-d) I-\left(2 \lambda 1_{1}-3 r+b-d\right) U^{1}-\left(2 \lambda 2_{2}-3 r+b-d\right) U^{2}
\end{aligned}
$$

Putting $d=(b-2 r-a)$ gives $X^{W}=-X^{r}$.
Load sharing factor $=(r+a)$.
b) Bipolar

$$
\begin{aligned}
& W=\binom{S-S^{c}}{u}^{T} \\
& C^{r}=\binom{S-S^{c}}{a u} \\
& X^{r}=(b+a) I+\left(b-4 r+4 \lambda_{1}+a\right) U^{1}+\left(b-4 r+4 \lambda_{2}+a\right) U^{2}
\end{aligned}
$$

Using scheme 1 for bias

$$
a=-(b-4 r+4 \lambda 1)
$$

Ws ing scheme 2

$$
\begin{aligned}
a & =-\left(b-4 r+2 \lambda_{1}+2 \lambda_{2}\right) \text { in which case } \\
x^{r} & =\left(4 r-2 \lambda_{1}-2 \lambda_{2}\right) I+2\left(\lambda_{1}-\lambda_{2}\right) U^{1}-2\left(\lambda_{1}-\lambda_{2}\right) U^{2}
\end{aligned}
$$

Load sharing factor $=(b+a)$. Us ing $C^{W}=-C^{r}$ gives $X^{W}=-X^{r}$.

3.1.4 Example

Using the same design as was used in the previous example, the unipolar type II switch yields a switch identical to the type I bipolar switch. The type II bipolar switch using $a=4$ gives X^{r} with diagonal entries of 12 and off diagonal entries of ± 4. Load sharing factor $=12$.

3.2 General Design

As in the case of noiseless switches, a general design procedure can be formed, which offers a choice of more parameters to the designer.
a) Unipolar

$$
\begin{aligned}
W & =\binom{\alpha S-\beta S^{c}}{u}^{T} \\
C^{r} & =\binom{s}{a u} \\
X^{r} & =\alpha(S)^{T} \cdot S-\beta\left(S^{c}\right)^{T} \cdot S+a U \\
& =(\alpha r+a) I+\left(\alpha \lambda_{1}+\beta \lambda_{1}-\beta r+a\right) U^{1}+\left(\alpha \lambda_{2}+\beta \lambda_{2}-\beta r+a\right) U^{2}
\end{aligned}
$$

Using

$$
\begin{aligned}
C^{W}= & \binom{S^{c}}{d u} \\
x^{W}= & \alpha(S)^{T} \cdot s^{c}-\beta\left(S^{c}\right)^{T} \cdot S^{c}+d U \\
= & -(\beta b-\beta r-d) I-\left(\alpha \lambda_{1}+\beta \lambda_{1}+\beta b-\alpha r-2 \beta r-d\right) U^{1} \\
& -\left(\alpha \lambda_{2}+\beta \lambda_{2}+\beta b-\alpha r-2 \beta r-d\right) U^{2}
\end{aligned}
$$

The parameters α, β, a, d can be chosen to give the most desirable load sharing, efficiency and noise.
b) Bipolar

$$
\begin{aligned}
W= & \binom{\alpha S-\beta^{c}}{u}^{T} \\
C^{r}= & \binom{s-S^{c}}{a u} \\
X^{r}= & \alpha(S)^{T} \cdot S-\beta\left(S^{c}\right)^{T} \cdot S-\alpha(S)^{T} \cdot S^{c}+\beta\left(S^{c}\right)^{T} \cdot S^{c}+a U \\
= & (\beta b+\alpha r-\beta r+a) I+\left(\beta b-\alpha r-3 \beta r+2 \alpha \lambda_{1}+2 \beta \lambda_{1}+a\right) U^{1} \\
& +\left(\beta b-\alpha r-3 \beta_{r}+2 \alpha \lambda_{2}+2 \beta \lambda_{2}+a\right) U^{2}
\end{aligned}
$$

Using $C^{W}=-\binom{s-S^{c}}{d u}$, the expression for X^{W} is obtained by replacing a by d in X^{r} and changing the signs of all the terms. Again $\alpha, \beta, \mathrm{a}, \mathrm{d}$ can be chosen as desired. Type I and type II switches are the more interesting and special cases of the general design.

This design procedure can be generalized to any partially balanced incomplete block design with m associate classes. For such a design, necessary conditions are
i) $\mathrm{vr}=\mathrm{bk}$
ii) $\sum_{i=1}^{m} n_{i}=v-1$ where n_{i} is the number of $i^{\text {th }}$ associates of any object,
iii) $\sum_{i=1}^{m} n_{i} \lambda_{i}=r(k-1)$ where λ_{i} is the number of times $i^{\text {th }}$ associates appear together.

For the S and S^{c} matrices we get the following relations.

$$
\begin{aligned}
& (S)^{T} \cdot S=r I+\sum_{i=1}^{m} \lambda_{i} U^{i} \\
& \left(S^{c}\right)^{T} \cdot S^{c}=(b-r) I+\sum_{i=1}^{m}\left(b-2 r+\lambda_{i}\right) U^{i} \\
& (S)^{T} \cdot S^{c}=\left(S^{c}\right)^{T} \cdot s=\sum_{i=1}^{m}\left(r-\lambda_{i}\right) U^{i}
\end{aligned}
$$

where U^{i} is a $v-b y-v$ matrix such that

$$
\begin{aligned}
u_{j k}^{i} & =1 \text { if } j^{\text {th }} \text { and } k^{\text {th }} \text { objects are } i^{\text {th }} \text { associates, } \\
& =0 \text { otherwise. }
\end{aligned}
$$

Now using the same procedure as for p.b.i.b.(2) designs, switches can be designed based on p.b.i.b.(m) designs.

3.3 A New Class of Switches

An interesting class of switches can be obtained by permuting the winding matrix of a noiseless switch in a certain manner. Let W and C^{r} be the winding and input matrices of a v output, $b+1$ input noiseless switch based on a ($\mathrm{v}, \mathrm{k}, \mathrm{r}, \mathrm{b}, \lambda$) balanced block design.

The operator P acting on any matrix A is defined as a cyclic permutation operator on the rows of the matrix. If the rows of the matrix A are $\left\{\alpha_{1}, \alpha_{2}, \ldots \alpha_{n}\right\}$ in that order, then the rows of $P(A)$ are $\left\{\alpha_{n}, \alpha_{1}, \ldots \alpha_{n-1}\right\}$, the rows of $\mathrm{P}^{2}(\mathrm{~A})=P(P(A))$ are $\left\{\alpha_{n-1}, \alpha_{n}, \alpha_{1}, \ldots \alpha_{n-2}\right\}$. Obviously $\mathrm{P}^{\mathrm{n}}(\mathrm{A})=\mathrm{A}$. The operator Q acting on any matrix A is defined as a cyclic permutation operator on the columns of the matrix. If the columns of A are $\left\{\beta_{1}, \beta_{2}, \ldots \beta_{m}\right\}$ in that order, the columns of $Q(A)$ are $\left\{\beta_{m}, \beta_{1}, \ldots \beta_{m-1}\right\}$ etc. Again $Q^{m}(A)=A$.

The winding matrix W^{\prime} and the read input matrix $C^{r^{\prime}}$ of the new switch are formed in the following manner:

If the first (b+1) inputs are excited, one row in each of the $v W$ matrices on the left side of W^{\prime} receives excitation. If the second (b+1) inputs are excited, one row in each of the v permuted W matrices in W^{\prime} receives excitation. However, no two rows of W^{\prime} are identical, and one and only one row of W^{\prime} will receive excitation simultaneously due to both sets of $(b+1)$ inputs. If ℓ is the load sharing factor of the original switch, the selected output will receive a total excitation of 2ℓ units. 2(v-1) other rows of W^{\prime} will receive ℓ units of excitation each. If a noise excitation of ℓ units is tolerable and is insufficient to cause the switching of the unselected cores, the switch can be used as it is, otherwise a bias wire can provide negative excitation to all the cores to bring the noise excitation down to an acceptable level. The write pulse can be generated simply by a bias wire or by obtaining a $C^{W^{\prime}}$ matrix from the C^{W}
matrix of the original switch, in a manner identical to obtaining the $C^{r^{\prime}}$ matrix from the C^{r} matrix.

If we start with a $n-b y-n+1$ noiseless switch based on a Hadamard matrix or a ($4 t-1,2 t-1,2 t-1,4 t-1, t-1$) balanced block design, the permuted switch has n^{2} outputs for $2 n+2$ inputs. Noting that two of the inputs are bias inputs, switched on for all inputs selections, they can be combined into a single input, reducing the total number of inputs to $2 n+1$. This switch can be compared to a basic n^{2} coincident current switch in which the cores are laid out in a n-by-n square with n horizontal drivers and n vertical drivers. Cores are selected by exciting one horizontal and one vertical driver. The selected core gets 2 units of excitation and $2(n-1)$ unselected cores get 1 unit of excitation. In the permuted switch, the selected core gets 2ℓ units of excitation and $2(n-1)$ cores get ℓ units of excitation. The basic switch therefore has a load sharing factor of 2 and the permuted switch has a load sharing factor of 2ℓ. If ℓ is large, the drivers for the permuted switch need have much smaller power output than the basic switch. Also, the permuted switch will function better than the basic square switch in the case of driver failure. If one driver fails in the basic square switch, the switch is inoperative because all the cores to which the defective driver is linked cannot be selected. In the permuted switch the failure of 1 driver will cause the excitation to decrease from 2ℓ to $2 \ell-1$ units in some selected cores. If ℓ is large, the switch will continue to function.

It can easily be shown that this switch is based on a p.b.i.b.(2) design. Consider the incidence matrix S of the original (v, k, r, b, λ)
balanced block design. Then the matrix S' where
is the incidence matrix of a p.b.i.b.(2) design with parameters ($\mathrm{v}^{\prime}, \mathrm{k}^{\prime}, \mathrm{r}^{\prime}$, $\mathrm{b}^{\prime}, \lambda 1, \lambda_{2}^{\prime}, \mathrm{n}_{1}^{\prime}, \mathrm{n}_{2}^{\prime}$) where

$$
\begin{aligned}
\mathrm{v}^{\prime} & =\mathrm{v}^{2} \\
\mathrm{k}^{\prime} & =\mathrm{kv} \\
\mathrm{r}^{\prime} & =2 \mathrm{r} \\
\mathrm{~b}^{\prime} & =2 \mathrm{~b} \\
\lambda_{1}^{\prime} & =\mathrm{r}+\lambda \\
\lambda_{2}^{\prime} & =2 \lambda \\
\mathrm{n}_{1}^{\prime} & =2(\mathrm{v}-1) \\
\mathrm{n}_{2}^{\prime} & =(\mathrm{v}-1)^{2}
\end{aligned}
$$

For proof of this see the appendix. This p.b.i.b. (2) design yields a v^{2} output $2 b+1$ input switch which is exactly the same as the permuted switch with winding matrix W^{\prime}.

4. BLOCK DESIGNS AND ERROR CORRECTING CODES

In the following discussion it is shown how certain binary error correcting and error detecting codes can be obtained from block designs. The reader is referred to Peterson [14] for an introduction to errorcorrecting codes.

If S is the incidence matrix of $a(v, k, r, b, \lambda)$ balanced block design, then consider the columns of $s \alpha_{1}, \alpha_{2}, \ldots \alpha_{v}$ to be binary code vectors of length b. The number of ones in a code vector α_{i} is called the weight of the vector and is denoted by $\omega\left(\alpha_{i}\right)$. The Hamming distance between two code words α_{i} and α_{j} is denoted by $\delta\left(\alpha_{i}, \alpha_{j}\right)$ and

$$
\delta\left(\alpha_{i}, \alpha_{j}\right)=\omega\left(\alpha_{i}\right)+\omega\left(\alpha_{j}\right)-2\left(\alpha_{i} \cdot \alpha_{j}\right)
$$

where $\left(\alpha_{i}, \alpha_{j}\right)$ is the dot product of α_{i} and α_{j} and is therefore the number of positions simultaneously occupied by ones in both α_{i} and α_{j}.

For S we know that

$$
\begin{aligned}
& \left(\alpha_{i}, \alpha_{j}\right)=\lambda \text { for } i \neq j, \\
\therefore \quad & \delta\left(\alpha_{i}, \alpha_{j}\right)=r+r-2 \lambda=2(r-\lambda),
\end{aligned}
$$

i.e. the distance between any two code vectors is $2(r-\lambda)$. Therefore, the design leads to a code of minimum distance $2(r-\lambda)$, the code having v vectors of length b bits.

The complimentary matrix S^{c} is the incidence matrix of a block design with parameters ($\mathrm{v}^{\prime}=\mathrm{v}, \mathrm{k}^{\prime}=\mathrm{v}-\mathrm{k}, \mathrm{r}^{\prime}=\mathrm{b}-\mathrm{r}, \mathrm{b}^{\prime}=\mathrm{b}, \lambda^{\prime}=\mathrm{b}-2 \mathrm{r}+\lambda$) and therefore

$$
\begin{aligned}
\delta\left(\beta_{i}, \beta_{j}\right) & =(b-r)+(b-r)-2(b-2 r+\lambda) \\
& =2(r-\lambda)
\end{aligned}
$$

where $\beta_{1}, \beta_{2}, \ldots \beta_{v}$ are the columns of S^{c}. Therefore, the complimentary
design also leads to a code of minimum distance $2(r-\lambda)$, the code having v vectors of length b .

Also, since
and

$$
\left(\alpha_{i} \cdot \beta_{i}\right)=0
$$

$$
\left(\alpha_{i} \cdot \beta_{j}\right)=r-\lambda
$$

we have

$$
\begin{aligned}
& \delta\left(\alpha_{i}, \beta_{i}\right)=b \\
& \delta\left(\alpha_{i}, \beta_{j}\right)=b-2(r-\lambda) .
\end{aligned}
$$

If $\delta\left(\alpha_{i}, \beta_{j}\right) \geq 2(r-\lambda)$, i.e. $b \geq 4(r-\lambda)$, the columns of S and S^{c} form a code of 2 v vectors of length b and minimum distance $2(\mathrm{r}-\lambda)$. If $\mathrm{b}<4(\mathrm{r}-\lambda)$, then the set of vectors formed by the columns of S and S^{c} have minimum distance $b-2(r-\lambda)$.

Example: Consider a design with parameters (4,3,3,4,2)

$$
S=\left[\begin{array}{llll}
1 & 1 & 1 & 0 \\
1 & 1 & 0 & 1 \\
1 & 0 & 1 & 1 \\
0 & 1 & 1 & 1
\end{array}\right] \quad S^{c}=\left[\begin{array}{llll}
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 \\
1 & 0 & 0 & 0
\end{array}\right]
$$

Consider the columns of S and S^{C} to be the code vectors.
Since
and

$$
2(r-\lambda)=2
$$

the columns of S and S^{c} taken together give a code of 8 words of length 4 and minimum distance 2. According to the Plotkin [9] bound $A(4 \ell, 2 \ell) \leq 8 \ell$ this is an optimal code, for no code of length 4 and minimum distance 2 can
have more than 8 code words. Since this code has minimum distance 2 , it is capable of detecting all single errors. The error detection scheme in this case is very simple since all code words have weight one or three. A single error will change the weight to an even number. Therefore, a simple parity check circuit which calculates the weight of a received code word will indicate an error if the weight is even.

Other balanced block designs also lead to the optimal codes of 4ℓ bits and minimum distance 2ℓ which meet the P lotkin bound of $A(4 \ell, 2 \ell) \leq 8 \ell$. e.g. the two complimentary designs $(16,6,6,16,2)$ and $(16,10,10,16,6)$ yield the same code of 32 code words, 16 bits long and minimum distance 8 .

Some codes of length $4 \ell-2$ bits and minimum distance $2 l$ which meet the Plotkin bound of $A(4 \ell-2,2 \ell) \leq 2 \ell$ are also generated by the columns of block designs. For example, the designs $(4,2,3,6,1),(6,3,5,10,2)$, $(8,4,7,14,3)$ and $(10,5,9,18,4)$ all yield codes which satisfy the Plotkin bound $A(4 \ell-2,2 l)=2 l$ for $\ell=2,3,4$ and 5 respectively. As a matter of fact, all designs with parameters ($2 \ell, \ell, 2 \ell-1,4 \ell-2, \ell-1$) will generate codes which meet the P lotkin bound of $A(4 \ell-2,2 \ell)=2 \ell$.

In certain cases the number of code words obtained from a block design can be increased. Consider a matrix S^{\prime} formed by adding a column of all ones to the incidence matrix S of a block design, i.e. $S^{\prime}=\left(\epsilon_{b}^{T}\right.$, $\left.S\right)$ where ϵ_{b} is a row of b ones and ϵ_{b}^{T} is a column of all ones. If $\alpha_{1}, \alpha_{2}, \ldots \alpha_{v}$ are the columns of S

$$
\begin{aligned}
\delta\left(\epsilon_{b}^{T}, \alpha_{i}\right) & =\omega\left(\alpha_{i}\right)+\omega\left(\epsilon_{b}^{T}\right)-2 \omega\left(\alpha_{i}\right) \\
& =b-r
\end{aligned}
$$

If $b-r \geq 2(r-\lambda)$ then all the columns of S^{\prime} are at distance of at least $2(r-\lambda)$ from each other, and the number of code words is increased by one. The most interesting application of this is to ($4 \mathrm{t}-1,2 \mathrm{t}-1,2 \mathrm{t}-1,4 \mathrm{t}-1, \mathrm{t}-1$) block designs, where adding a column of all ones to S yields the $A(4 t-1,2 t)=4 t$ optimal codes. Bose and Shrikhande [8] have discussed the connection between Hadamard matrices, block designs and optimal codes.

We can also consider the matrix formed by adding a column of all zeros to the incidence matrix S to give a new matrix $S^{\prime \prime}=\left(O_{b}^{T}\right.$, $\left.S\right)$ where O_{b} is a row of b zeros and O_{b}^{T} is a column of b zeros.

$$
\delta\left(0_{\mathrm{b}}^{\mathrm{T}}, \alpha_{\mathrm{i}}\right)=\omega(\alpha)=\mathrm{r}
$$

If $r \geq 2(r-\lambda)$, then the number of code words is increased by one.
It is, however, not possible to add both a column of zeros and a column of ones without changing the minimum distance. If the addition of a column of ones does not change the minimum distance, then $b-r \geq 2(r-\lambda)$ and if the addition of a column of zeros does not change the minimum distance then

$$
r \geq 2(r-\lambda)
$$

Now

$$
r \geq 2(r-\lambda) \text { implies } 2 \lambda \geq r
$$

and

$$
\mathrm{b}-\mathrm{r} \geq 2(\mathrm{r}-\lambda) \text { implies } \mathrm{b} \geq 3 \mathrm{r}-2 \lambda \text {. }
$$

For a balanced block design both these conditions cannot be simultaneously true.

Earlier it was shown that if $\alpha_{1}, \alpha_{2}, \ldots \alpha_{v}$ are columns of the incidence matrix S and $\beta_{1}, \beta_{2}, \ldots \beta_{v}$ the columns of S^{c} then

$$
\begin{aligned}
& \delta\left(\alpha_{i}, \alpha_{j}\right)=2(r-\lambda) \\
& \delta\left(\beta_{i}, \beta_{j}\right)=2(r-\lambda) \\
& \delta\left(\alpha_{i}, \beta_{j}\right)=b-2(r-\lambda)
\end{aligned}
$$

Suppose $\mathrm{b}<4(\mathrm{r}-\lambda)$ and that $4(\mathrm{r}-\lambda)-\mathrm{b}=\mathrm{p}$. Now consider the new matrix S^{*} and its complement $S^{* C}$ where

$$
\mathrm{s}^{*}=\binom{\mathrm{U}_{\mathrm{pxv}}}{\mathrm{~s}}
$$

where $U_{p x v}$ is a $p-b y-v$ matrix of all ones. If $\alpha_{1}^{*}, \alpha_{2}^{*}, \ldots \alpha_{v}^{*}$ are the columns of S^{*} and $\beta_{1}^{*}, \beta_{2}^{*}, \ldots \beta_{v}^{*}$ are the columns of $S^{* C}$ then
and

$$
\begin{aligned}
& \delta\left(\alpha_{i}^{*}, \alpha_{j}^{*}\right)=\delta\left(\alpha_{i}, \alpha_{j}\right)=2(r-\lambda) \\
& \delta\left(\beta_{i}^{*}, \beta_{j}^{*}\right)=\delta\left(\beta_{i}, \beta_{j}\right)=2(r-\lambda) \\
& \delta\left(\alpha_{i}^{*}, \beta_{j}^{*}\right)=\delta\left(\alpha_{i}, \beta_{j}\right)+p=2(r-\lambda)
\end{aligned}
$$

i.e. by adding p rows of ones to S, the minimum distance between columns of the new matrices S^{*} and $S^{*} c$ is $2(r-\lambda)$ if $b<4(r-\lambda)$.

The above methods of construction of codes are very general and can be applied to any block design. A particular case of this approach has been used by Bose and Shrikhande [8] in the case of ($4 t-1,2 t-1,2 t-1,4 t-1, t-1$) block designs. We form a matrix S^{*} by adding one row and one column of all ones i.e.

$$
s^{*}=\binom{\epsilon_{v+1}}{\epsilon_{b}^{T}, s}
$$

It has been shown that if in this matrix all the zeros are changed to minus ones a $4 t-b y-4 t$ Hadamard matrix is obtained. The columns of S^{*} and its complement form an optimal code of length $4 t$, minimum distance $2 t$ and number of code words being $8 t$. The codes are optimal in the sense that they meet the Plotkin bound.

Error correcting and error detecting codes can also be obtained from p.b.i.b.(m) designs. The manner of construction is the same as for balanced block designs. The particular case of p.b.i.b.(2) designs is discussed in greater detail. If S is the incidence matrix of a p.b.i.b.(2) design with parameters $\left(\mathrm{v}, \mathrm{k}, \mathrm{r}, \mathrm{b}, \lambda_{1}, \lambda_{2}, \mathrm{n}_{1}, \mathrm{n}_{2}\right)$ with $\lambda_{1}>\lambda_{2}$ and $\alpha_{1}, \alpha_{2}, \ldots \alpha_{v}$ are the columns of S then the minimum value of $\delta\left(\alpha_{i}, \alpha_{j}\right)=2\left(r-\lambda_{1}\right)$. If $\beta_{1}, \beta_{2}, \ldots \beta_{v}$ are the columns of S^{c} then minimum value of $\delta\left(\beta_{i}, \beta_{j}\right)=2\left(r-\lambda_{1}\right)$. Also minimum value of $\delta\left(\alpha_{i}, \beta_{j}\right)=b-2\left(r-\lambda_{2}\right)$. Thus the columns of S or the columns of S^{c} will form a code of v code words, each of length b bits and a minimum distance of $2\left(r-\lambda_{1}\right)$. If the columns of both S and S^{c} are taken together then the minimum distance is $2\left(r-\lambda_{1}\right)$ or $b-2\left(r-\lambda_{2}\right)$, whichever is smaller.

If $b-2\left(r-\lambda_{2}\right)<2\left(r-\lambda_{1}\right)$ and

$$
2\left(\mathrm{r}-\lambda_{1}\right)-\left(\mathrm{b}-2 \mathrm{r}+2 \lambda_{2}\right)=\mathrm{n}
$$

then as before we can add n rows of ones to the matrix S and then the columns of the new matrix and its complement will have minimum distance $2\left(r-\lambda_{1}\right)$. In certain cases a column of zeros or a column of ones or both can be added to S to increase the number of code words. Some interesting examples of codes from p.b.i.b.(2) designs are given below.

The block design with parameters $v=10, k=4, \dot{r}=2, b=5, \lambda_{1}=1, \lambda_{2}=0, n_{1}=6, n_{2}=3$, has an incidence matrix S given by

$$
S=\left[\begin{array}{llllllllll}
1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 1 & 1 & 1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 1 & 0 & 0 & 1 & 1 & 0 \\
0 & 0 & 1 & 0 & 0 & 1 & 0 & 1 & 0 & 1 \\
0 & 0 & 0 & 1 & 0 & 0 & 1 & 0 & 1 & 1
\end{array}\right]
$$

The columns of S give the well known $\binom{5}{2}$ code. The columns of S^{c} give the $\binom{5}{3}$ code. Both codes have minimum distance 2 , with 10 code words of length 5 bits. In both codes we can add a column of all zeros and a column of all ones to increase the number of code words to 12 without decreasing the minimum distance. We can also form a new matrix S^{*} given by

$$
s^{*}=\binom{\epsilon_{11}}{\epsilon_{5}^{T}, \mathrm{~s}}
$$

The columns of S^{*} and their complements yield a code having 22 code words, each 6 bits long and a minimum distance of 2 . None of the above codes are optimal since the Plotkin bounds of the relevant codes are $A(5,2) \leq 16$, and $A(6,2) \leq 32$. In certain cases optimal codes are obtained, e.g. the code obtained from the columns of S^{*} and $S^{* c}$ where S^{*} is obtained from S by adding a column of all zeros, for the $v=15, k=9, r=6, b=10, \lambda_{1}=4, \lambda_{2}=3, n_{1}=6, n_{2}=8$, p.b.i.b.(2) design. The code obtained meets the Plotkin bound $A(10,4) \leq 32$.

APPENDIX

A Theorem for the Construction of p.b.i.b.(2) Designs From Balanced Block Designs

Let S be the incidence matrix of $a(v, k, r, b, \lambda)$ balanced block design. Let $\left\{\beta_{1}, \beta_{2}, \ldots \beta_{v}\right\}$ be the v columns of S in that order. Each column contains r ones and no two columns of S are identical. The dot product of the two columns

$$
\begin{aligned}
\left(\beta_{i} \cdot \beta_{j}\right) & =r, \text { if } i=j \\
& =\lambda, \text { if } i \neq j
\end{aligned}
$$

Now consider the matrix S^{\prime} which consists of $2 v b-b y-v$ submatrices

The operator Q acting on the matrix S is defined as a cyclic permutation operator on the columns of the matrix. The columns of $Q(S)$ are $\left\{\beta_{2}, \beta_{3}, \ldots\right.$ $\left.\beta_{v}, \beta_{1}\right\}$ in that order, the columns of $Q^{2}(S)$ are $\left\{\beta_{3}, \beta_{4}, \ldots, \beta_{v}, \beta_{1}, \beta_{2}\right\}$ in that order, etc. Obviously,

$$
Q^{v}(S)=S
$$

Since no two columns of S are identical, no two columns of S^{\prime} are identical. Each of the $v^{\prime}=v^{2}$ columns of S^{\prime} contains $r^{\prime}=2 r$ ones and each of the $b^{\prime}=2 b$ rows of S^{\prime} contains $k^{\prime}=k v$ ones.

Consider any column β_{S}^{\prime} of the matrix $S^{\prime \prime}$. Each half of β_{S}^{\prime} is identical to some column of S. Therefore, we may write $\beta_{s}^{\prime}=\beta_{n}, \beta_{m}$, i.e. the first half of β_{s}^{\prime} is identical to β_{n} and the second half to β_{m}.

$$
\mathrm{s}=\mathrm{pv}+\mathrm{q} \quad 0<\mathrm{q} \leq \mathrm{v}
$$

then

$$
\begin{aligned}
& \mathrm{n}=\mathrm{q} \\
& \mathrm{~m}=(\mathrm{p}+\mathrm{q})(\bmod \mathrm{v}), \quad 1 \leq \mathrm{m} \leq \mathrm{v}
\end{aligned}
$$

The column β_{n} occurs once in each upper sub-matrix S in S^{\prime} and the column β_{m} occurs once in each lower sub-matrix which is a permutation on the columns of S. We take the dot product of β_{s}^{\prime} with each of the other columns of S^{\prime}, i.e. ($\beta_{s}^{\prime} \cdot \beta_{t}^{\prime}$) $s \neq t$ and $1 \leq t \leq v^{2}$. If $\beta_{t}^{\prime}=\beta_{y}, \beta_{z}$ for some $1 \leq y, z \leq$.v

$$
\left(\beta_{s}^{\prime} \cdot \beta_{t}^{\prime}\right)=\left(\beta_{n} \cdot \beta_{y}\right)+\left(\beta_{m} \cdot \beta_{z}\right)
$$

Now for $v-1$ columns of $S^{\prime} \beta_{y}=\beta_{n}$ and for $v-1$ columns of $S^{\prime} \beta_{z}=\beta_{m}$ as t takes on the $v^{2}-1$ values of $t=1,2, \ldots s-1, s+1, \ldots v^{2}$. However, it is not possible that $\beta_{y}=\beta_{n}$ and $\beta_{z}=\beta_{m}$ simultaneously for any t since that would imply $\beta_{s}^{\prime}=\beta_{t}^{\prime}$ for $s \neq t$.

If

$$
\beta_{n}=\beta_{y},\left(\beta_{n} \cdot \beta_{y}\right)=r
$$

and

$$
\left(\beta_{m} \cdot \beta_{z}\right)=\lambda \text { since } \beta_{m} \neq \beta_{z}
$$

A1so if

$$
\beta_{m}=\beta_{z},\left(\beta_{n} \cdot \beta_{y}\right)=\lambda \text { since } \beta_{n} \neq \beta_{y}
$$

and

$$
\left(\beta_{m} \cdot \beta_{z}\right)=r
$$

Therefore if either $\beta_{n}=\beta_{y}$ or $\beta_{m}=\beta_{z}$, which is true for $2(v-1)$ columns of S',

$$
\left(\beta_{s}^{\prime} \cdot \beta_{t}^{\prime}\right)=r+\lambda
$$

For all other columns of $S^{\prime} \beta_{n} \neq \beta_{y}, \beta_{m} \neq \beta_{z}$ and therefore $\left(\beta_{s}^{\prime} \cdot \beta_{t}^{\prime}\right)=2 \lambda$.

It is now easily seen that S^{\prime} satisfies all the conditions for being the incidence matrix of a p.b.i.b.(2) design. Let each column of S^{\prime} correspond to one particular object and each row to one particular block. The $s^{\text {th }}$ and $t^{\text {th }}$ objects are first associates if $\left(\beta_{s}^{\prime} \cdot \beta_{t}^{\prime}\right)=r+\lambda=\lambda_{1}^{\prime}$ and second associates if $\left(\beta_{s}^{\prime} . \beta_{t}^{\prime}\right)=2 \lambda=\lambda_{2}^{\prime}$. Each object has $n_{1}^{\prime}=2(v-1)$ first associates and $n_{2}^{\prime}=(v-1)^{2}$ second associates. We have already seen that each column of S^{\prime} has $r^{\prime}=2 r$ ones and each row of $S^{\prime} h a s k^{\prime}=k v$ ones.

It is seen that the parameters $v^{\prime}=v^{2}, k^{\prime}=k v, r^{\prime}=2 r, b^{\prime}=2 b, \lambda_{1}^{\prime}=r+\lambda, \lambda{ }_{2}^{\prime}=2 \lambda$, $n_{1}^{\prime}=2(v-1), n_{2}^{\prime}=(v-1)^{2}$ satisfy the necessary conditions for a p.b.i.b. (2) design,
i) $v^{\prime} r^{\prime}=b^{\prime} k^{\prime}$,
ii) $n_{1}^{\prime}+n_{2}^{\prime}=v^{\prime}-1$
iii) $n_{1}^{\prime} \lambda_{1}^{\prime}+n_{2}^{\prime} \lambda_{2}^{\prime}=r^{\prime}\left(k^{\prime}-1\right)$.

Therefore, the matrix S^{\prime} is the incidence matrix of a p.b.i.b.(2) design and we state result as the following theorem:

Theorem: If S is the incidence matrix of $a(v, k, r, b, \lambda)$ balanced $b l o c k$ design, then the matrix

$$
S^{\prime}=\left[\begin{array}{ccc:c:c:c}
S & 1 & S & S & \ldots \ldots \ldots \ldots & S \\
\hdashline S & Q(S) & Q^{2}(S)!\ldots \ldots \ldots \ldots & Q^{v-1}(S)
\end{array}\right]
$$

is the incidence matrix of $a\left(v^{\prime}, v^{\prime}, r^{\prime}, b^{\prime}, \lambda_{1}^{\prime}, \lambda_{2}^{\prime}, n_{1}^{\prime}, n_{2}^{\prime}\right)$ p.b.i.b. (2) design where

$$
\begin{array}{llr}
v^{\prime}=v^{2} & b^{\prime}=2 b & n_{1}^{\prime}=2(v-1) \\
k^{\prime}=k v & \lambda_{1}^{\prime}=r+\lambda & n_{2}^{\prime}=(v-1)^{2} \\
v^{\prime}=2 r & \lambda_{2}^{\prime}=2 \lambda &
\end{array}
$$

LIST OF REFERENCES

1. G. Constantine, Jr., "A Load-Sharing Matrix Switch," IBM Journa1 of Research and Development, July 1958.
2. M. P. Marcus, "Doubling the Efficiency of the Load Sharing Matrix Switch," IBM Journal of Research and Development, Apri1 1959.
3. R. T. Chien, "A Class of Optimal Noiseless Load Sharing Matrix Switches," IBM Journal of Research and Development, October 1960.
4. R. C. Singleton, "Load Sharing Core Switches Based on Block Designs," IRE Trans. on Electronic Computers, EC-11, June 1962.
5. P. G. Neumann, "On the Logical Design of Noiseless Load-Sharing Matrix Switches," IRE Trans. on Electronic Computers, EC-11, June 1962.
6. R. C. Minnick and J. L. Haynes, "Magnetic Core Access Switches," IRE Trans. on Electronic Computers, EC-11, June 1962.
7. R. T. Chien, "Orthogonal Matrices, Error-Correcting Codes and Load Sharing Matrix Switches," IRE Trans. on Electronic Computers, EC-8, September 1959.
8. R. C. Bose and S. S. Shrikhande, "A Note on a Result in the Theory of Code Construction," Information and Control, June 1959.
9. M. Plotkin, "Binary Codes with Specified Minimum Distance," IRE Trans. on Information Theory, IT-6, September 1960.
10. H. B. Mann, Analysis and Design of Experiments, Dover Publications, Inc., New York 1949.
11. M. Hall, Jr., "A Survey of Combinatorial Analysis" in I. Kaplansky, M. Hall, Jr., E. Hewitt, and R. Fortet, Some Aspects of Analysis and Probability, John Wiley and Sons, Inc., New York 1958.
12. R. C. Bose, W. H. Clatworthy and S. S. Shrikhande, "Tables of Partially Balanced Designs with Two Associate Classes," North Carolina Agricultural Experiment Station Technical Bulletin, No. 107, 1954.
13. W. H. Clatworthy, "On Partially Balanced Incomplete Block Designs with Two Associate Classes," National Bureau of Standards Applied Mathematics Series, No. 47, 1956.
14. W. W. Peterson, Error-Correcting Codes, M.I.T. Press, 1961.

1 Dr. Edward M. Reilley
Asst. Director (Research)
Ofc. of Defense Res. \& Engrg.
Department of Defense
1 Office of Deputy Director
(Research and Information Rm 3D1037)
Department of Defense
The Pentagon
Washington, D. C. 20301
1 Director
Advanced Research Projects Agency
Department of Defense
Washington, D. C. 20301
1 Director for Materials Sciences Advanced Research Projects Agency Department of Defense Washington, D. C. 20301

1 Headquarters
Defense Communications Agency (333)
The Pentagon

20 Defense Documentation Center
Attn: TISIA.
Attn: TISIA
Cameron Station, Building 5
Alexandria, Virginia 22314
1 Director
National Security Agency
Attn: Librarian C-332
Fort George G. Meade, Maryland 20755
1 Weapons Systems Evaluation Group Attn: Col. Finis G. Johnson Washington, D. C. 20305
1 National Security Agency Attn: R4-James Tippet Office of Research
Fort George G. Meade, Maryland 20755
1 Central Intelligence Agency Attn: OCR/DD Publications Wash ington, D. C. 20505
1 AFRSTE
Hqs. USAF
Room 1D-429, The Pentago
Wash ington, D. C. 20330
1 AUL3T-9663
Maxwe 11 Air Force Base, Alabama 36112
1 AFFTC (FTBPP-2)
Technical Library
Edwards AFB, California 93523
1 Space Systems Division
Air Force Systems Command
Los Angeles Air Force Station Los Angeles, California 90045 Attn: SSSD

1 SSD(SSTRT/Lt. Starbuck)
AFUPO
Los Angeles, California 90045
1 Det. 非6, OAR (LOOAR) Air Force Unit Post Office Los Angeles, California 90045

1 Systems Engineering Group (RTD) Technical Information Reference Branch Attn. SEPIR
Directorate of Engineering Standards \& Technical Information Wright-Patterson AFB, Oh io 45433
1 ARL (ARIY)
Wright-Patterson AFB, Ohio 45433
1 AFAL (AVT)
Wright-Patterson AFB, Oh io 45433
1 AFAL (AVTE/R. D. Larson) Wright-Patterson AFB, Oh io 45433
1 Office of Research Analyses Attn: Technical Library Branch Holloman AFB, New Mexico 88330

2 Commanding General
Attn: STEWS-WS-VT
White Sands Missile Range

1 RADC (EMLAL-I)
Griffiss AFB, New York 13442
Attn: Documents Library
1 Academy Library (DFSLB) Colorado 80840

1 FJSRL
USAF Academy, Colorado 80840

1 APGC (PGBPS-12)
Eglin AFB, Florida 32542
1 AFETR Technical Library
(ETV, MU-135)
Patrick AFB, Florida 32925
1 AFETR (ETLLG-I)
STINFO Officer (for Library)
Patrick AFB, Florida 32925
1 AFCRL (CRMXLR)
AFCRL Research Library, Stop 29
L. G. Hanscom Field

Bedford, Massachusetts 01731
2 ESD (ESTI)
L. G. Hanscom Field

Bedford, Massachusetts 01731
1 AEDC (ARO, INC)
Attn: Library/Documents
Arnold AFS, Tennessee 37389
2 European Office of Aerospace Research Shell Building
47 Rue Cantersteen
Brussels, Belgium
5 Lt. Col. E. P. Gaines, Jr. Chief, Electronics Division Directorate of Eng ineering Sciences Air Force Office of Scientific Research Wash ington, D. C. 20333
1 U. S. Army Research Office Attn. Physical Sciences Division 3045 Columb Vike
Arlington, Virginia 22204
1 Research Plans Office U. S. Army Research Office 3045 Columbia Pike Arlington, Virginia 22204

1 Commanding General
U. S. Army Materiel Command Attn: AMCRD-RS-PE-E
Washington, D. C. 20315
1 Commanding General
U. S. Army Strategic Communications Command Washington, D. C. 20315

1 Commanding officer
U. S. Army Materials Research Agency

Watertown Arsenal
Watertown, Massachusetts 02172
1 Commanding officer
U. S. Army Ballistics Research Laboratory Attn: V. W. Richards
Aberdeen Proving Ground
Aberdeen, Maryland 21005
1 Commandant
U. S. Army Air Defense School

Attn: Missile Sciences Division C\&S Dept P.

Fort Bliss, Texas 79916
1 Commanding General
U. S. Army Missile Command

Attn: Technical Library
Redstone Arsenal, Alabama 35809
1 Commanding General
Frankford Arsenal
Attn: SMUFA-L6000 (Dr. Sidney Ross)
Philadelphia, Pennsylvania 19137
1 U. S. Army Munitions Command Attn: Technical Information Branch
Picatinney Arsenal Dover, New Jersey 07801

1 Commanding officer
Harry Diamond Laboratorie
Attn: Mr. Berthold Altman
Connecticut Avenue \& Van Ness Street N. W. Washington, D. C. 20438

1 Commanding Officer
U. S. Army Security Agency

Arlington Hall
Arlington, Virginia 22212
1 Commanding officer
U. S. Army Limited War Laboratory

Attn: Technical Director
Aberdeen Proving Ground
Aberdeen, Maryland 21005
1 Commanding officer
Human Engineering Laboratories Aberdeen Proving Ground, Maryland 21005
1 Director
U. S. Army Engineer Geodesy, Intelligence and Mapping

Development Agency Fort Belvoir, Virginia 22060

1 Commandant
U. S. Army Command and General Staff College Attn: Secretary
Fort Leavenworth, Kansas 66270
1 Dr. H. Robl, Deputy Chief Scientist U. S. Army Research Office (Durham) Box CM, Duke Station
Durham, North Carolina 27706
1 Commanding officer
U. S. Army Research office (Durham)

Attn: CRD-AA-IP (Richard 0. Ulsh)
Burn, North Caroli

1 Superintendent
U. S. Army Military Academy

West Point, New York 10996
1 The Walter Reed Institute of Research Walter Reed Medical Center Wash ington, D. C. 20012

1 Commanding officer
U. S. Army Electronics R\&D Activity

Fort Huachuca, Arizona 85163
1 Commanding Officer
U. S. Army Engineer R\&D Laboratory

Attn: STINFO Branch
Fort Belvoir, Virginia 22060
1 Commanding officer
U. S. Army Electronics R\&D Activity White Sands Missile Range, New Mexico 88002
1 Dr. S. Benedict Levin, Director Institute for Exploratory Researc U. S. Army Electronics Command Fort Monmouth, New Jersey 07703
1 Director
Institute for Exploratory Research
U. S. Army Electronics Command

Attn: Mr. Robert O. Parker, Executive
Secretary, JSTAC (AMSEL-XL-D)
Fort Monmouth, New Jersey 07703
Commanding General
U. S. Army Electronics Command

Fort Monmouth, New Jersey 07703
Attn: AMSEL-SC
-SC
RD-D
RD-G
RD-GF
RD-MAF-I
RD-MAT
XLL-D
XL-E
XL-C
XL-S
HL-D
HL-L
HL-J
HL-P
HL-O
HL-R
NL-D
NL-A
NL-P
NL-R
NL-S
KL-D
KL-E
KL-S
KL-T
VL-D
WL-D
3 Chief of Naval Research Department of the Navy Washington, D. C. 20360
Attn: Code 427
4 Chief, Bureau of Ships Department of the Navy Washington, D. C. 20360

3 Chief, Bureau of Weapons Department of the Navy Washington, D. C. 20360

2 Commanding officer
Office of Naval Research Branch Office Box 39, Navy No. 100 F.P.O. New York, New York 09510

3 Commanding officer
Office of Naval Research Branch Office 219 South Dearborn Street

1 Commanding officer
Office of Naval Research Branch Office 1030 East Green Street Pasadena, California

1 Commanding officer
Office of Naval Research Branch Office
207 West 24th Street
New York, New York 10011

Distribution list as of May 1, 1966 (cont'd.)

1 Commanding officer
Office of Naval Research Branch office
495 Summer Street
Boston, Massachus
Boston, Massachusetts 0221
8 Director, Naval Research Laboratory Technical Information Officer
Washington, D. C.
1 Commander
Naval Air Development and Material Center Johnsville, Pennsylvania 18974

2 Librarian
U. S. Naval Electronics Laboratory San Diego, California 95152

1 Commanding officer and Director U. S. Naval Underwater Sound Laboratory Fort Trumbull New London, Connecticut 06840
1 Librarian
U. S. Navy Post Graduate School Monterey, California
1 Commander
U. S. Naval Air Missile Test Center Point Magu, California

1 Director
U. S. Naval Observatory Washington, D. C.

2 Chief of Naval Operations OP-07
Washington, D. C.
1 Director, U. S. Naval Security Group Attn: G43
aska Avenue
Washington, D. C.
2 Commanding Officer Naval Ordnance Laboratory White Oak, Maryland

1 Commanding officer Naval Ordnance Laboratory Corona, California

1 Cormanding Officer Naval Ordnance Test Station China Lake, California
1 Commanding officer Naval Avionics Facility Indianapolis, Indiana

1 Commanding officer Naval Training Device Center Orlando, Florida
U. S. Naval Weapons Laboratory Dah1gren, Virginia

1 Weapons Systems Test Division Naval Air Test Center Patuxtent River, Maryland Attn: Library

1 Mr. Charles F. Yost
Special Assistant to the Director of Research National Aeronautics and Space Administration Washington, D. C. 20546

1 Dr. H. Harrison, Code RRE Chief, Electrophysics Branch National Aeronautics and Space Administration Washington, D. C. 20546
1 Goddard Space Flight Center
National Aeronautics and Space Administration Attn: Library, Documents Section Code 252
Greenbelt, Maryland 20771 Greenbelt, Maryland 20771

1 NASA Lewis Research Center Attn: Library
21000 Brookpark Road Cleveland, Ohio 44135

1 National Science Foundation Attn: Dr. John R. Lehmann
1800 G Division of Engineering
Washington, D. C. 20550
1 U. S. Atomic Energy Commission
Division of Technical Information Extension
P. 0. Box 62

Oak Ridge, Tennessee 37831
1 Los Alamos Scientific Laboratory
Attn: Reports Library
P. O. Box 1663

Los Alamos, New Mexico 87544
2 NASA Scientific \& Technical Information Facility Attn: Acquisitions Branch (S/AK/DL) P. O. Box 33

College Park, Maryland 20740
1 Director
Research Laboratory of Electronics
Research Laboratory of Electronics
Massachusetts Institute of Technology
Cambridge, Massachusetts 02139

1 Polytechnic Institute cí Brooklyn 55 Johnson Street
Brooklyn, New York 11201
Attn: Mr. Jerome Fox
Research Coordinator
1 Director
Columbia Radiation Laboratory
Columbia University
538 West 120th Street
New York, New York 10027
1 Director
Coordinated Science Laboratory University of Illinois
Urbana, Illinois 61801
1 Director
Stanford Electronics Laboratories
Stanford Electronics
Stanford, California
1 Director
Electronics Research Laboratory University of California Berkeley 4, California

1 Director
Electronic Sciences Laboratory
University of Southern California Los Angeles, California 90007

1 Professor A. A. Dougal, Director Laboratories for Electronics and Related Sciences Research University of Texas Austin, Texas 78712
1 Division of Engineering and Applied Physics 210 Pierce Hall
Harvard University
Cambridge, Massachusetts 02138
1 Aerospace Corporation
P. O. Box 95085

Los Angeles, California 90045
Attn: Library Acquisitions Group
1 Professor Nicholas George California Institute of Technology Pasadena, California

1 Aeronautics Library
Graduate Aeronautical Laboratories California Institute of Technology 1201 E. California Boulevard Pasadena, California 91109

1 Director, USAF Project RAND Via: Air Force Liaison Office The RAND Corporation
1700 Main Street
Santa Monica, California 90406 Attn: Library
1 The Johns Hopkins University Applied Physics Laboratory 8621 Georgia Avenue
Silver Spring, Maryland
Attn: Boris W. Kuvshinoff Document Librarian

1 Hunt Library
Carnegie Institute of Technology Schenley Park

Dr. Leo Young Stanford Research Institute Menlo Park, California

1 Mr. Henry L. Bachmann Assistant Chief Engineer Wheeler Laboratories 122 Cuttermill Road Great Neck, New York
1 University of Liege
Electronic Department
Mathmatics Institute
15, Avenue Des Tilleuls Val-Benoit, Liege Belgium

1 School of Engineering Sciences Arizona State University Tempe, Arizona

1 University of California at Los Angeles Department of Engineering Los Angeles, Califeeria

1 California Institute of Technology Pasadena, California Attn: Documents Library

1 University of California Santa Barbara, California Attn: Library

1 Carnegie Institute of Technology Electrical Engineering Department Pittsburgh, Pennsylvania

1 University of Michigan Electrical Engineering Department Ann Arbor, Michigan

1 New York University College of Engineering New York, New York

1 Syracuse University Department of Electrical Engineering Syracuse, New York

1 Yale University Engineering Department New Haven, Connecticut

1 Airborne Instruments Laboratory Deerpark, New York

1 Bendix Pacific Division 11600 Sherman Way North Hollywood, California

1 General Electric Company Research Laboratories Schenectady, New York

1 Lockheed Aircraft Corporation P. O. Box 504

Sunnyvale, California
1 Raytheon Company
Bedford, Massachusetts
Attn: Librarian

