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STABILITY OF NONLINEAR CIRCUITS WITH PERIODIC INPUTS

T. No Trick 

Abs tract

A new method is presented by which the stability of nonlinear circuits 

containing bounded periodic sources can be determined. By stability we mean 

that the steady state output is unique and periodic with the same period as 

the input and all transients decay to this unique steady state solution. It 

is assumed that the first and second derivatives of the nonlinear function 

exist and are continuous within a certain allowable operating range of the 

nonlinear element. The first derivative should be positive at the bias 

point (not always necessary). A sufficient condition for the stability of 

the above circuit is given in terms of a maximum allowable input amplitude. 

However, it is shown that, given a certain upper bound on the input 

amplitude, the requirement that all transients decay to this unique steady 

state solution is too stringent and results in many computational problems. 

Therefore, a small perturbation approach is adopted which results in fewer 

computations and less stringent conditions on the input amplitude. 

Experimental results indicate that this new approach is much better than 

previous results.
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I. INTRODUCTION

In previous work [ 1,2] lumped circuits containing one nonlinear 

element and bounded periodic sources with period T were discussed,, More 

nonlinear elements [l] and the distributed circuit [3] can be handled too.

It was assumed that the first and second derivatives of the nonlinear function 

existed in a certain allowable dynamic range of the nonlinear device; and in 

some problems it was necessary that the first derivative be positive at the 

bias point. In the above circuit sufficient conditions were given such that 

the steady state response would be unique in the space of bounded measurable 

functions of period T, the period of the sources. This was done by assuming 

that for very small inputs the circuit is essentially linear, and thus, for 

very small inputs there exists a unique bounded steady state solution of 

period T. This assumption is indeed justified [3]. An upper bound on the 

amplitude of the input voltage was then determined below which there 

existed a unique steady state solution in the space of bounded measurable 

function of period T. Unfortunately, it was shown by experiment that the 

existence of a unique steady state solution in the space of bounded 

measurable functions of period T does not rule out the possibility of other 

solutions, such as, a solution in the space of bounded measurable functions 

of period 2T, i.e., subharmonics. In other words the steady state solution 

may be unstable. This result has led to the current problem, that is, the 

stability of the unique steady state solution with period T.
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II. STABILITY RESULTS

The circuit under consideration is illustrated in Figure 1, and its

Thevenin equivalent is shown in Figure 2. The voltage e (t) is bounded and
P

peiiodic with period T^, and the voltage eg(t) is bounded and periodic with 

period T^, where ^-^^2 ra^^ona -̂“ Therefore, e(t), the Thevenin equivalent 

voltage, is bounded and periodic with period T, where T is the least common 

multiple of T^ and We will only consider the case in which the non­

linear element is capacitive, however, the nonlinear resistance or the non­

linear inductance (without hystersis) case can be handled in a similar 

manner [l].

Due to the aforementioned properties of the nonlinear element we can 

write [l]

v(q) = v(qQ) + ~  qv (t) + R(qy(t)) , (1)
X

where qQ is the charge at the bias point, q(t) = q^t) + q , and

q (t)
R(qy(t)) = J* v"(a) [q(t)-a]da .

qo

Assuming that the d-c bias is turned on first and all bias transients have 

decayed to zero, an a-c equivalent model in the zero state can be obtained, 

Figure 3. In previous work [ 1,2] it was assumed that the steady state

solution to the circuit in Figure 3 satisfies the equation
t

q (t) = J h(t-T)[e (T) - R(q (T))]dT
“ —00 ^

+ c[ev(t) - R(qp (t))] , (2)
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where

C + H(s) = -i [Z(s) + TT1-]'1 , s V

and H(s) is the Laplace transform of an absolutely integrable function. It 

will be assumed that the solution including transients satisfies the 

equation
t

qt (t )  = J h ( t -T ) [ e v (T ) -R (qt (T)) ]dT + C[e ( t ) -R (q  ( t ) )] . (3)
a

In the transient case the Thevenin equivalent voltage, e (t) , is in general

not periodic of period T, since it contains transient terms. For the sake

of simplicity we will assume that in the interval a < t < 00 the Thevenin

equivalent voltages in the steady state problem and in the transient problem

are equal and periodic of period T. In the Appendix the transient terms of

ev (t) are included, and it is shown that similar results can be obtained.

The problem now is to determine just how large an input voltage e (t)

can be tolerated such that q (t) asymptotically approaches q (t) as t -* 00
c P

and such that the nonlinear element is operated in its allowable dynamic 

range. Taking the difference between Eqs. (2) and (3) we have

t
qt ^ " qp ^  = 6q( fc) = + J h (t -T ) [R (q  (T)-R(q (T) ) ]dT

a P

+ C[R(qp (t))-R(qt(t))] (4)
where

a
M(t) = ¡ h (t -T ) [e  (T) -R(q (T) ) ]dT .

-00 v P

Expanding R(qt(t)) about ^pCt) by means of Taylor’s theorem we obtain

R(qt ( t ) )  = R(qp( t ) )  + R ' (q  ( t ) )6p  + N(6q) , (5)



5

where
qp+6q

N(6q) = J R"(a)[q +6p-a]da .
S  "

Because of the assumed differentiability properties of the nonlinear 

element, the quantity N(6q) is well defined in the allowable dynamic range 

of the device.

The substituion of Eq. (5) into Eq. (4) results in 
t

6q + J h(t-T)R'(q (t ))6q + C R'(q (t))6q = M(t)

- J h(t-T)N(6q)dT - C N(6q) ( 6)

In previous results [ 1,2] upper bounds on q (t) and R'(q (t)) were determinedP P
for a given input voltage such that the nonlinear element was operated in its

allowable dynamic range, and such that there existed a unique steady state

solution to Eq. (2) in the space of bounded measurable functions of period T.

Thus, in the above sense, we will assume that q (t) is known. With theP
above information it follows that

| M(t) | < sup | e (t)-R(q (t))| J h(X)d\ . 
all £ v p t-a

(7)

Hence, M(t) asymptotically approaches zero as t -» 00 

The usual sequence of iterates is defined as

6q(1) + J h(t-T)R5 (q (T))6qU -) + C R' (q (t))6q(1) = M(t) , (8)(1) (1)

and
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ôq(n) + J h(t-T)R' (q (T))6qW dT + Ç  R' (q (t)) 6qv“' = M(t)(n) (n)

- J h(t-T)N(6q(n'i:t)dT - Ç N(6qV‘II~ )(n-1) (8)

The difference between successive iterates is

6q(n+1)-6q(n) + J* h(t-T)R’(qp(T)) (6q(n+1)-6q(n))dT + CR' (qp (t) ) (6qn+1-6qn)

= - J h(t-T)[N(8qn)-N(6q(n'1))]dT - ç[N(6q(n)) -N(6q(n'1}) ] . (10)
a

Taking the supremum of Eq. (10) we have

t 1-IIr * (q (t)) Il [ Ç + Ï |h(t) |dt]}||ôq(n+1)-6q(n)||
P o

< [Ç + J | h ( t) | dt] ||N(6q^n^)*N(6q^n ^)||
o

< [Ç + J Uct) I dt] ||N'(6q)l| l|6ql-n)-6q(n'1)|| , (11)
O

where

||N'(6q)||= max [R' (q +6q) -R' (q ) ] , (12)
|ôq| < AQ P P

and AQ must be chosen so that the above iterates converge. Sufficient 

conditions for the convergence of the iterates are as follows"

and

(1) r = ||r ' (q (t>) 11 [Ç + J | h(t) | dt] < 1 ,
P o

oo
||n ' (6q) H [ç + J I h(t) | dt]

(13)

(2) r2 = 1-r. < 1 . (14)
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If the above conditions are satisfied, then it follows that

1-r 1-r oo
JL J l - r 1-||N'(6q)||[ç + J |h(t)|dt]

l|M(t) ||
(15)

o

Note that condition (13) can always be satisfied by making q (t) small 

enough (R'(qp) is continuous and R*(0) = 0), which amounts to restricting 

the amplitude of e^(t). Also, condition (14) can be satisfied by restricting 

6q(t) to small enough values (likewise N'(6q) is continuous and N 9(0) = 0). 

Equation (15) shows that this can be done by making ||m (t) || small, and from 

Eq. (7) we see that this merely amounts to again making e^(t) "small enough."

As one may have guessed by now, the computations involved are very 

difficult, and in an example which follows shortly it will be shown that 

these sufficient conditions are too conservative. These two problems led 

to the development of the small perturbation theory below, where it will be 

shown that only condition (13) need be satisfied.



8

III. STABILITY TO SMALL PERTURBATIONS OF THE INPUT

Recall that the steady state integral equation is

t
qp (t) = C[ev (t)-R(qp (t))] + J h(t-T)[e^T)-R(qp (t))]dT .

Now let’s assume that the input is e (t)-Ae(t) and the steady state integral 

equation can be written as

qp(t)+Aqp (t) = C[ev (t)-Ae(t)-R(qp (t)+Aq (t))] 

t
+ J h(t-T)[ev (T)-Ae(T)-R(q (T)+Aq (T))]dT . (16)— 00 r r

Suppose that in the time interval -» < t < a the input is e^(t)-Ae(t), and 

for t > a the input is e^(t) . Thus, for t > a,

a
qt(t) = C[e (t)-R(q (t))] + J  h(t-T)[e (T)-Ae(T)-R(q (T)+Aq (T))]dT

-0 0  ^

t
+ 1 h(t-T)[ev (T)-R(qt(T))]dT . (17)

a

We wish to find conditions on ev (t) such that q^(t) asymptotically approaches 

qp (t) as t -* oo, in other words, the circuit is stable for small perturbations 

in the input voltage. Thus, for t > a,

a
qt(fc)-q (fc) = Sq(t) = C[R(q (t))-R(q (t))] + J h (t-T)[-Ae(t )

^  ”  -0 0

t
- R(qp (T)+Aqp (T))+R(qp (T))]dT + j* h(t-T) [-R(qfc (t ) )+R(q (t)) ]dT . (18)

d.

Again using Taylor's theorem to expand R(qp (t)+Aqp (t)) and R(qfc(t)) about 

the time-varying bias q (t) we obtain
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where

and

where

Thus ,

where

R(qD (t)+Aq (t)) = R(q (t)) + R' (q (t))Aq (t)+N (Aq (t)) , (19)
tr tr r r r *** r

q +Aqn
N 1(Aqp (t)) = j R"(a)[qp+Aqp-a]da , 

qp

R(qt(t)) = R(qp (t)) + R*(q (t))6q(t) + N 2(6q(t)), (20)

qt (t )

N2(6q(t)) = | R"(a)[qt(t)-a]da .

6q(t) + Ç R* (q (t))6q(t) + / h (t-T)R'(q (t ))6q(T)dT
â

t
= M 1(t) - Ç  N2(8q (t ) )  - J h (t -T )N2(8q(T))dT , (21)

a
M x(t) = J h(t-T)[-Ae(T)-R'(qp (T))Aqp (T)-N1(Aqp(T))]dT . (22)

Note that Eq. (21) is very similar to Eq. (6) except that the terms M(t) 

and M^(t) are slightly different, however, both terms go to zero as t -* œ . 

Thus, the sufficient conditions for a sequence of iterates to converge for 

Eq. (21) are the same as the conditions for Eq. (6), except that in Eq. (15) 

||M(t)H is replaced by |(m ^(t) ||.

Now, from previous results [l,2] it follows that one can always restrict 

the amplitude of e^(t) such that condition (1), inequality (13), is satisfied.
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From the definition of N^(6q) we see that ^(0) = 0, and N^Sq) is continuous 

in 6q(t) . Hence, a number AQ can be found such that if 6q (t) || < AQ, then 

condition (2), inequality (14), is satisfied. However, if r^ < 1, and 

r~ < 1, then

||6q(t)|| < AQ = I I V 0 II
(l-ri)(l-r2) ' (23)

One now merely needs to observe that for a given AQ, r^, and r^, the right 

side of Eq. (23) can be made equal to AQ by making the perturbation in the 

input voltage, Ae(t) , small enough (see Eqs. (22), (16), (2)). Thus, the

problem now has been reduced to satisfying only condition (13), that is,
00

r 1 = | |R'(q ( t ) ) | |  [C  +  J  | h ( t ) | d t ]  <  1 .
p o

Note that this computation is easier than that of Leon and Anderson [3], 

since we are working with the steady state solution q^(t)• Also, it gives 

better results as the following example will show.
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IV. EXPERIMENTAL RESULTS

Consider the subharmonic oscillator circuit in Figure 4. It is well- 

known that this circuit can sustain subharmonic oscillations of order 1/2 

when driven at twice the small signal resonant frequency of the circuit. 

Note that the subharmonic state is an unstable state according to our 

definition of stability. Thus, let's assume that the source frequency is 

twice the above resonant frequency. The voltage across the varactor diode 

is
2 .

v ( q ( t ) )  = ~ q ^  +  0 , (24)
4K

-12where K = 30 X 10 , and 0 = 0.5. Using Taylor's theorem we obtain

v(q(t)) = - Eg + qv (t) + R(qv (t)) , (25)

where

qv (t) = q(t) - qQ ,

and

R(qv ( 0 )  = - <£(t> .
4K

Let s assume that the Q of the circuit is 10 and that the varactor is 

biased such that = 20 pf. The a-c equivalent circuit is shown in 

Figure 5. From this circuit we see that

_____ 1/L
s2 + R/Ls + ji

H(s) = , and C = 0 .
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Thus ,

J I h(t) I dt *> C l i e  
1 - e

-TT/2Q
"TT / 2Q = 255 X 10 -12 (26)

Using the rigorous stability conditions (13) and (14) it was found by trial 

and error (and very tedious calculations) that the maximum input amplitude 

was obtained when r^ = 0.1 and r = 0.5/0.9. Under this condition

|R' (q (t)) II = o.i

and so,

2.55 X 10

-12

-12 ’

(t) II = .706 X 10 coulomb

(27)

(28)

With this norm (28) one can now use the steady state results of previous 

work [l,2] to compute the upper bound on the input amplitude E. In the 

steady state work

d = [ S |H(jm>0)|2]1/2 ||R'(qp (t))„ ^TT ««3 —  c
m=-°°

hence the norm of the 1st iterate is

0.1
255 X 10 -12 = .0083, 

(29)

|q (t) H = (l"d)|jq (t) ¡I = 0.7 X 10 ^  coulombp 11 p (30)

Recall now that q^(t) is just the steady state solution to the linearized 

problem. One easily obtains that if

then

max j E I < 0.105 volts,

qp (t) | < 0.7 X 10'12

(31)

max coulomb.
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However, also imposes an upper bound on E. One finds that

0.5|N! (6q) || =
255 X 10-12 ’

and from Eq. (5) it follows that

||6qj| = 3 o 52 X 10 12 coulomb .

The norm ||m (t) || can be computed from Eq. (15) so that if

||m (t)|| < 1 „41 X 10“ 12 ,

then
1 Q

||6q(t) || < 3.52 X 10" coulomb

Observe that
a

l|M(t)|| = II J h ( t -T ) [ e v (T) - R(qn(T))]dT||

< Il J h(t-T)  e (T) dT || + ||Rq (t)|| / |h(t)|dt 
_°o F 0

< _2ill
2L tu ,

+ 255 X io"12 ||r <q (O)

-12

(32)

(33)

(34)

(35)

If we set Eqc (35) equals to 1.41 X 10 coulomb so that inequality (34) is 

satisfied, then

max | E| = 1.41 X 10‘12 - ¿55 X IQ'12 (.706 X IQ'12/  3 X IQ12
4 X 900 X io"24 40

= 0 « 103 volt . (36)

Hence, from Eqs. (31) and (36) we conclude that if the maximum amplitude of 

the input voltage is approximately 0.103 volt, then the network is stable.1

On a first guess it was decided to choose r^ = 0.25 and r = 0.5 with these 
values it was found that max |e | < 0.074 volt was a sufficient condition for 
stability. Obviously this choice of r^ and r d o e s  not optimize max |e |„
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Applying the stability results of Leon and Anderson [3] it was found 

that the sufficient condition for stability is

max |E| < 0.088 volt . (37)

Thus, at the expense of a considerable amount of computation our method 

results in a 177> improvement on the stability bound. Since Leon and 

Anderson's results were already much too conservative, we really haven't 

bought much.

Now let's consider the perturbation method which results in considerably

less calculations. Since only inequality (13) need be satisfied, let

00

l|R'(q (t))|| J |h(t) | dt = .99 , (38)
p o

then

llR,(qp (t))|| = x 1°12 • (39)

This gives us an upper bound on q^(t) which in turn can be used to bound E, 

the amplitude of the input. Thus,

llq (t) || = X 1012 (2K2) = 7 X 10~12 coulomb . (40)" p 11 255

Now applying our steady state results Cl,2] we find that

max |e | < 1 volt (41)

is a sufficient condition for stability to "small" perturbations. Note 

that the small perturbation stability theory involves considerably fewer 

calculations than both of the other stability criteria. Also, the upper 

bound on the input amplitude is considerably greater for this new approach 

to the stability problem. Practically speaking, one might ask if the small 

perturbation method is a good stability criterion. We will attempt to give 

some justification for the method by the following experimental results.
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In the experimental circuit, Figure 6, the bias is one volt and the 

pump frequency is approximately twice the small signal resonant frequency 

of the circuit. A threshold on the pump voltage was determined above which 

subharmonic oscillations existed, i.e., the circuit was operating in an 

unstable state. In this section we will compare the upper bound on the 

input voltage below which the circuit is stable to "small" perturbations 

with the above threshold for subharmonics. Hopefully, these two bounds will 

be close together with the subharmonic threshold slightly greater than the 

stability bound.

First, let us compute the stability bound. The a-c equivalent circuit 

is illustrated in Figure 7. The stray capacitance Cg is due to the scope 

and leads and must be taken into account, since it is about the same 

magnitude as the nonlinear capacitance. From this model we compute

1 + e~n/?Q
1 - e'vi2(i

1140 X 10 -12 (42)

where the small signal Q of the circuit is approximately 50. Again,

assuming that
00

||R(q (t))|| [ J |h(t)|dt + c] = 0.99
o

we obtain

lk(t)H 1.89 X 10 -12 coulomb . (43)P

The steady state results [l,2] give

llq 1 ( t )  || = 1.84 x 10 coulomb . (44)
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Fig. 6. Experimental Subharmonic Oscillator Circuit 
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Circuit



Hence,
(45)max |E| = 0.192 volts .

In other words, if the amplitude of the source is kept below 0.192 volts, 

then the network will be stable to small changes in the input voltage.

Let's compare the above bound to the experimental threshold on the 

source voltage at which subharmonic oscillations commence. In this 

experiment it was found that at a pump voltage of 0.71 volts rms or 

|E| —  1 volt the circuit went into subharmonic oscillations. If one uses 

the stability criterion of Leon and Anderson the result is that

max |E| = 0.0613 volt

is a sufficient condition for stability of the circuit. The following 

table summarizes the results.

Table I

Voltage Subharmonic
Threshold

Stable to Small 
Changes in the 

Input for E below

Stable for all 
Bounded Inputs 
for E below

E 1 .Ovolt 0.192 volt 0.0613 volt

Just how small a perturbation in the input voltage is allowed for our 

stability criterion to be valid depends on r^. The smaller r^ is chosen, 

the larger the perturbation that is allowed. However, it is interesting t 

note that in the several experimental circuits that were constructed the 

subharmonic threshold always occurred at a fixed input voltage, regardless 

of the transient behavior of the circuit. The transient behavior only 

seems to determine the phase of the subharmonic oscillations with respect 

to the input. If this is the case, then the perturbation approach to
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stability of networks is justified even though the transients due to changes 

in input voltage exceed their allowable bounds.
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V. CONCLUSION

The stability criterion of Leon and Anderson was good for nonlinear 

circuits containing bounded inputs» In this paper it was assumed that the 

input was bounded and periodic» Using this periodicity property a new 

sufficient condition for stability was obtained, unfortunately, it was 

shown by an example that this new stability criterion is computationally 

more difficult than that of Leon and Anderson and results only in a slightly 

improved allowable range of operation for the nonlinear device» Experimental 

results showed that both of the above bounds were too conservative» These 

disappointing results led to the perturbation approach to stability. In 

this method the response was assumed to be in the desired steady state, 

and at some time t = a the input was increased by some small increment.

A condition was then determined such that all resulting transients for 

t > a asymptotically approached the desired steady state solution for 

"small enough increments" in the input voltage. The answer to the question 

on how small these increments must be depends on the choice of r^. The 

computations involved in determining how small this increment must be are 

very time consuming for the small amount of information they yield. One 

should merely note that a small enough increment can always be found such 

that the iterates converge. One would like to conjecture at this point 

that if the circuit is stable to small perturbations in the input voltage 

then it will also be stable to large changes in the input voltage. 

Experimental results indicate that this is indeed the case for the sub­

harmonic oscillator problem, however, more work needs to be done before this 

conjecture can be extended to other nonlinear phenomena.



21

APPENDIX

It was mentioned in an early part of the paper that the Thevenin 

equivalent voltage would not necessarily be periodic, but would contain 

transient terms. For simplicity it was assumed that the Thevenin 

equivalent voltage was periodic of period T. It will now be shown that 

the inclusion of transient terms does not alter the problem significantly.

Again we shall assume that all d-c bias terms have been removed and 

that the a-c Thevenin equivalent voltage is of the form

where f(t) is the absolutely integrable voltage transfer impulse response 

function from the terminals of the source to the terminals of the nonlinear 

capacitance. Substituting Eq. (A.1) into Eq. (17) for the Thevenin 

equivalent voltage gives

t
(A. 1)

-00

a t
qt(t) = C{ J f(t-\)[ev (X)-Ae(X)]d\ + J f (t-X) ey (X) d\-R(qt (t)) }

-00 a

t a T
+ J h(t-T)[ J f(T-X)(e (\)-Ae(\))d\ + J f(t -X)e (X)dX

-0 0 -00 a

- R(qt(T))]dT . (A.2)

Likewise from Eq. (2)
t

q (t) = c[ J* f (t-X) e (X) dX - R(q (t))]
 ̂ _co *■

t T
+ J h(t-T) [ J* f(T-X)e (X)dX - R(q (T))]dT .

_cn _cn ^-0 0  -00

(A. 3)
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1 Taking the difference between (A.2) and (A.3)

1
a

sq(t) = qt(t) - qp (t) = c{- J f (t-X)Ae(X) dX + R(qp (t))

i

t a
- R(qt (t))} + f h(t-T){- J f(T-X)Ae(X)dX + R(q (T)) 

-00 -00 P

■
- R(qt(T))}dT , (A. 4)

■

i

or
a

6q(t) = c[R(q (t)) - R(q (t)) - f f (t-\) Ae(\) d\} 
P -00

i
a a

+ r h(t-T) {- P f(T-X)Ae(X)dX + R(q (t)) - R(q (T)+Aq (T>)}dT -i -t P P P

i
t a

+ J1 h(t-T) [- J f (T-X) Ae (X) dX + R(q (T)) - R(q (T))}dT . 
a -°° P

(A.5)

1 Using Taylor's theorem, as before, we obtain

1 t
6q(t) + C R' (q (t))6q(t) + J h(t-T)R'(q (t)) 6q(T)dT 

P a P

1 t
= - c N2 (6q(t)) - J h(t-T)N2 (6q(T))dT - M 2(t) , 

a
(A. 6)

1
■

where
a a a 

= - J f(t-T)Ae(X)dX + J h(t-T) J f(t -X)Ae(X)dX dT 
-00 -00 -00

w

1
a

+J h(t-T)[R'(q (T))Aq (t ) + N (Aq (T))]dT-oo F F F

1
1
1
1

t a+ J h(t-T) J f(t -X)Ae(X)dX dT . 
a -«
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Note that

M2(t) || < Ç  |lAe(t> H ]f |f(T)|dT + ||R' (qp)Aqp + N 1(Aqp) || J |h(T)|dT
t- a t-a

However, 
t-a

+ ||Ae(t)|| J I h(X) j J I f (s) I ds dX 
t-a t-a-X
t-a oo

+ ||ie(t)||J> |h(X)| J* |f(s)| ds dX
o t-a-X

t-a

f  |h(X)| J j £(s> |ds d\ = J- |h(X)| / |f(s)|ds dX
o t-a-X o t-a-X

t-a
+ / lh (X) I J I f (s) I ds dX < J* I h (X) I dx J | f (s) | ds 

t-a t-a-X o t-a

+ J lh 00 I dX J I f (s) I ds 
t-a o

(A. 7)

(A. 8)

Hence, if inequality (A„8) is substituted for the last term in equality (A.7), 

then it follows that M2(t) asymptotically approaches zero as t -* ®. Also, 

note that (t) || can be made as small as desired by making ||Ae(t)|| "small 

enough," and thus, ||Aq (t) || "small enougho" Therefore, comparing Eq„ (A06) 

with Eq. (21) we see that the problem does not change too significantly when 

transient terms are included in the Thevenin equivalent voltage source.
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