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1. INTRODUCTION

In typical industrial manipulators the cycle time is limited due to flexibility 
in the robot structure. The reason is that structural vibrational modes of the arm 
may be excited if the acceleration of the arm is too high. Experimental work has 
shown that compliance in the structure arises mainly from the joints while the 
link compliance is relatively insignificant (in common robot designs, 2-20% of the 
total compliance arises from the link, dependent on the structured l]. Sources for 
joint elasticity can be gears, belts, tendons, bearings and hydraulic lines. One 
encounters considerable compliance especially when harmonic drives are used for 
speed reduction of the motors.[2] These harmonic drives are popular because of 
their compact design, high torque transmission and low backlash.[3]

The common approach is to use a rigid robot model for the controller design 
and to determine in an experimental worst-case study the maximum controller 
gain. However, in order to optimize cycle-time for every arm position and arm 
load, the joint flexibility has to be considered in the controller design.

The following report describes an analysis of a model of a single link elastic 
joint manipulator. We first discuss a classical PD-control of a linear model with 
feedback of the motor position, compare it with feedback of the link position, and 
discuss the trade-offs among controller gain, cycle-time, joint compliance, link 
inertia and damping. Our simulations show that the joint compliance in the struc
ture severely limits the maximum speed of response attainable with PD-control, 
due to oscillations or instability which occurs as the compensator gain is increased.

Using a state space description of our model, we then show how the cycle
time can be considerably decreased if fu ll state feedback is allowed. We design a 
linear, quadratic optimal controller which increases the speed of response by more 
than a factor of four without significantly increasing the input torque requirement. 
Since we assume only the link position is measured we construct a linear observer 
to estimate the full state from the measured output.

Using the insight gain from the linear design we then treat the nonlinear prob
lem in section 5. We design a nonlinear state feedback controller based on the feed
back linearization result of Su [4] and a nonlinear observer using the result of 
Krener and Isidori [5]. Our simulations show that the linear behavior of the system 
achieved in section 4 is exactly recovered in the nonlinear case by our nonlinear
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observer/nonlinear state feedback controller.

In section 6. we show with a singular perturbation approach how to separate 
fast dynamics arising from the joint flexibility from the overall system behavior. 
This allows us to treat the design problem for the flexible joint, which is 
represented as a fourth order system, as one for a rigid joint which is of second 
order.
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2. THE SINGLE LINK MODEL

For our analysis we use the single link models shown in Figures 2.1 and 2.2. 
The joint fixtures at the actuator (motor) side are represented by an inertia Jm . In 
the nonlinear model in Figure 2.1, the manipulator link including the load is 
modeled as a mass M  whose center is at a distance l from the axis of rotation and 
through an inertia about the axis of rotation. Since the contribution of the link 
to the overall compliance can be neglected, as is mentioned above, we consider only 
the joint compliance which is modeled as a linear spring of stiffness k , connecting 
the rotor and the link. On the actuator side as well as on the link side, damping 
coefficients Bm and are considered.

Figure 2.1 Nonlinear model of a single 
link elastic joint manipulator

Figure 2.2 Lumped linear model of a 
single link elastic joint 
manipulator

The equations of motion for the nonlinear system of Figure 2.1 are easily 
shown to be

Jt 9t +  Bt 9i + Mgl sin 0Z + k  (0Z -  9m ) =  0 (2.1)

Jm dm -  k  (9Z - 9 m) = u (2.2)

where 9t , 9m are the link angle and motor shaft angle, respectively, and u is the 
input torque applied to the motor shaft. Because of the gravitational torque 
Mgl -sin 0Z the system is nonlinear.

The equations of motion for the lumped linear system of Figure 2.2 are

9t + B l 9l +  k (Qt -  9m ) =  0 (2.3)

9*1 +  Bm 0m -  k ( 6 Z -  9m )  as u (2.4)
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which are written in the frequency domain as

Ui s 2 + Bl s + k  >0, [s ) =  k  6m (s ) .  (2.5)

and

Um s 2 + Bm S +*:>0,n O ) - * e z( s )  =  z2( s ) ,  (2.6)

The system (2.3) - (2.4) represents the nonlinear system (2.1) - (2.2) in the
4

absence of the gravitational torque Mgl *sin . The reason for considering the sys
tem (2.3) - (2.4) rather than a linearized (Taylor series) approximation of (2.1) - 
(2.2) will become clear in section 5.
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3. CLASSICAL DESIGN

3.1. PD-control

3.1.1. Feedback of m otor position 0m

In common controller designs for industrial robot arms the motor, angle is 
usually fed back for the simple reason that it is easier to measure than the link 
position. Figure 3.1 shows a PD-control for the linear system (2.5) - (2.6) with 
feedback of motor position.

Linear Model

Figure 3.1 Block diagram for PD-control and motor position feedback

The open loop transfer function of this system is given by

1

Gom =  KP < 1  +  Td S > ----------------
Jm s 2 +  Bm s  +  k

1 -
U m s 2 +  Bm s + k ) U l s* + Bl s  +  *  )

=  AT-’(1  +  Td s >
Ji s  2 +  Bi s +  k

U m s 2 + B m s + k ) { J t s z + Bt s + f c ) - k 2 (3.1)

The corresponding root locus shown in Figure 3.2 allows conclusions about the 
system behavior.
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Figure 3.2 Root locus for PD-control and motor position feedback

Gom has poles at

s i = 0 »  s 2>s 3 and s 4 . (3.2)

Poles s 2, s 3 are complex and s 4 is real.

Zeros of Gom are at

s o i-----
1

7 “  ’1D S  02* s  03 — I I
TT i

B,2
4 7 ,2

k
h

(3.3)

The zeros s 02-s 03 are complex because the link damping Bl is usually small in 
relation to the stiffness k .

Equation (3.3) shows that as the stiffness k  increases the zeros s 02, s Q3 move 
towards higher frequencies. A plot of zero and pole locations in dependency of the 
stiffness k  (Figure 3.3) confirms this and reveals furthermore that the same hap
pens to the poles s 2,s  3. Hence, the complete outer branches of the root locus move 
towards higher frequencies. This means that resonant modes move towards higher 
frequencies and are less likely to be excited.

Pole s 4 moves towards the right for an increase in stiffness. Consequently, the 
poles of the closed loop system with the lower frequency become more dominant 
towards the higher frequency poles. This means for the transient response that 
oscillations of higher frequency diminish for an increasing stiffness. For an infinite
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stiffness, the system is of second order and equivalent to one without consideration 
of joint compliance.

A plot of zero and pole locations in dependency of the link damping Bt shown 
in Figure 3.4 indicates that the whole root locus will move towards the left for an 
increase in link damping. This implies that oscillations in the system response 
become more and more damped.

Hence, we are likely to obtain faster responses with less oscillations for higher 
stiffness and for higher link damping. We note here that the system is stable for all 
values Kp > 0 of the controller gain. (The system parameters for Figures 3.3 and 
3.4 are chosen as in section 3.2.)

3.1.2. Feedback of the  lin k  position Oj

In later control designs we find more and more a feedback of the link position 
because it allows the achievement of a tighter control over the link angle. There
fore we analyze in the following the corresponding system behavior and take 
also as the output for the remainder of the report. The block diagram in Figure 3.5 
shows a PD-control of the system (2.5) - (2.6) with feedback of link position.

Linear Model

Figure 3.5 Block diagram for PD-control and link position feedback

The open loop transfer function of this system is given by
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Oqi — K? •( 1 + Td s ) U m s 2 + Bm s + k ) U i  s* + Bl s + k )

1 -
U m s 2 + Bm s + k ) U t s 2 + Bt s +  k  )

= Kp < l + T D s >
Um s 2 + Bm s + k ) U t s 2 + Bt s +  ^  —  k 1 (3.4)

The corresponding root locus in Figure 3.6 reveals, that the system is unstable for 
large gains Kp .

Figure 3.6 Root locus for PD-control and link position feedback

A good approximation for the critical gain at which the root locus crosses into 
the right half plane is (for high stiffnesses and low damping) as shown in Appendix 
I

K  =  _L *

The critical gain is independent of the stiffness (for k »  BmBl ¡{Jm + / / ) ) .  
Large gains can be implemented for large damping in the joint and large load and 
link inertias. However, an increase in the gain following an enlargement of these 
parameters does not induce automatically a high cycle-time, because then the

J,
l m

S m + - p - B , (3.5)
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system becomes more inert towards an input signal.

3.2. Sim ulations

With the following simulations we demonstrate on a realistic model of a sin
gle joint manipulator the limits of an applied PD-control. The system parameters 
are the same as the one of a model used by Good/Sweet[2] and have the following 
values:

k  =  0.8 Nm/rad Bm =  0.015 Nms/rad

Jm =  0.0004 Nms2/rad Bt = 0 .0  Nms/rad

Ji =  0.0004 Nms2/rad

The implemented controller is of the form Kp <1 + TD s ). The parameter TD 
is chosen to be 0.005 s for all simulations since it turns out to be convenient.

From the frequency responses of the open loop system shown in Figures 3.7 
and 3.8 we can see that the system has a strong resonant/anti-resonant behavior 
especially for feedback of the motor position. The magnification curve for feedback 
of 9m has a relative maximum at / rm =  9.87Hz while that maximum is 
f  r =  9-07 Hz for feedback of 9t . These resonant peaks mean a limit to an increase 
of the controller gain. If the gain is chosen too high, resonant modes are excited.

Figures 3.9 and 3.10 show the exact root loci for the above system parameters. 
The zero s 01 lies at -200 and is therefore not included in the plots. Although the 
shapes of the root loci differ slightly from Figures 3.2 and 3.6 because of the 
parameter configuration, it is still equivalent to the shape derived theoretically. 
Figure 3.10 shows clearly the crossing of the root locus into the right half plane for 
high gains while the root locus for feedback of 9m (Figure 3.9) only approaches the 
imaginary axis without crossing it.

The highest possible gain for a unit step response without overshoot is found 
experimentally to be Kp =0.105 for a feedback of From the corresponding 
response shown in Figure 3.12 a rise time of Tr =  0.219 s and a settling time of 
Ts =  0.312 s is measured. If we increase Kp from the critical value of 0.105 by 
50% and 100% the step response shows slight oscillations of higher frequencies, as
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we predicted already (Figure 3.13). Figure 3.14 shows the torque u corresponding 
to the step response for Kp =  0.105 . The input for these responses is a step of 9* 
from 0 rad to 1 rad, and the pole locations for the closed loop system are at 
s v s 2 =  -  10.73 ± j 5.83 and s 3, s 4 =  -  8.02 ± j 58.67.

Figure 3.12 shows that 9m oscillates slightly about the link position. This ori
ginates from the joint flexibility and link inertia which introduce a certain delay 
and damping of the movements of 9l related to 9m.

The transient response for feedback of the motor position shown in Figure 
3.11 is almost identical to the response for feedback of 9t and is therefore not 
analyzed in detail.

3*2.1. Trade-off between gain and stiffness

Since the natural frequency of our model is given by f n =  -Jk / Jeff [6] we 
expect that an increase of the stiffness k  results in the movement of resonant 
modes towards higher values. This is confirmed by simulations of the frequency 
response of the system for a stiffness of k  -  4.0 Nm/rad. Figures 3.15 and 3.16 
show that the relative maxima in the magnification curves increased to 
f  r “  16.55 Hz for both feedback of motor position and feedback of link position.

The root locus plots in Figures 3.17 and 3.18 confirm this, too. The outer 
branches move towards higher frequencies while the inner branches remain close to 
their previous frequencies.

However, this does not imply a higher possible controller gain, as equation 
(3.5) already suggests. Since the stiffness is higher, the load side of the manipulator 
is coupled more directly with the motor side and with the input torque. An experi
mental approach confirms this. For an increase of k to 4.0 Nm/rad the maximum 
value for Kp remains 0.105 as it is derived for k  =  0.8 Nm/rad. Figure 3.20 shows 
that rise and settle time of the unit step response also remain almost unchanged at 
Tr =  0.232 s and Ts =  0.316 s.

If we raise the gain Kp by about 50% and 100% from the critical value of
0.105 we obtain an overshoot similar to the one for k =  0.8 Nm/rad (Figure 3.21). 
The only difference here is that the higher frequency oscillations almost disappear, 
as frequency responses and root loci already suggested.
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Figure 3.20 also shows that the variations between motor and link position 
observed previously for a smaller stiffness disappeared which is due to a stiffer 
coupling between motor and link.

The transient response for feedback of the motor position shown in Figure 
3.19 is again very similar to the response for feedback of .

3-2.2. Trade-off between gain and in e rtia

An increase of the manipulator load to Jt =  0.0012 Nms2/rad results in lower 
frequencies of the relative maxima in the magnification curve, as simulations of 
our system shown in Figures 3.22 and 3.23 indicate. The relative maximum for 
feedback of 9t almost even disappears. The relative maxima for feedback of the 
motor position lies now at f  ™ =  7.64 Hz as does the comer frequency for feedback 
of 0j. This leads to the conclusion that the controller gain Kp has to be kept 
smaller in order to not excite resonant modes.

The root locus plots in Figures 3.24 and 3.25 show, however, that the higher 
frequency poles of the closed loop system are now less dominant than before as the 
pole s A moved towards the right. This allows the second conclusion that even 
though the resonant modes are at lower frequencies they are not more likely to 
become excited because the lower frequency poles dominate for all gains Kp .

The unit step response for the system with a larger load inertia of 

Ji =  0.0012 Nms2/rad  has an overshoot of about 8.3% for the critical gain of 

Kp =  0.105 which we have derived previously for =  0.0004 Nms2/rad  (Figure 
3.26). An experimental approach shows that the maximum value for Kp without 
overshoot is here 0.045 for the larger load inertia. Figure 3.28 shows the unit step 
response for the reduced controller gain with a rise time of Tr =  0.527 s and a set
tle time of Ts =  0.75 s.

Also, the step response is now free of the oscillations that the system had for 
the smaller load inertia. The oscillations of the motor angle about the link angle 
positions in the step response also disappeared except for a minor displacement in 
the beginning of the angle change. This is a result of the higher inertia of the sys
tem which leads to smoother changes in the link position and consequently less 
oscillations on the motor side of the arm.
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In Figure 3.27 the transient response for feedback of the motor position is 
given. It shows no difference to the step response for feedback of 9t .

3.2.3. Trade-off between gain and damping

An increase of the damping Bt in the gears and at the end of the manipulator 
arm leaves the frequencies of the relative maxima/corner frequency in the 
magnification curves almost unchanged at / rm = 9.71 Hz and f *  -  10.35 Hz (Fig
ures 3.29 and 3.30). The anti-resonance/resonance behavior is not as strong 
anymore as for a damping of Bt =  0, and the relative maxima for feedback of 
disappeared again.

The higher damping lets the root loci as a whole move towards the left (Fig
ure 3.31 and 3.32), as we predicted before. This suggests that although the resonant 
modes remain unchanged in their frequencies they become more damped due to the 
increase in damping.

Because the damping Bt decouples motor and link position more in comparison 
to the case where Bt equals zero, it is now possible to raise the controller gain Kp 
to higher values without inducing an overshoot of the link position. In an experi
mental approach, Kp could be increased up to 0.35 for a feedback of the link posi
tion. The corresponding rise and settle times Tr =  0.121 s and Ts =  0.182 s, deter
mined from the plot in Figure 3.33, indicate that not only resonant modes are less 
likely excited for a higher link damping but also much faster responses can be 
achieved.

The decoupling between motor and link position also leads to a remarkable 
difference in the time response between the system with feedback of Qm and the 
system with feedback of 9l . For the former system, the controller gain Kp can 
even be raised to 0.5 with corresponding times of Tr =  0.11 s and Ts =  0.164 s as 
shown in Figure 3.34. However, the tracking accuracy is then smaller because only 
9m is measured.

Figure 3.35 shows the price we have to pay for the increase in response speed. 
The link damping leads to a relatively large displacement between motor and link 
position which causes in the worst case damage in the gears or even breaks the arm.



rootlocus varying k

k-

1__

- 24.0

Figure 3.

Imag

real
3 Rootlocus for PD—controlled system and variation 

of the stiffness



rootlocus varying B1

imag

real

Figure 3.4 Rootlocus for PD—controlled system and variation 
of the link damping



Magnitude (db) OPEN LOOP BODE RESPONSE PLOT

Phase (degrees) Frequency (rad/sec)

Frequency (rad/sec)
- 4 ! I! ; i J I1 Í I ; ’ ' :

Figure 3.7 Bode plot for PD-controlled system, motor position 
feedback, k = 0.8 Nm/rad



Magnitude (db) OPEN LOOP BODE RESPONSE PLOT

Phase (degrees) Frequency (rad/sec)

Frequency (rad/sec)

Figure 3.8 Bode plot for PD—controlled system, link position 
feedback, k = 0.8 Nm/rad



root locus

imag

real

Figure 3.9 Rootlocus for PD-controlled system and variation 
of the controller gain, motor position feedback



root locus

imag

L

- 4 0 . 0 - 20.0 20.0
J

real

Figure 3.10 Root locus for PD—controlled system end variation
of the controller gain, link position feedback

i

II—*
00
I



stepresponse
response (rad)

Figure 3.11 Step response for PD-controlled system5 motor 
position feedback



stepresponse

response (rad)

time ( sec)

Figure 3.12 Step response for PD-controlled system, link 
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4. STATE SPACE DESIGN

4.1. Form ulation of our model in  sta te  space

The previous section has shown that the response speed is limited for a simple 
PD-control. The controller gain has to be kept rather small in order to avoid 
overshoot and unacceptable oscillations of the manipulator arm.

With a design of our model in state space, and a feedback of all states, we can 
place the poles of the system arbitrarily and hence improve the system behavior 
considerably. This holds under the assumption that the system is completely con
trollable and observable which is indeed the case as we will show.

Let us choose as state variables x  4:

=  *3 =  0.

*2 =  0/ *4 =  0..

and as an output y  =  Qt . Then we can write our linear single joint model (2.3) - 
(2.4) as

'm
(4.1)

X  , =  x

r =  — ^  -  I k
x  2 "T“ * l  “T” * 2 +  “7“  * 3

Jl

X x —  X
(4.2)

r - * r  k v Bm , 1* 4  -  7 —  * 1  ~  -T— * 3  “  -7----* 4  +  -j— U
J m

y  =*l

or in matrix form also as 

x =  A x  +  B ü

y =  C x

(4.3)

(4.4)

(4.5)
where
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0 1 0 0
k B, k 0 0

~ Jl Ji 0
0 0 0 1 , B = 0
k 0 k Bm 1

~ Jm / »

The system is completely controllable since

and C = 1 0  0 0 (4.6)

det {Qc l =  det {[B AB A2B A3B]} = k 1
J 4 r 2 Jl

which is never zero since k  >  0.

(4.7)

Also, the system is completely observable, which can be seen from

det (0 0) =  det {[C CA CA2 CA3]1} = (4.8)

The state space design with state observation and full state feedback is illus
trated in Figure 4.1 and explained in the following.

Figure 4.1 Block diagram for state space design and fu ll state observer
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Complete controllability of our system means that we can place its poles any
where we want by applying a feedback of the form

u = - K c x .  (4.9)

Equation (4.4) then gives the closed loop system dynamics as

x =  AcX with AC =  A ~ B K C . (4.10)

The feedback vector Kc can be determined by comparing the coefficients of the 
equation

a c ( s )  =  d e t{ ( s l - A c ) }  (4.11)

with those of the desired characteristic equation for the system dynamics

a^(s )  =  s 4 + ac l s 3 +  aC2s 2 +  aC3s + aC4. (4.12)

Some calculation yields for Kc =  [Kc l  KC1 Kc l  Kc ^

KC 4 =  ( a C 1 ~   ̂Jm ~~ Bm

K a  =  ( < * C 2 - £ L ( B m + k C4)
‘ 1 (4.13)

K c i = (“ C3 Jm h  ~  %C3 4

] V’   J  J  l pr
A C 1 ~  a C 4  £   — A C 3

However, as simulations in section 4.2. will show, obtaining a fast response 
through arbitrary pole placement leads to rather high values for the input torque.

Therefore, we should optimize the system. Let us state as our goal the minim
ization of the performance index

oo

J  =  J*(xt Q x + u T Ru )d t  , 
o

(4.14)

with weighting matrices Q and R which have to be selected later on. The optimum 
feedback vector Kc can then be determined from the matrix Ricatti equation [7]

0 =  At S + S A  + Q - S B R “ 1Bt S (4.15)

as
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Kc =  R"1Bt S.

Since only the output y x =  0Z is measured we need to construct an observer in 
order to implement the full state feedback control law (4.9). This observer is 
designed as

x =  A x  + Bu + Kq (y — C x ) (4.17)

which leads with equation (4.4) and e =  x -  x to the description of the error 
dynamics as

é = A o e  with A0 =  A ~ K 0 C . (4.18)

The observer feedback Kq can be determined by comparing the coefficients of 
det {(si — Aq)} with those of the desired characteristic equation for the error 
dynamics.

If the desired error dynamics are given by the equation

oî^ ( s )  =  î 4 +  oî0 1 s 3 +  oî0 2 s 2 +  o'0 3 S  +  a 0 4 . ( 4 . 1 9 )

the observer feedback Kq can be determined by equating coefficients of equation 
(4.19) with the characteristic equation of the observer dynamics

a 0 (s ) =  det {s I -  (A -  Kq C)}. (4.20)

After some calculation we obtain for Kq =  [K0 x K01 K03 K04]T

B — B)rs- _ 771 l
K-o 1 «0 1 "■ “7— ~  -7—

J m ¿ I

K q 2~  «02  —  K q ï

K q  3 — « 0  3 “  K q  \

B m
+  * l \

B m Bi
-  - 1 +  k 1

1
1

\ Jm h  , JmJl Jm Jl

Bm
k  7m

A
71 - K

J iB
(4.21)

l "m
02 k J„ - B Ol

Ko 4 «04 ”TT + K0 ! —— + Kq 2 -J— + Kq 3
K Jm j,
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43 . S tate  space sim ulation fo r  different system  param eters

For the simulations in this section through section 4.2.3. all initial values for 
the system variables are zero. The observer design is not relevant for this case since 
the observed states equal the actual states at all times. Section 4.2.4. treats the 
observer design separately for initial conditions not equal to zero. Those appear, for 
example, through measurement errors.

The first simulation in Figures 4.2 and 4.3 shows transient response and input 
torque for the state model and system parameters as in section 3.2. The input is a 
step of 9 f  from 0 rad to 1 rad, and controller poles are all placed at 
5 1> $2»53-^4 =  —80. Corresponding rise and settle times are Tr =  0.061 s and 
Ts =  0.0% s, which are about one fourth of the times for the simple PD-control. 
This result confirms our previous promise that we could obtain a faster response 
for a fu ll state feedback, but as announced before already, the input torque is 
rather high compared to the one for the PD-control (Figure 3.14). With an initial 
value of 7.5 Nm it will not only lead to high energy consumption but also to 
undesired forces on gears and arm.

In order to keep the input torque within an acceptable limit but still obtain a 
fast system response without overshoot, an optimized feedback is implemented. 
Weighting matrices Q and R are chosen with a trial-and-error approach.

Figure 4.4 shows a simulation of the state model with optimized feedback and 
the system parameters as in section 3.2. The matrices Q and R are chosen as 
diag {Q} — [ 100 0.1 100 0.1] and R * [100] which results in the feedback vector 

=  [“0*69037 0.0264752 2.11025 0.0389741]. Corresponding pole locations of 
the system (4.4) are at s v s 2 = -2 0 .1 5 ± j 54.28, s 3 = -3 5 .9 4 , s 4 =  -58.69. Meas
urements of rise and settle times yield Tr =  0.053 s and Ts =  0.087 s, which are 
about the same as in the previous non-optimum case, but the input torque now 
stays below 1.4 Nm (Figure 4.5). The pole placement also leads to a very smooth 
response, free from the oscillations observed for the PD-control (Figure 3.12).

However, from Figure 4.4 we can also see one disadvantage of the faster 
response. Motor and link position show in the rising process of the response a dis
placement of up to 0.3 rad which is equal to a deformation of the gears and the 
manipulator arm. This means a limit to the speed of the system response because, 
dependent on the gear ratio, the deformation can get so large that gears and/or
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manipulator arm suffer damage.

4.2.1. Sim ulation fo r  increased stiffness

Figures 4.6 and 4.7 show a simulation of our state space model for an 
increased stiffness of k  =  4.0 Nm/rad. The optimum feedback gain Kc is deter
mined as K d =  [-0.501667 0.011113 1.50167 0.02889] according to weighting 
matrices diag {Q} =  [100 0.1 100 0.1] and R » [200]. This results in system poles 
at s u s 2 21.21 ± j 138.48, =  —33.66±j 11.88. Again we are able to
decrease the response time for a unit step input to almost one fourth of the time 
for the simple PD-control. The measurements for the rise and settle times are 
Tr =  0.08 s and Ts =  0.122 s. A comparison of Figure 4.6 with Figure 3.20 shows 
that we now obtain slight oscillations in the link position. The reason for that is 
the increased response speed in combination with the optimization of the feedback 
vector. However, these oscillations do not cause a problem here. By choosing other 
pole locations while forgoing an optimum feedback, we could receive a response 
free from oscillations.

A second effect of an increase in stiffness is a smaller displacement between 
link and motor position compared to the case for k  -  0.8 Nm/rad. The maximum 
here is about 0.1 rad over the rise of the unit step response. However, that does 
not imply a smaller torque in the gears and manipulator arm since torque is the 
product of displacement and stiffness. Overall, the torque is then about the same as 
in the previous state space simulations and the same problems with the mechanical 
stability of the robot structure arise.

4.2.2. Sim ulation fo r  increased load inertia

For the simple PD-controller and an increased manipulator load, the gain had 
to be kept smaller in order to prevent an overshoot. The consequence was a slower 
response (Figure 3.28). For full state feedback the same can be observed as a simu

lation for a load Jl =  0.0012 Nms2/rad  shown in Figures 4.8 and 4.9 indicates.

The optimized feedback vector Kq here has been derived as =  [-0.09479 
0.0354828 0.911287 0.0252579] with weighting matrices
diag {Q} =[100 0.3 100 0.2] and R -  [300] for equation (4.14). Although the
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step response is slower than for the smaller load inertia (Figure 4.4), we still get 
about five times as fast as for the PD-control with Tr =  0.096 s and Ts =  0.158 s. 
The price for that increase in response speed is again a large displacement between 
link and motor position (maximum of 0.33 rad for a step input of Bf  =  1 rad) 
which can mean a limit to further speed increases if we want to avoid damage in 
gears or on the arm. The system poles are for this case at s lt s 2 =  -22.65 ± j 32.55, 
•s 3» *4 =  -27.68 ± j 9.97.

4.2.3. S im ulation fo r  increased damping

The simulations for a damping of Bt =0.015 Nm shown in Figures 4.10 and 
4.11 indicate that a state space design brings here little advantages over the PD- 
control. In order to get the response of Tr =  0.079 s and Ts =  0.140 s which is 
not even twice as fast as the response for the PD-control (Figure 3.33), we have to 
accept a maximum displacement between link and motor position of 0.42 rad. The 
reason for the larger displacement is the mechanical resistance on the load side due 
to the damping which can only be overcome with a high torque on the motor side. 
While we probably will not find a damping as high as in this case in reality (nor
mally we can even neglect it), we still see that the advantages of a full state feed
back diminish when the damping increases.

The weighting matrices for the derivation of the optimum feedback vector Kc 
were chosen as diag{Q}=[100 0.3 200 0.1] and R -  [150]. Kc itself is [ 

-0.0725941 0.0115011 1.34162 0.0293279], and the resulting pole locations are at 
51,5 2 =  -32.42 ± j 59.06, s 3 =  -28.16, s 4 =  -55.31.

4.2.4. O bserver design

In order to force the observed states to approach the actual states as quickly 
as possible, the observer poles should be placed far left of the controller poles. In 
the following simulation shown in Figure 4.12 the observer poles are placed at 
s =  -200  and system parameters are as in section 3.2. An optimized controller 
design is applied w ith weighting matrices of diag {Q} =  [100 0.1 100 0.1] and R 
-  [100] as under 4.2. The corresponding controller pole locations are at 
s v  s 2 =  -2 0 .1 5 ± j 54.28, s 3 =  -35.94, s 4 =  -58.69.



-51  -

We assume an error of 0.05 rad (or 0.03° for a gear ratio of 100) for the link angle 
measurement which results in the same error for the motor angle because the sys
tem is in equilibrium for t = 0 .

From the system response we can see that the response for a feedback of the 
estimated states is almost equivalent to the response for a feedback of the actual 
states. For the rise and settle times we measure for a feedback of the estimated 
states Tr =  0.048 s and Ts =  0.088 s, and for a feedback of the actual states 
Tr =  0.052 s and Ts =  0.088 s.

The difference is minor and could be reduced even further by placing the poles 
farther to the left. Since the estimated states are only numerical values, there are 
no physical limits in the observer pole placement such as for the controller pole 
placement. In reality, however, we have to reckon upon noise in the measurements 
of output state and input torque. If the observer poles are then placed too far to 
the left this noise will be amplified so much that unsatisfactory system responses 
result. This problem can be reduced through the application of a Kalmann-filter, 
which is not analyzed in detail here.
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Figure 4.2 Step response for system in state space and pole placement
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Figure 4.3
Input torque for system in state space and pole placement
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Figure 4.4 Step response for system in state space and optimized pole 
placement
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Figure 4.5 Input torque for system in state space and optimized pole 
placement
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Figure 4.6 Step response for system in state space and optimized pole 
placement
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Figure 4.7 Input torque for system in state space and optimized pole 
placement
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Figure 4.8 Step response for system in state space and optimized pole 
placement
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Figure 4.9 Input torque for system in state space and optimized pole 
placement
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Figure 4.10 Step response for system in state space and optimized pol 
placement
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Figure 4.11 Input torque for system in state space and optimized pole 
placement
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Figure 4.12 Step response for system in st^te space, optimized pole 
placement and a measurement error
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5. NONLINEAR DESIGN

The linear design in the preceeding sections ignores the nonlinearity due to 
gravitational loading on the robot arm. In this section we consider the control 
problem for the nonlinear system (2.1) - (2.2). At this point a traditional gain 
scheduling approach could be used. The nonlinear equations of motion could be 
linearized around several operating points and an observer/state feedback compen
sator designed for each of the approximating linear systems. The resulting gain 
matrices could then be “scheduled” or switched appropriately in order to cover the 
fu ll range of the manipulator motion.

We take a different approach here. Using some fairly recent results in 
differential geometric control theory we will instead design a nonlinear state feed
back control law which, after a suitable state space change of coordinates, results 
in a globally linear system. We then design a nonlinear observer based on measure
ment of only the link angle which results in globally linear and asymptotically 
stable error dynamics between the observed and actual states. Our approach 
effectively compensates the nonlinearity in the system so that the preceeding linear 
design can be utilized. Hence, the linear behavior of the system is recovered. The 
advantage of this over the gain scheduling approach is that the control design is 
based on a single linear model which is globally exact rather than on a sequence of 
approximate linear models. Our approach can actually be viewed then as a kind of 
continuous gain scheduling in that the nonlinear observer/nonlinear state feedback 
compensator has the effect of continuously updating the gains at each point in 
order to achieve an exact linear response in the ideal case.

In the case of a rigid joint manipulator the gravitational term can be included 
directly in the control law (inverse dynamics) in order to cancel its effect on the 
arm. In the flexible joint case the nonlinearity is not in the range of the input and 
hence cannot be cancelled so simply. A generalization of this idea known as exter
nal or feedback linearization^] can be used in the flexible joint case as shown in [3] 
for the single input system here considered and in [8] for the general n -link case.

We begin by choosing state variables x v  . . . ,  x A as before by setting 

=  X} = 8m

*2 =&1 * 4  =  #m
(5.1)
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Then from equation (2.1) - (2.2) we obtain 

¿ i  =  x 2

*2 = ...%gL sin(xt) -- - j -  x 2 -  4 -

x , =  x

'l

• _ -®7n , £ /• a . 1
X 4 — 1 .  X  4 4 “ ( X   ̂ “  X  3 ) *4* ......  Zi.

7 771 7 7.

The system (5.2) is thus of the form 

x =  f(x ) +  g(x) u

where

f(x ) =
Mgl sin(x j) — ^ L x 2 -  i ( x  J -  X3.)
7/ 7

*4
7

7̂71 , k f- — X A +  — (Xj - X j)
* 771 "'TTt

; g(x) =

0
0
0
1

7«

(5.2)

(5.3)

(5.4)

Taking as our output y the measured link angle x 2, we have the output equa
tion

y =  C x  where C = 1 0  0 0 (5.5)

5.1. Feedback Linearization

We first consider the control design problem for system (5.2) using full state 
feedback. The design and optimization of nonlinear systems is in general a rather 
difficult issue. Therefore we introduce the concept of feedback linearization which 
will enable us to apply the linear state space design of section 4. to the nonlinear 
system (5.2).

Definition: A nonlinear system

x =  f(x ) +  g(x) u (5.7)

where f(x ) and g(x) are C°° vector fields on R n , with f(0) =  0, and u € R , is said



- 6 5 -

to be feedback linearizable in a neighborhood U of the origin if there is 
diffeomorphism T : V  —♦ R n and nonlinear feedback

u =  a(x ) +  j3(x) v

with £(x) 0 on U such that

z = T ( x )

a C°°

(5.8)

(5.9)
satisfies the linear system 

z = A z + b v

where

A =

0 1 0  0 0
0 0 1 0
• • o o •

; b = »
• O • • o e
. . .  1 e
0 0 . . 0 0 1

Remark

(5.10)

(5.11)

1) The nonlinear transformation (5.9) and the nonlinear control law (5.8) 
result in a linear controllable system (5.10), which we assume to be in 
Brunovsky canonical form without loss of generality. The diffeomorphism 
T(x) can be thought of as a nonlinear state space change of coordinates. The 
idea of feedback linearization is that if one first changes to the coordinate
system z =  T(x), then there exists a nonlinear control law to cancel the non- 
linearities in the system.

Necessary and sufficient conditions on the vector fields f  and g defining (5.7) 
are given in [4] as the following.

1. The vector fields {g, adf(g), . . . ,  ad/1 'Kg)} are linearily independent in U;

2. The set {g, adf(g) , . . . ,  adf 'Kg)} is an involutive distribution of rank n -1
inU.

Here notations and terminology are as f oliows^

adfCg) = 6g f - 9f
d* dx g (5.12)
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adfg =  adf (adfi" 1g) (5.13)

A distribution D is said to be involutive if for any two vector fields X, Y belonging 
to D, adxY belongs to D as well.

By performing the indicated calculations for system (5.3) we obtain

g,adr (g ), ad f ig ). ad/(g)

0 0 0 k
JmJl

0 0 k k B, Bm
JmJl Jm J! Jl Jm

0 l Bm * . B*
Jm J TJ m J 7 + J TJ m J m

1 . k + B* B>
7m Jm Jri

(5.14)

from which we can see that our system fulfills conditions 1. and 2. for feedback 
linearizability.

Let us now derive the appropriate coordinate system T(x) in which the sys
tem is linearizable by nonlinear feedback. For that purpose we rewrite equation 
(5.9)

z =  T (x ). (5.15)
t

and see w hat conditions the transformation T(x) must satisfy. Differentiating 
both sides of (5.15) with respect to time yields,

z =  JT(x )x  (5.16)

where JT is the Jacobian of the transformation T(x).

Using equations (5.10) and (5.3) equation (5.16) can be written

Az + bv =  JT (f(x) +  g(x) u ) .  (5.17)

In component form with

T i 0 1 0  0 0
0 0 1 0 0

Ts ; A = 0 0 0 1 ; b = 0
t 4 0 0 0 0 1

(5.18)

we see that the first equation in (5.17) is
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a ^ i  . 6^1 .
* 7 x ,  + J 5 r x * +  * r * i  +  * 7 x ‘ - r > (5.19)

which can be written compactly as

< d T ltx>  =  < d T !,f(x) +  g(x)w >  =  r 2 . (5.20)
where we use the notation

.  87; s i n s r n s r 4 
" 118 “ ‘̂ 7 81 '8 1 7 82 +  " E 7 83 +  8 4 ' (5.21)

Similarly, the other components of T satisfy

< d T 2»f(x) + g(x)a >  =  J 3 (5.22)

< d T 3,f(x) + g(x)a >  =  T 4 (5.23)

< d T 4>f(x ) + g(x)u >  =  v (5.24)

This leads to the system of partial differential equations 

< d T lt f >  + < d T v g>u = T 2

< d T 2, f  >  + < d T 2,g>u =  r 3 (5c25)

<dT  f >  + < d T 3,g>u = v

Since T j , . . .  ,7*4 are independent of & while v is not independent of & we 
conclude that

C d J i ,  g> =  0, < dT2, g>  =  0, < dT3, g> =  0, < d T A, g>  ^  0 (5.26)

<d7j , f >  = T i+1 ; i' =  1,...,3 (5.27)

For system (5.3) one explicit solution of (5.26) can be found as

r i = x i* (5.28)

With this T x the components T 2, . . .  , T 4 can be computed inductively from 
(5.27). We obtain for T(x)
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z i = T l = x l

z-j — T-> — X 7

z i  = T i  = z 1 = Z ^ i s i n U ,) -  £ L x 2 - * ( * , - * 3)
h  4 " '

2 4 =  r 4 =  2 3 =  Z ^ i COsU1>.
Jl

(5.29)

5/
7 "

-M g/

* 2  

5,! p L s i n ( X l ) - ^ x 2 - J L ( X l- X i ) - - 7 - U 2 "  *4)*Jl

The feedback linearizing control input u is found from the condition i 4 =  v 
(from (5.10)) as

a =  J-m̂ 1 [v -  a (x)J =  j3(x) v +  a(x) (5.30)

where

a (x) := ^ i.s in G c!)  — —1—x 2 — j - U p X j )
/ Z ^ c o s U x) + £ l  -

Ji Ji

Mgl sin +
Bt MgL B,k

cos(xl )-x1 + - L r ( x 2- x A) 
/ -'zT 7 (5.31)

£2L, * 2
X4 + -7—j- fo i—Xj)

4 . 4 TnJl

Therefore in the coordinates z  j , . . . ,  z 4 with the above control law u the sys
tem becomes

z i ~ z 1 » Z 1 ~~ z 4

z 2 =  z l  » ¿ 4 =  V

or, in matrix form,

z = A z + b v

(5.32)

(5.33)

where
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0 1 0  0 0
0 0 1 0 0
0 0 0 1 ; b = 0
0 0 0 0 1

Remarks

(5.34)

2) The state space change of coordinates z =  T(x) given by (5.29) is actually a 
global diffeomorphism. In order to see this we need only compute the 
inverse transformation. By inspection we see that

3)

* 1 * * 1  

*2 =  *2

Ji

Jt
* 4 = * 2  + T -

Mgl 
J

B ,

r 3 + i ^ i s i n ( z 1) +  ^ L r 2B,
7,

(5.35)

*  4 +  - J ~ Z  3 +  — COs(z t)-Z 2 
Jl

The inverse transformation is well defined and C 00 everywhere and hence 
the feedback linearization for the system (5.2) holds globally.

The transformed variables z j , . . . ,  z 4 are themselves physically meaningful. 
We see that

2 1 ■— x  i — link position , z  3 =  z 2 — link acceleration
(5.36)

2 1 = * 2 =  link velocity , z 4 =  z 3 =  link jerk

Since the motion trajectory of the link is typically specified in terms of these 
quantities they are natural variables to use for feedback.

The linear system (5.33) in fact is the Brunovsky canonical form of the linear 
system (4.2) for which we have already designed a linear state feedback controller 
in the previous section. We can then choose the input v to be a linear state feed
back control

v =  “ a 4 * l “"<*3z 2 “ a 2r 3 “ a l24 + r
, . (5.37)

=  -  or4 r  i(x) -  a 3 T 2(x) -  or2 r 3(x) -  r 4(x) + r .

in order to place the closed loop poles. The characteristic equation of the linear
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system is then given by

a(s ) =  det ( s i  — A J with \  =

0 1 0 0
0 0 1 0
0 0 0 1

“ « 4 -< * 3 -<*2 - « 1

which leads to

(5.38)

a(s ) = s 4 + aj s3 + a2s2 + a3s + <*4. (5.39)

By choosing the parameters ael t . . .  t ot4 identical to the parameters of the equation 

det ( s i - A c )  with from equation (4.10) we obtain for the characteristic 
behavior of the linearized system the same as for the system (4.2). Hence, we can 
directly apply the design of our linear model to the linearized model.

pole placement

Figure 5.1 The nonlinear system with a linear design

Figure 5.1 shows the structure of our new nonlinear system with linearizing 
feedback and pole assignment.

5.2. N onlinear observer design

We now turn  to the design of an observer to estimate the state of the system 
(5.2) using the measured output y in order to apply the state feedback control law 
(5.8), (5.37). Note, since the system is nonlinear, the linear observer design of the 
previous section is inadequate as it does not necessarily lead to stable error
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dynamics. Using the results of Krener and Isidori [5] we can, however, design a 
nonlinear observer such that globally the error between the estimated state and 
actual state satisfies a stable linear system.

To see this it suffices to note that the nonlinear system (5.2) can be rewritten 
in terms of the output y as

x =  A x + b u + <Ky) 

y =  Cx

where

0 1 0 0
k B, k 0 0

Tt T j , 0
0 0 0 1 ; b = 0
k 0 k Bm 1

Jm Jm Jm

and

(5.40)

(5.41)

C =  |l 0 0 o] (5.42)

<f>(y) =

0
—Mgl sin y 

0 
0

(5.43)

Since the nonlinear term <f> in (5.40) is a function of the measured output we 
can construct a nonlinear observer of the form

x =  A x  + bii +  0 (y ) + G (y - C x ) .  (5.44)

Combining (5.40) and (5.44) we see that the error e =  x — x satisfies the linear 
system

e =  (A -  G C) e . (5.45)

and we have recovered the earlier linear dynamics (4.18). The block diagram in 
Figure 5.2 demonstrates how the observer is designed.
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The observer feedback matrix G = [G1 G2 G3 G 4]T is then found by com
paring the coefficients of the characteristic equation of the observer

a 0 (s ) =  del {s I -  (A -  G C)} (5.46)

w ith the desired characteristic equation

<*0 (s ) =  s 4 + aqs 3 + a2s 2 +  oc2s  + a 4 (5.47)

This is equivalent to the derivation of Kq in section 4. (equation (4.20)).

5.3. S im ulation Results

Figure 5.3 shows the step response of the nonlinear system using the above 
nonlinear observer/feedback linearizing control law. As in the linear case in section
4.2.4. we assume an error of 0.05 rad for the link measurement in order to obtain 
insight not only into the system behavior but also into the observer behavior. The 
parameters of the system are identical to the parameters used earlier for the linear 
model (section 3.2.). In addition M  is chosen as 2 kg which after reflection 
through a 100:1 gear ratio is equivalent to 0.02 kg at the motor side. The distance l 
to the center of mass of the link is 0.5 m. The observer gains and outer loop con
trol gains are also chosen identical to those used in the linear case under section 4.2. 
We see from Figure 5.3 that the response of the linearized nonlinear system is 
nearly identical to the response of the linear system shown in Figure 4.12.



A . 2

Figure 5.3 Step response for nonlinear system with linearizing feedback 
and a measurement error
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6. SINGULAR PERTURBATION DESIGN

In the preceeding linear and nonlinear control design for our single link model 
we had to operate on a fourth order system. It would be advantageous, however, to 
reduce the single link model to second order. This would ease the design because 
for a second order system, a direct relationship between the characteristic fre
quency and damping ratio of its unit step response exists. The singular perturba
tion approach undertaken in this section allows the accomplishment of this goal 
through a parameter transformation.

The underlying idea is to divide a given system into a dominant slow system 
and into a fast boundary layer. In our case, the slow system would describe the 
dynamics of mass and inertia of motor and link, and the fast system would 
describe the dynamics arising from the joint stiffness. The second order system 
obtained for the slow dynamics will then represent an approximation of a rigid 
link, provided the stiffness is sufficiently large. In the following we describe the 
derivation of a singular perturbation form of our linear system (2.3) - (2.4) and 
the design procedure for slow and fast subsystem.

The linear transformation

where

*2 =  *1 

*1*2 =  * 7T7
transforms system (2.3) - (2.4) into 

Ji ¿2 +  x 2 + z i = 0

and

1 1

Z i  =  * 1 * 2  (fy “  Qm ) 

z 2 =  €Zl

< -  1

(6.1)

(6.2)

J. t - T ~ z i +*1 + £.m i r r mi i +  i i * 1 *2
— Z i  =  U

which is after some rearrangement

/
" « T T * 2  +  ' » ¿ 1 -  ^ z 2 + Bm i x -k k z , = u (6.3)
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The state space representation of system (6.2) -  (6.3) is

or also

with

¿1 0 - Ü L i o *1 0
¿2 Ji A *2 0
€¿1 0 0 0 1 °

*1 + 0
€Z2 0 k, Bm Bt —k J _ +  i ¿2 k22 7 7  T  ̂2 Jm A . Jm

•
X A n A12 X
©

€Z A2i a 22 z +
b 2

u

(6.4)

(6.5)

and

x  =
* i 
*2

A n 38
0 1 

" 5 -

A2i —

z =

Bi =

0

0 k 2

0
B,m

m
El
T,

0 0
9 Al2 — _  1 0Jl

> -̂22 —
0

1 +  1 
z r  t

B, =
0

/*

— € Bm
7 7

(6 .6)

’ (6.7)

It is obvious from (6.4) that for small parameters e, that is for large 
stiffnesses k  , the vector z is relatively large compared to x. This results in a rapid 
decline of the vector z. Consequently, variables and z 2 can be referred to as fast 
variables and variables x l and x 2 as slow variables.

From our original linear model in the form (6.4) we can show, as an example, 
how to obtain the system equation for a rigid link. For constant parameters k  2, 
(6.4) becomes for e —► 0, that is k -♦ oo
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*2 (6.8)

Bn £ i
h x i — k

Jm + T

Equation C6.9) in (6.8) yields

Bi 1 Bm Jt ~ B t Jm.x, +  _L
Jl 2 Ji Jm + Jt T Jm + J l

Bm + Bi . X 1 u
Jm + A •*’ 2

Jm +  J, ■
and with x 2 =

+ J 1 Y&1 +C8,n + Bl )9l =Zi .

(6.9)

(6. 1 0 )

(6.1 1 )

Equation (6.11) represents an approximation of the fourth order system (2.3) 
- (2.4) through its slow dynamics which is valid for large stiffnesses. Furthermore, 
(6.11) shows that a rigid link can be modelled by taking motor and link inertia 
together as one inertia and adding motor and link friction, as one could expect.

6.1. L inear feedback design

A decomposition of our original system (2.3) - (2.4) into the two lower order 
slow and fast subsystems

x  =  An x + A ^ z  +  Bjii (6.12)

€Z =  A21X + A 22z  + B2h (6.13)

enables us to design a feedback control for each of these subsystems separately. We 
can design the dynamics of the dominant slow system (6.12) to our desire while 
assuring through a feedback design for the fast subsystem (6.13) that it declines so 
fast that its overall influence on the system behavior remains insignificant.

As a first step to a separated design, a control of the form 

u =  Gj x + G2 z

is applied to system (6.12) - (6.13). This yields the closed-loop system

(6.14)
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•
X An  + Bj Gx A12 +  Bt G2
€ Z ^21 ®2 A22 +  B2 G2

x
z * (6.15)

A transformation of system (6.15) into the block diagonal form
e

A. + Bt G, 0 <
.

0 Af + Bf Gf ■n (6.16)

would allow the separated design in an easy manner through parameters Gs for the 
slow subsystem and Gf for the fast subsystem.

Let us show in the following how the matrizes in (6.16) can be interpreted as 
separate system matrizes for slow and fast subsystems and make clearer at the 
same time why we refer to r) as the fast variable.

By introducing the time scale modification

€

with an initial time 10, the derivation

dr

(6.t7)

(6.18) ~

becomes

€ri(t ) =   ̂ drj(r) . d r _  dy(r)  
dr  dr d r

W ith (6.19) we can write (6.16) as 

¿( r )  « ( A .  + G.G.) £ ( r )

=  (Af  + Bf Gf ) T)(r)

(6.19)

(6.20)

(6.21)

Hence, the poles of the fast subsystem are those of Af + Bf Gf in the (fast) 
time scale r. Through the parameter €, this time scale is a stretched form of the 
real time scale t in which the slow system poles are found. A decline in r  will con
sequently be faster by the factor € in the time scale t . Given pole locations of 
(6.21), T)(r) will decline the faster the smaller € is. From this we can draw the 
conclusion that pole locations for the fast subsystem do not have to be placed 
much further left to the slow subsystem poles, provided € is sufficiently small.
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Kokotovic gives in [9] (pages 96-97) the transformation leading from (6.15) to 
the system representation in (6.16) as

- e H L  - e H  

L lm
X

z (6.22)

where the slow sub-system is of order n and the fast sub-system of order m . 
Matrices L and H in (6.22) are given by

and

0 — A22 L — eL (An  +  Bj Gg) +  eL A12 L — (A21 +  B2 Gs) (6.23)

0 =  €[An  + B! Gj -  (A12 +  Bx G2) L] H

^  k^22 ®2 ^2 (A j2 Bj G2)] + Aj2 +  Bj G2 .
(6.24)

The system matrices A,, Bs, Af and Bf are determined from 

\  =  Au — A12A22* [A21 + eL (A n — A12L)]

Bs =  Bi — A12 A 22 (B2 + eL Bj)] (6.25)

Af =  A22 + eL A12 , Bf =  B2 + eLB1

and the design parameters Gv  G2 are related to Gs, Gf through

Gi =  Gs +  Gf L and G2 =  Gf . (6.26)

Once Gs and Gf are found, the composite control applicable to the original system
(6.12) - (6.13) can be determined from (6.14) with (6.26) as

u =  (Gg + Gf L) x +  Gf z (6.27)

A problem in the actual design process is the dependency of transformation 
matrix L from the design parameter Gs in equation (6.23). Knowledge of L is neces
sary for the derivation of Ag and Bs, which lead to Gg. Hence, L cannot be deter

mined without knowing Gs and vice versa. However, it is possible to calculate an 
approximation of L without knowing Gs.

In [9] (p. 94-95 and 99-100), the design procedure for a second order approxi
mation is given:

The first step is to find the first order approximation Gs' of Gs through plac
ing the eigenvalues of



- 7 9 -

As' +  B8 Gs' (6.28)

at the desired pole locations of the slow subsystem. System matrices A,' and Bs' 
in (6.28) are determined from

=  A11 ~  ^i2  A221 A21 , Bs' =  — A 12 A22J B2 . (6.29)

The corresponding first order approximation of L is

L' =  A22x (A21 + B2 Gs0 . (6.30)

In the next step, a second order approximation

V  +  B,"G," (6.31)

of the slow system is designed. Here we have

Ag Ag *A12 A22* L (Ajj Aj2 L*)
, (6.32)

Bs" =  Bs' -  cA ^ A ĵ L 'B j

The third step is to design the fast subsystem in its second order approxima
tion

Af'' +  Bf” Gf" (6.33)

by placing its poles at the desired locations through Gf" where

Af" =  A22 +  cL' A12 , Bf" =  B2 +  eL' Bj (6.34)

W ith Gs" and Gf" determined in the preceding manner, we calculate the composite 
feedback control law (6.27) as

“ " =  (G," + Gf" L") x + Gf" z (6.35)

with

L" =  (A21 +  B2 G,~) +  ( A 22 L- [a ;  + B, G,] (6.36)

The approximate design leads to a non-exact block diagonal form of the sys
tem matrix of (6.16). Also, the actual pole locations of the system will only be 
approximations of the poles placed for the approximate slow and fast systems.
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6.2. Simulation results

Simulations for the singular perturbation design are performed on the linear 
model for system parameters as in section 3.2. so that the results can be compared 
with the previous state space simulations. The control is designed with the second 
order approximate procedure described in (6.28) -  (6.36).

For the first simulation shown in Figures 6.1 and 6.2, poles of the slow system 
(6.20) are placed at S j .S j s -SO and the fast system poles of (6.21) at 

s 3>s 4 =  ~45. Through the approximate design the poles that were actually real
ized through the computed feedback gain (6.35) for the system (6.15) are dislo
cated from the desired pole locations and are at s v s 2 =  — 7.37±j36.92, 
s 3 =  —16.55, s 4 — —77.67. From plot 6.1 rise and settle times of Tr =  0.120 s and 
Ts =  0.180 s are measured which are a little more than half of the times obtained 
for the single state feedback PD-control simulations in 3.2. In addition to the 
improvement in response speed we can also see the approximate second order 
behavior. Except for the displacement between motor and link position in the 
beginning of the transient response, during which the fast states z still decline, 
the response is free from the oscillations observed for the PD-control design as well 
as for the simple state feedback design in section 4.2. Also, it is critically damped, 
that means it does not overshoot. The input torque, however has a relatively high 
initial value of 3.0 Nm. This is about two and a half times of the value observed 
for the state space design while the latter is twice as fast. On the other hand, the 
pole locations for the state space design were obtained through an optimization pro
cedure. Optimizing the singular perturbation design (which is for example given in 
[9]) should yield better values for the input torque.

In the second simulation, which is shown in Figures 6.3 and 6.4, we see the 
influence that a placement of the fast system poles farther left at s 3, s 4 =  —80 has 
on the system response. The slow system poles are kept at s lf s 2 =  —30. Realized 
pole locations are at s v  s 2 =  -17.30±j46.36, s 3 =  -18 .72  and s 4 = -125.66. 
With Tr = 0 .1 13 s and Ts =  0.166 s, we do not obtain a response much faster 
than in the previous case but the input torque has now an initial value of 9.0 Nm. 
This is actually above an acceptable range because of the resulting high force on 
gears and arm.



r e s p o n s e  ( r a d )

Figure 6.1 Step response for linear system with singular perturbation 
design



r e s p o n s e  ( r a d )

Figure 6.2 Input torque for linear system with singular perturbation 
design



r e s p o n s e  ( r a d )

Figure 6.3 Step response for linear system with singular perturbation 
design



r e s p o n s e  ( r a d )

Figure 6.4 Input torque for linear system with singular perturbation 
design
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7. SUMMARY AND CONCLUSIONS

A simulation of the transient response of our linear model with a simple PD- 
control reveals that the system behavior is largely dependent on inertia, compli
ance, and damping of the manipulator joint and link. A large inertia is helpful in 
decreasing oscillations of the link but slows down its motions. A small stiffness 
decreases the coupling between motor and link. Due to an improved capacity of 
storing and releasing energy, a small stiffness leads to more oscillations in the tran
sient response of the system. A high damping of the link on the one hand contri
butes to a damping of the arm oscillations, but on the other hand, slows down the 
arm motions. The best results are obtained with a small inertia, large stiffness and 
large damping.

From the comparison of the simulations for the state space design with those 
for the PD-control we have been able to see that the former had in all cases the 
faster response. Since the poles can be placed arbitrarily in the case of a fu ll state 
feedback we have also been able to eliminate higher frequency oscillations in the 
unit step response. The only limits to the increase in cycle-time are mechanical sta
bility of the robot structure and power of the motors used.

A slight decrease in the response quality evolves when the initial states for 
the system and those for the observer are not equal. This occurs, for example, in 
the case of measurement errors. However, even with these displacements the 
responses are better than for the simple PD-control and with an observer optimiza
tion we can minimize these disadvantages.

Using a nonlinear observer in conjunction with a nonlinear state feedback con
troller we have been able to recover exactly the linear behavior from the nonlinear 
system.

Finally, applying a singular perturbation design has yielded that the flexible 
joint shows a behavior which is in the approximation similar to the behavior of a 
rigid link. In addition to an increased response speed, compared to the PD- 
controlled system, this eases the design in the end. However, the performed simu
lations showed relatively high values for the input torque, in comparison to the 
state space design. Optimization procedures can solve this problem and should be 
applied here.
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We have not considered the robustness issue arising from parameter distur
bances, external disturbances, and inexact cancellation of nonlinearities. As shown 
in [93 and the references therein, a number of techniques such as variable structure 
control or parameter estimation schemes can now be added to the design here to 
improve the system robustness.
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APPENDIX I

D erivation of stab ility  boundary for PD-control and feedback o f the H"fc position 9,

V e derive the stability boundary for the system with PD-control and feedback of the link 
position 9i with the Routh-Hurwitz criterion. Since our system is of fourth order, the coefficients 
a o, . . . .  a 4 of the characteristic polynomial

Q(s  ) =  a 0s 4 +  ax s 3 + a j s J + a 3.s + a 4 ( j  1)

must fulfi.ll the following conditions:

1. All coefficients a   ..........a 4 have the same sign.

2. 0^2  — doûj ^ 0.

3. û j a 2a } -  ai2 a 4 — a 0a 32 > 0 .

For the coefficients a 0, . . .  , a 4 we obtain from Q (s ) = 1 + G01 with equation (3.4) the values

flo = a 3 =  k [(Bm + B ,) + iT, Td]

a i =  Bm Ji + B\ Jm a 4 =  k Kp (1,2)

a2 = k(Jm + / , )  + BmB,

Hence, the first condition for asymptotic stability is fulfilled for all K? > 0  because all 
coefficients have then a positive sign.

For the second condition we obtain

(Bi Jm + Bm h  Hfc On + Ji ) + Bm Bi ] -  k Jm Jt [(£„, + Bi ) + Kp Td ] > 0 (1.3)

from which follows

(Bt Jm + Bm Ji >[k (Jm +Jt ) + Bm Bt] Bm + B\Kp <
TTTTTJi (1.4)

and after some rearrangement

Kp < J L  p T 7
Bm , Bt
7 T  X Jm + Jl + Bm Bt

- ( Bm +5,) (1.5)

BnBt
For JM + Ji »  — g— , which can be assumed if either the stiffness k is large or the link damping 

Bt is small, expression (1.5) can be reduced to

Ka < T T 3” + T - b‘ = Kpi (1 .6 )

This approximation is non-critical, which means that the exact boundary of (1.5) is always larger 
than the approximate boundary of (1.6).
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When v e  plug in the coefficients which contain Kp into the third Hurwitz condition, we obtain 

axa2k [(B* + B ,) + Kp TD] - a }  k Kp - a 0fc2[(Bm + B, ) + Kp TD ] 2 > 0 , (1.7)

and after some rearrangement

0 > K 2 (a0 k 2Tj)+Kp [2a0 k 2 (Bm + B t ) r D + a} k -  axa2k Tj>)

+ a 0 k 2(B« + Bt) 2 - a xa2 k(Bm + Bt )

=  K 2  + Kf z b : 8' + oi __ a i a2 +. (B„ +B,Y CL I d 2
a0k Té dok T0 — n — a a k 73(S" JrB,) ( 1.8 )

Because the highest order coefficient K 2  of this second order polynomial has a positive sign, the poly
nomial has values smaller than zero if Kp lies between its two zeros KPn and KP q 2  given by

with

and

_  7  + Bt  ̂ a I  ̂ a. 1  a 2
? TD a ok IDl a ok ID

(S m + Bt ) 2 a i a 2 . .
? = ------ sn------ ~  -  , „ .j (Bm + 5 , )Té a0k Té

For large stiffnesses k or small dampings B\ we make again the above approximation

a 2 Bm Bt
X * 7- + /, + /,

and

a. 2 (BmJt+BtJm ) 2 =  0 .

This yields

7 = 7T

l
7T

and

? =

2(Bm + B, ) -  

(Bm + S , ) -

(Sm + B,)2-

Bm Bt
7 T  + X y .  + / , )

7 ' O + Jm D
7 r S* + 7 T B'

fl,
7T + X (/« + J|)(B , +5,)

(1.9)

(1.10)

(I.I1)

(1.12)

(1.13)
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l
7 7

Jl B + Jm B77 Bm + 7T 5' (Bm + S,) (1.14)

For r ?02 we obtain then 

1

1
473

(S„ + Bi ) — 

(Bm + 5 , ) -

Jl b + Jm B77Bm + 7T5'

7 7 Bm + 7 T Bl 7 1 7 7 Bm + ^ B t

(1^15)

(Bm + Bt )

+ 5, )~

± 1
277 (Bm + Bx ) +

(1.16)

Equation (1.16) yields

x '«  ~ TT J m + (1.17)

T 7 ^Bl* (1.18)

k p 01 is ecl'11*1 to the approximate upper boundary of K, from the second Hurwitz condition

(equation (1.6)). Equation (1.18) is redundant since we determined in the first Hurwitz condition 
already that Kp > 0 which implies (1.18).

Hence, the final result for the stability boundary is

KP := Kt (1.19)

The validity of this expression can be demonstrated on the example of the realistic parameter 
configuration of our model in section 3.2. Figure 1.1 shows how the exact boundaries for Kp deter
mined from the second and third Hurwitz condition approach the approximation Kp' for large 
stiffnesses k and/or small dampings B\.
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Figure 1.1 Exact and approximated stability boundaries of K 
controlled system, feedback of link position

for PD-



APPENDIX D

Simulation Procedures

The simulations for the PD-controlled system in section 3. were run with the software package

HR-Controls

Hunter Research Corp.
Cupertino, California

Since the program was used in on-line operation there are no simulation procedures given here.

For the state space simulations in section 4. through 6. the software package

Simnon -  an interactive simulation program for 
nonlinear systems. Version 4.

Copyright (c) Department of Automatic Control 
Lund Institute of Technology, Lund, Sweden.

was used. Printouts of the simulation procedures are given on the following pages.
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CO NTIN UO US SY ST E M  STAFEEDB
ft

ft

Simulation procedure for step response of 

system in state space and pole placement
ft

ft

State x l x2 x3 x4 

Der dxl dx2 dx3 dx4 

Time t

r=if t< 0  then 0 else 1 

dxl=x2

dx2=-k/JI*xl-BI/JI*x2+k/JI*x3

dx3=x4

dx4=(k*xl-k*x3-Bm*x4+v)/Jm

v= -(K l*x l+K 2 *x2 +K 3 *x3 +K 4 *x4 )+ (K l+ K 3 )*r

u=if vculow  then ulow else if v<uhigh then v else uhigh

y l= x l

y2=x3

ulow:-9

uhigh :9

Kl=ac4*Jm*JI/k-K3

K2=(ac3*Jm*JI-K3*BI)/k-BI-Bm-K4

K3=(ac2-k/JI)*Jm-k-BI*(Bm+K4)/JI

K4=(acl-BI/JI)*Jm-Bm

acl=-ar-br-cr-dr

ac2=ar*br+ac~2+cr*dr+af2+(ar+br)*(cr+dr)

ac3=-((ar+br)*(cr*dr+cc"2)+(cr+dr)*(ar*br+ac"2))

ac4=(ar*br+ac*2)*(cr*dr-Kc‘2)

ar:-80

ac:0

br:-80

cr:-80

cc:0

dr:-80

Jm:0.0004

Jl:0.0004

Bm:0.015

Bl:0.0

k:0.8

END
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CONTINUOUS SY ST E M  O STFEEDB
«9

W

Simulation procedure for step response 

of system in state space, optimized 

pole placement and observer feedback
N

Observer poles at ar+jac. br-jac, cr+jcc. dr-jcc

State x l x2 x3 x4 xol xo2 xo3 xo4 

Der dxl dx2 dx3 dx4 dxol dxo2 dxo3 dxo4 

Time t

r=if t< 0  then 0 else 1 

dxl=x2

dx2=-k/JI*xl-BI/JI*x2+k/JI*x3

dx3=x4

dx4=(k*xl-k*x3-Bm*x4+u)/Jm  

dxol=Ko l*(x l-xo l)+xo2  

dxo2=Ko2*(xl-xol)-k/JI*xol-BI/JI*xo2+k/JI*xo3  

dxo3=Ko3* (xl-xol )+xo4

dxo4=Ko4*(xl-xol)+(k*xol-k*xo3-Bm*xo4+u)/Jm

u=-Kcl*xol-Kc2*xo2-Kc3*xo3-Kc4*xo4+(Kcl+Kc3)*r
e l=x l-xo l

e2=x2-xo2

e3=x3-xo3

e4=x4-xo4

Kol=aol-Bm /Jm -BI/JI

Ko2=ao2-Kol*(Bm /Jm +Bi/JI)-Bm *BI/(Jm *JI)-fk*(l/Jm -l/JI)

Ko3=ao3*JI/k-Kol*(Bm*BI/k/Jm-JI/Jm)-Ko2*Bm*JI/k/Jm-(Bm-BI)/Jm

Ko4=ao4*JI/k+Kol*BI/Jm +Ko2*JI/Jm +Ko3*Bm /Jm

aol=-ar-br-cr-dr

ao2=ar*br+ac*2+cr*dr+cc~2-i- (ar+br) * (cr+dr)

ao3=-((ar+br)*(cr*dr-Kc~2)+(cr+dr)*(ar*br+ac~2))

ao4=(ar*br+ac“2)*(cr*dr+cc~2)

Kcl :-0.696037

Kc2:0.0264752

Kc3:2.11025

Kc4:0.0389741

ar:-200

ac:0

br:-200
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cr:-200

cc:0

dr:-200

Jm:0,0004

Jl:0.0004

Bm:0.015

Bl.0.0

k:0.8

END



CO NTIN UO US SY ST EM  NONLINOB

Simulation procedure for step response of 

nonlinear system with linearizing feedback 

and nonlinear observer with output injection

System poles at ar+jac, br-jac, cr+jcc. dr-jcc 

Observer poles at aor+jaoc. bor-jaoc. cor+jcoc, dor-jcoc

State x l x2 x3 x4 xol xo2 xo3 xo4 

Der dxl dx2 dx3 dx4 dxol dxo2 dxo3 dxo4 

Time t

r=if t< 0  then 0 else 1 

dxl=x2

dx2=(-k*xl-M*g*l*sin(xl)-BI*x2+k*x3)/JI

dx3=x4

dx4=(k*xl-k*x3-Bm*x4+u)/Jm

dxol=Ko l*(x l-xo l)+xo2

dxo2=Ko2*(xl-xol)+(-k*xol-BI*xo2+k*xo3-M*g*l*sin(xl))/JI

dxo3=Ko3*(xl-xol)+xo4

dxo4=Ko4*(xl-xol)+(k*xol-k*xo3-Bm*xo4+u)/Jm

e l= x l-x o l

e2=x3-xo3

y l= x o l

y2=xo2

y3=-k/JI*xol-M*g*l/JI*sin(xol)-BI/JI*xo2+k/JI*xo3

y41=-(k/JI+M*g*l/JI*cos(xol))*xo2+k/JI*xo4

y42=BI/JI*(k/JI*xol+M*g*l/JI*sin(xol)+BI/JI*xo2-k/JI»xo3)

y4=y41+y42

v=-ac4*yl-ac3*y2-ac2*y3-acl*y4+ac4*r

w=Jm*JI/k*(v-ul-u2-u3-u4-u5-u6)

ul=M*g*l/JI*(xo2^2+k/JI-(BI/JI)"2)*sin(xol)

u2=M*g*l/(jr2)*(2*BI*xo2+k*(xol-xo3))*cos(xol)

u3=(M*g*l/JI)<'2*sin(xol)*cos(xol)

u4=k*BI/(jr2)*(2*xo2+BI/JI*(xo3-xol))

u5=((k/JI)*2+k*2/(JI*Jm))*(xol-xo3)

u6=-k/JI*(BI/JI+Bm/Jm)*xo4-(BI/JI)*3*xo2

u=if w < ulow then ulow else if w<uhigh then w else uhigh

ad=-ar-br-cr-dr

ac2=ar*br+ac~2+cr*dr+cc*2+(ar+br)*(cr-|-dr)



-  I I .6  -

ac3=-((ar-f-br)*(cr*dr+ccÄ2)+(cr+dr)*(ar*br+acÄ2))
ac4=(ar*br+acÄ2)*(cr*dr+ccÄ2)

Kol=aol-Bm /Jm -BI/JI

Ko2_ao2-Kol*(Bm/Jm+BI/JI)-Bm*BI/(Jm*JI)+k*(l/jm-l/JI)

Ko4—ao4 JI/k+Kol*BI/Jm+Ko2*JI/Jrrw-Ko3*Bm/Jm 
aol=-aor-bor-cor-dor

ao2—aor*bor+aoc"2+cor*dor+coc'2+(aor+bor)*(cor+dor)

a°3=-((aor+bor)*(cor*dor+coc*2)+(cor+dor)*(aor*bor+aoc“2))
ao4=(aor*bor+aoc"2)*(cor*dor+coc*2)
ulow>9
uhigh:9
ar:-20.15
ac:54.28
br:-20.15
cr:-35.94
cc:0

dr:-58.69
aor:-200
aoc.O

bor:-200
cor:-200
coc.O
dor:-200
Jm:0.0004
Jl.0.0004
Bm:0.015
Bl:0.0
k:0.8
M:0.02
g:9.8065
1:0.5
END



CONTINUOUS SY ST EM  SINGPPPL

Simulation procedure for step response of system 

with singular perturbational control design
ft

ft

State x l x2 zl z2 

Der dxl dx2 dzl dz2 

Time t

r=if t< 0  then 0 else 1 

dxl=x2

dx2=-BI/JI*x2-l/JI*zl

dzl=l/eps*z2

dz21=k2*(Bm/Jm-BI/JI)*x2-k2*(l/Jm+l/JI)*zl

dz22=-eps*Bm/Jm*z2-k2/Jm*u

dz2=l/eps*(dz21+dz22)

v=G ll*x l+G 12*x2+G 21*zl+G 22*z2-G ll*r

u=if v <  ulow then ulow else if v<uhigh then v else uhigh

y l= x l

y2=xl-z l/k

k2=k/kl

eps=l/sqrt(kl)

ulow:-9

uhigh:9

Jm:0.0004

Jl:0.0004

Bm:0.015

Bl:0.0

k:0.8

kl:10
Gll:-3.645
G12:-0.290029

G21:18.4631

G22:0.485576

END


