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Abstract

This report presents a detailed stability analysis of an adaptive composite control strategy for 
flexible joint robot manipulators. Our so-called slow/fast control strategy, consisting of a slow 
adaptive controller designed for a rigid robot together with a fast control to damp the elastic 
oscillations of the joints, was first derived in previous work of the authors and its performance 
was detailed by both simulations and experimental results. We now present the mathematical 
details and rigorous stability proofs of our algorithm. Using the composite Lyapunov theory for 
singularly perturbed systems we present sufficient conditions for adaptive trajectory tracking. 
For point-to-point motion we show that there is always a range of joint stiffness for which 
convergence is achieved and we quantify the region of convergence. For tracking of (smooth 
and bounded) reference trajectories we give sufficient conditions for closed loop stability and 
uniform boundedness of the tracking error. A residual set to which the tracking error con
verges is quantified. We also show that for special classes of trajectories, which include step 
responses generated from reference models and certain joint interpolated trajectories we can 
achieve asymptotic tracking. We argue that these results are the best that one can expect 
without additional compensation of the slow subsystem such as with integral manifold based 
corrective control.
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1 Introduction

The dynamics and control o f robot manipulators taking into account the joint flexibility is an 
interesting and challenging problem, which is attracting attention from an increasing number of 
researchers. A recent survey, in fact, [22] lists nearly one hundred references dealing with various 
aspects o f this problem, such as feedback linearization, robust control, observer design, and adaptive 
control.

In the present report we consider the adaptive control problem. Our algorithm, which has 
appeared previously in [21], [5], and [6], is a composite control law consisting of a slow adaptive 
control designed on the basis o f a rigid robot model and a fast control designed to damp the 
elastic oscillations at the joints. Such a control strategy is intuitively appealing since it is simple 
to implement and it exploits the considerable body of knowledge that exists for the adaptive 
control o f rigid robots. This control strategy has been investigated via computer simulation and 
by experiments performed on a single-link, flexible joint mechanism with excellent results [7],- [8]. 
However, the stability properties o f this approach have not been rigorously investigated before now.

2 Synopsis

In this section we will summarize the main results to follow. Since the actual mathematical details 
are quite involved, the casual reader may gain an understanding of our main results by reading 
only this section, while the more interested reader can press on.

In the last several years several globally convergent adaptive control algorithms have appeared 
for rigid robots (See the survey [14]). These algorithms are either adaptive versions of the computed 
torque approach [3],[13], or they exploit the passivity structure of rigid robot dynamics [19]. In the 
case of flexible joint robots both of the above approaches fail [22]. As a result, finding a globally 
convergent adaptive control law which is independent of the joint stiffness is a formidable and still 
unsolved problem. However, in most practical situations, the joint stiffness is large relative to other 
parameters in the system. Singular perturbation techniques can thus be used to separate the slow 
dynamics from the fast dynamics and control each separately using so-called composite control 
strategies [12]. The fast dynamics involve the joint forces and the slow dynamics involve the link 
variables.

It usually turns out in practice that the joint resonant modes are poorly damped and this, 
in fact, is largely the source of the problem associated with joint flexibility in robot control. Our 
approach can be explained intuitively then as follows: a fast feedback control law is first designed 
to damp the oscillations of the fast variables. Once the fast transients have decayed, the slow part 
of the system should appear nearly like the dynamics of a rigid robot, which can then be controlled 
using any number of techniques. Our strategy is then summarized as

control composite =  control3iQW +  control fast ( 1)

where controlsiow is designed using a rigid robot model and controljast is designed solely to provide 
sufficient damping of the fast dynamics. Any number of techniques for the control of rigid robots 
can be used to design controlsiow in the above equation. In this report, we base our design of the 
slow control on the algorithm of Slotine and Li [19] because it is globally convergent in the absence of
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joint flexibility, and because its implementation requires only position and velocity measurements. 
It is significant that our fast control involves only joint velocity measurements. In this way we 
achieve robustness to parameter uncertainty without the need for acceleration and jerk as would 
be required by nonlinear feedback linearization results.

Once we have stabilized the fast dynamics with the fast control term, our system can be 
thought of as the rigid robot model (and rigid adaptive control) with high frequency, stable, un
modeled dynamics represented by the joint flexibility. Once our algorithm is understood in this 
way, comparisons can be made to some well-known phenomena in adaptive control. For example, 
the results of Rohrs, et. al. [16] and Ioannou and Kokotovic [9] suggest several ways in which such 
a system might become unstable, even though the slow system is globally convergent and the fast 
dynamics are well damped! These so-called “instability mechanisms” include:

• 1) Reference trajectories which are “too fast.” In other words, if the bandwidth of the 
reference trajectory is in the same frequency range as the joint resonance, this resonance can 
be excited and drive the system unstable.

• 2) Parameter drift. The estimated parameters do not necessarily converge to their true values 
even in the rigid robot case without persistency of excitation conditions on the reference signal. 
However, it can be shown for rigid robots that the parameter errors are bounded [19]. In the 
presence of unmodeled dynamics, or in the presence of external disturbances, the parameters 
can drift along an equilibrium manifold until an instability results [15].

• 3) High Gain instability. This type of instability, when the controller gains are too high, is 
actually due to the loss o f passivity of the flexible joint robot dynamics and can occur even 
for non-adaptive algorithms [1].

For these reasons, any composite control strategy for flexible joint robots is not likely to be 
globally convergent independent of the joint stiffness and/or the reference trajectory. In this report 
we show the following:

• For Point-to-Point motion, i.e., for tracking constant reference inputs, there exists a range of 
joint stiffness for which the parameter error is bounded and the equilibrium solution is locally 
asymptotically stable with respect to the tracking error. The stability region is precisely 
quantified.

• For arbitrary trajectories we give sufficient conditions guaranteeing stability and show that 
the tracking error converges to a residual set, which we quantify. For a special class of 
trajectories, including step responses generated from a reference model and joint interpolated 
trajectories we show that the tracking error converges to zero. This result is slightly stronger 
than existing results in the literature on adaptive tracking of nonlinear systems and comes 
about by exploiting the particular structure of robot dynamics. To achieve this, however, the 
parameter update law of [19] must be modified by the ^-modification scheme of [9] and [10].

Our method of proof is based on the composite Lyapunov theory presented in [17] and our 
results are similar to the adaptive feedback linearization results in [25]. Our tracking results, in 
fact, can be thought of as extending the results of [25] from the regulation problem to the tracking 
problem. The extension is non-trivial and exploits particular nature of robot dynamics and the 
robot tracking problem.

2



The report is organized as follows. After defining the notation and terminology in Section 3, 
we detail the modeling of our system in Section 4. Section 5 gives the detailed derivation of 
the composite Lyapunov theory applied to our class of systems. Section 6 uses these Lyapunov 
calculations to derive regulation results, i.e. Point-to-Point motion, while Section 7 presents our 
results on tracking. Finally, some conclusions axe drawn in Section 8.

3 Notation and Terminology

In what follows, we use the following standard notation and terminology [4]: R + will denote the 
set o f nonnegative real numbers, and R n will denote the usual n-dimensional vector space over R  
endowed with the Euclidean norm

Rnxn <¿^0^  the set of all n x n matrices with real elements. For each matrix A £ R nxn, we define 
the induced matrix norm of A corresponding to the Euclidean vector norm

l|A||,-2 =  {AmlI[(ATA)}i ) (3)

where AmaX [A t A j is the maximum eigenvalue of ATA. We define the standard Lebesgue spaces
Loo <md Tj2 as

L ^ (R + ) =  { /  : R+ — <■ R n such that f  is Lebesgue measurable and H/H^ < oo} (4)

where the L^-norm , ||/,||00, is defined by

ll/lloo =  e55 SUP 11/(011 > (5)
t€[0,oo)

L ? (R + ) =  { /  : R+ — ► R n such that f  is Lebesgue measurable and \\f\\2 < oo} (6)

where the Lj-norm , ||/||2, is defined by

/•oo
m =  w m f d t -  wJo

Denote B x C R 2n, B #  C R r, By C R 2n the closed balls centered at x  =  0, 0 =  0, and y  =  0 
respectively, and let

B =  B x x B #  x By C R 2n x R r x R 2n. (8)
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4 Singular Perturbation Model

The dynamic equations of a flexible joint manipulator are given by [20]

^ (q i )q i  +  C '(q i,q i)q i +  g (q i)  +  -K’(q i -  q 2) =  o (9)
Jq 2 -  qi -  q 2) =  Uc, ( 10)

where the vectors qi E R n and q2 G R "  represent the link angles and motor angles, respectively, 
£>(qi) is the n x n inertia matrix for the rigid links, J is a diagonal matrix o f actuator inertias 
reflected to the link side of the gears, C (q i ,q i )q i  represents the Coriolis and Centrifugal terms, 
g (q i)  represents the gravitational terms, and K  is a diagonal matrix representing the joint stiffness. 
For notational simplicity we will assume that all joint stiffness constants are the same in which case 
K  may be taken as a scalar. The composite control law uc that we consider is given by [21]

uc = u ,(q i,q !,f) -J- uy(q!,q2), (11)

where,

u/  =  K v(q i -  q2). ( 12)

Kv is a constant diagonal matrix, and us is designed using the following rigid model, obtained by 
letting the joint stiffness K  tend to infinity, [20]

(D (q i)  +  J )q i  +  C (q i ,q i )q i  +  g (q i)  =  u3. (13)

We define the variable

z :=  K (q 2 -  q i), (14)

and we assume that K  is 0 ( l / c 2), and K v is 0 (  1 /c), so that we may write

K  =  ~ K X ; Kv =  ± K 2, (15)

where K 2 are 0 (1 ). By substituting the control law ( 11) into (9)-(10), and using (14)-(15), we 
obtain the singularly perturbed system [21]

0 (q i)q i + C ( q i ,q i ) q i  +  g (q i)  =  z (16)
e2Ji -f eKiz +  K\z =  K i(u s -  J q i). (17)

Let us now choose ua as the adaptive control law of Slotine and Li [19] designed for the rigid system 
(13). We should point out at this point that any control law for rigid robots that provides global 
tracking can be used as part of our analysis. For example the adaptive inverse dynamics schemes 
of Craig, et. al. [3] and Middleton and Goodwin [13] could just as well have been used instead. We 
have chosen to illustrate our analysis using the algorithm of Slotine and Li because of its elegance 
and simplicity and because it does not require joint acceleration for its implementation. The whole 
adaptive system can therefore be written as

4



i) P lant:

■D(qi)qi +  C (qi,qi)qi+g(qi) = z (18)
<r2 Ji +  eK2i  +  Kiz = K ^u , -  Jin). (19)

ii) C on tro ller  (designed for the rigid plant (13)):

u3 = (-¿>(qi) + J)a + C(qi,qi)v + g(qi) -  KDr, (20)

where D , J, C and g represent the terms in (13) with estimated values of the parameters, K d is a 
diagonal matrix o f positive gains,

qi =  q i -  q d, v  =  q d -  A qi, r =  qi -  v  =  +  A qi, a =  v. (21)

A is a constant diagonal matrix, and qd(t) is the reference trajectory which is at least three times 
continuously differentiable.

iii) P aram eter U p d a te  Law:

-0 =  _ r - 1Y r (q i ,q 1,a ,v )r ,  (22)

where T is some symmetric, positive definite matrix, 0 =  0 — 6 is the parameter error, and

(D (qi) +  J) a +  C (q i ,q i )v  +  g (q i) =  Y (q i ,q i ,a ,  v )0 . (23)

Y (q i ,q i ,a ,v )  is an n x r matrix of known functions (regressor), and 6 is a r-dimensional vector 
of parameters.

The plant (18)-(19), the controller (20), and the parameter update law (22) are now trans
formed into a more suitable singularly perturbed form, namely, (see Appendix A for details)

S
x  =  A ix  +  $ 0  +  A3 y  

■ < 0 =  —Tipx.
. ey = A2y + eA^1 B2Ù,

or equivalently,

(24)

p =  / ( * ,p 5y ) =
Ai $

— T<p 0nxn
. =  0(* ,P ,y ,e ) =  A2y  +  cA2 1

p +
A3

0 nxn
B2u,

where

• X  = qi =  T qi
r . ^  .

G R 2n, with the nonsingular linear transformation T

(25)

(26)

5



(27)r  = -LiXn OnXn
A 4 x n >

0 =  0 - 0 E R r and (£>(qi) +  J )a  +  C (q i ,q i )v  +  g (q i)  =  y (q i ,  q i ,a , v )0 ,

• P = 0 e R2n+r

Ai =  A i(x ,q d,qd) = —A Inxn
■Af(qi)_ 1[C (q i,q i)  +  KD] OnXn g R 2nx2n

M (q i ) =  D( q i ) +  J,

$  =  $ (x ,q d ,q d ,q d) = 0nXr
AT(qi) 1i'r(q i, q i, v ,a ) E R 2nxr,

A3 =  A 3 ( x , qd) = Onx n OnXn 
M (q i) -1 OnXn € R 2nx2n

• r e R rxr is some symmetric positive definite matrix,

=  v?(x,qd,q d) =  0rxn y T(q i ,q i ,a ,v )  E R rx2n,

• A2 = OnXn -LiXn
- J - 'K i  - J - xK 2 G R 2nX2n

• b 2 = OnXn
J “ 1# ! G R 2nXn

• u = u3 -  Jq 1}

• y = z
£Z

+  A 2 x5 2u G R 2n where z =  K {q 2 -  q i) =  ^-A^i(q2 -  q̂

(28)

(29)

(30)

(31)

(32)

(33)

(34)

(35)

(36)

(37)

(38)

(39)

5 Analysis of the Singularly Perturbed System S

System S is a nonautonomous nonlinear singularly perturbed system in the standard form [12]. p 
is the slow variable, and y  is the fast variable. The analysis of system S follows the techniques of 
Composite Lyapunov Functions for nonlinear singularly perturbed systems developed in [17]; see 
also [12].
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5.1 B o u n d a r y  L ayer S y ste m

The boundary layer system, denoted «5b, is defined as

S b  : ^  =  < / ( i , p , y W , i = o )  =  i 2y ,

where r  =  i /e  is a stretching time scale. A 2, given by (36), is a constant Hurwitz matrix, 
be the symmetric positive definite matrix that satisfies the Lyapunov Equation

A lP  +  PA2 =  -Q ,

where Q is a positive definite matrix. We choose the Lyapunov Function Candidate 

W ( y ) =  y TP y.

Then the time derivative o f W  along the solution trajectories o f «5b is obviously 

W  =  - - ' ¿ T))- =  [ V y % ) f i ( i , p , y , f  =  o)

= - y TQy
< -W Q ]  llylll -

Hence, the time derivative of the Lyapunov Function W  along the solution trajectories 
boundary layer system 5b satisfies

' Vp G R 2n+r, Vy G R 2n, Vi G R+

w =  [ v y ^ ( y ) ] T ^ , p , y ^  =  o) <  - 0.7. IMI2
&2 =  AminlQ] with Q satisfying the Lyapunov equation (41).

5.2 R e d u c e d  S y ste m

The reduced system is defined by setting e =  0 in 5 , that is,

yA\ $
P +

A3
. -Tip Onxn OnXnp =  f ( t ,  p,y) =

0 =  5f( i ,p ,y ,e  =  0) =  A2y.

Since A2 is invertible, the algebraic equation (46) has the unique root 

y  =  0.

The reduced system, denoted 5r, is obtained by replacing (47) into (45) 

ST : p =  / ( t , p , y  =  0) =  "l1 $
— Unxn

(40) 

Let P

(41)

(42)

(43) 

of the

(44)

(45)

(46)

(47)

(48)

7



or equivalently,

i x  =  A ix  +  $0
\ è  =  - r ^ x .

(49)

Fact 5.1 : The reduced system ST is equivalent to the adaptive rigid-joint system, that is,

: p = Ai $
— Tip 0nXn P

(-D(qi) + *J)qi + C'iqî qOqi + g(qi) = ua
< Ua = (i)(qi) + J)a + C(qi,qi)v + g(qi)-/i'D r (50)
k è = - r y T(qi,qi,a,v)r,

(see Appendix B.)

□

A consequence of Fact 5.1 is that we can use the same Lyapunov Function Candidate as that 
of the adaptive rigid-joint system [14], [23], namely,

where

V = i r r i l i (q i )r + q ^ A ^ q i  +

= ^ (q i ,r ,^ ) =  V (x ,* )  =  V (p )

Q

ì p TPvp, (51)

c

‘ 2AtK d OnXn 0nxn
Pv = Onxn M (q i) 0nXn . (52)

OnXn Onxn r  1

Fact 5.2 : The time derivative o f V  along the solution trajectories of <Sr is

v  = =  [VpV(p)]T/(i,p ,y = 0)

=  —x TRx

where

(53)

„  _  [ 2ATK DA - A t K d
~  [ -K % A  Kd

is positive definite.

(see Appendix B.)

(54)

□

Hence, the time derivative o f the Lyapunov Function V  along the solution trajectories of the 
reduced system ST satisfies

8



• Vp € R2" +r, Vy 6 R2", Vi € R+ 
v = [vpV(p)]T f(t ,  p, y = 0) < -ai ||x||2

0!j — -^mint-P] 0 i R = 2ATK DA - A  t K d 
- K l A  K d

(55)

5.3 Interconnection Conditions

The first interconnection condition of interest involves the relationship between the slow part of 
the original system, p =  /(t,p,y), and the reduced system ST. Precisely, we want to evaluate 
[V p ^ (p )]T[/(* ,P >y) “  / ( * ,P>y =  0)]. Recall that

^ (P ) =  ¿ P T^Vp. (56)

Consequently,

[VpV(p)] = i(p ?  + JV)p

1 ' AtK d +  K lK OnXn OnXn r -I
X
o OnXn 2 M (q i ) OnXn

1--
---

--
<£>

* >
 

i 
....z

OnXn OnXn r - 1 +  ( r - 1)T

From the expressions of f (t ,  p,y) (

/(t,P,y) - /(¿,P,y = 0) = A\ $
I >  0 nxn

¿3
OnXn

P +
As

OnXn
y -

Combining (57) and (58), we obtain

Onx n OnXn 
1 0nXn 

OnXn

Af(qi)
OnXn

Ai $  
TV OnXn

(57)

(58)

TX 1 0

' AtK d +  K lA OnXn OnXn OnXn OnXn
OnXn 2M (q i ) OnXn M (cu ) - 1 OnXn
OnXn OnXn r - 1 +  ( r - 1)T _ OnXn OnXn

T 0 ^  X 1 0

OnX n On Xn 
Inxn 0nxn 
Onx n On Xn J

= X OnXn 0 nxn  

InXn 0 n xn

= x TSy

< IW|3 ||S'||2i ||y||2 . (59)

Hence,

9



(60)

Vp € R 2n+r, Vy 6 R 2", Vi € R+ 

[vP̂ (p)]r [/(<>p,y)-/(«,p.y = o)] < A M ,||yli

f t  =  IP  II* =  1 S = Onx n On Xn 
InXn Onxn

The second interconnection condition of interest involves the relationship between the fast 
part of the original system, ey =  £ f(i,p ,y ,c), and the boundary layer system S\>. Precisely, we want 
to evaluate [vy W(y)]T[<7(*5 p,y, e) — <7(i, p ,y , e =  0)]. Direct substitution gives

[V y ^ (y ) ]Tb(*,P>y> € ) - g ( t t p ,y ,€  =  0)]
=  [2Py]T[A2y  +  eA j1B2u -  A2y]
=  2eyr P A 2

Recall from Appendix A, equation (281), that P 2 =  A 2

[Vy^(y)]Tb(^P,y, 0  -$(t,p ,y,€ = 0)]

~^nxn
Onxn

. Hence, (61) becomes

=  2ey t P A 2 1B2 u

= 2cyT P A ?  A2 

= 2eyTP 

<2e||y||2 ||P||2,.

—InXn
Onxn

—Iny.n
Onxn

U

“ 4 x n
Onxn

U

U 2 ’
2*

and therefore,

[ v y ^ ( y ) ] TW * ,p ,y ,< O -0(* ,p ,y ,*  =  o)] <  2e||y||2 ||P||2. ||u|

Fact 5.3 : let

F  := InXn + JD( q i)"1,

p(t) :=
du . , du .. du (3)

= d^qd + w d<li + w / d *
then,

(61)

(62)

(63)

(64)

(65)

u =  - F  1 [ J’-D(qi) 1 Onxn j y + - f  qi) 1C(qi,qi)qi
+ i ’- 1J£l(q1)-'g (q 1)

= “(x,y,0,q,i,qd,qj), (66)
and,

Q  ̂ A A

u =  F-^—[Aix +  -f A3y] +  -F -^ -A iy  -  P ^ IV x  +  Fp(t).
ox € dy dO

(67)

10



(see Appendix B.)

□
For V (x ,d ,y ) G B, assume the following

(a l)

du 1 du
F — A3y  + - F — A2 y  

dx e oy < {k3 +  - k 2) ||y||2,

where

k3 =  sup B
, II r duk2 =  sup F t —A2 

b II dy

t'2
= sup||i’ { - i ’- 1 [ j n t q , ) -1 o„x„ ] } a 2J

B

t'2 B 
-1

t'2
=  SUp J£>(qi) Onxn \ A2 .

11'2

(a2)

< fcoi ||x||2,

(68)

(69)

(70)

(71)

F ^ T ifix
de

„d u
F t e AlX

< k02 ||x||2 ,

< k03 ||x||2 ,

and hence,

l l f - d u .  ^du 1 d u ~
III dx 1 dO J dx

< Aq 12 5

where

(72)

(73)

(74)

ki =  &oi +  ko2 +  ko3. (75)

• (a3)

\\Fp(t)\\ <  k4(t). (76)

Note that the existence of the various constants ki in the above estimates requires only continuity 
of the functions involved since the set B is compact. Under the above assumptions (al)-(a3), we 
conclude that V (x ,0 ,y )  G B

INI < ki ||x||2 +  (A?3 +  -^k2) ||y||2 +  k4(t). (77)

11



Combining (63) and (77), we therefore conclude that 

[VyM (̂y)]r [3(i,P,y,e)-s(i,P,y,c = 0)] < 2e||y||2||P||i2||u||2

<  2c l|y | l2 ll-P lla  { * 1 IM I2 +  (fc3 +  i f c j )  | | y ||2 +  * 4( i ) |

< « {2  ||P||a (fc3 +  i * 2) }  llylil +  2fac ||P||i2 ||x||2 ||y||2 +  2efc4(i) ||y||2 ||P||i2 . (78)

Hence,

" Vp G B x x Bfl, Vy G B y , Vi G R+

[vy W(y)]T [s(*,p, y,<0 -  g(t, p, y,«= o)]
< «M + 7 7 2 ) llylil + «ft IW|2 ||y||2 + tp(i) ||y||2

71 = 2 ||P ||i2fc3
72 = 2 ||P ||i2fc2
A! =  2 ||P||,2*1
/i(i) =  2 ||P|[t2 &4(i)
P satisfies the Lyapunov equation (41)

. ^3, and k4(t) are given by (a l) — (a3).

(79)

R em ark  5.4: From the analysis of the reduced and boundary layer systems, it is clear that their 
domains of attraction are R 2n+r and R 2n respectively. Let

Sir =  {p  G B x x B 0 : VXp ) < cr) (80)

be in the domain of attraction of the reduced subsystem ST and cr is the largest constant such that 
fir is contained in B x x B ^ .  Similarly, let

n* =  {y  6 By : W (y ) < cb) (81)

be in the domain of attraction of the boundary layer subsystem ¿>b and Cf, be the largest constant 
such that f lb is contained in B y .

5 .4  C o m p o s it e  L y a p u n o v  F u n ctio n  fo r  th e  S in g u la r ly  P e r tu r b e d  S y ste m  S

Consider the following Composite Lyapunov Function Candidate for the singularly perturbed sys
tem S

V ( p , y ) = ( l - « 0 V ( p )  +  «W (y ) , 0 <  rf <  1, (82)

which represents a weighted sum of F (p ), the Lyapunov Function of the reduced system Sr, and 
VF(y), the Lyapunov Function of the boundary layer system S\>. The derivative of V along the 
solution trajectories of S is

v(p,y) = (i -  d) {[vP̂ (p)]T/(*,p,y)} + ~e {[vyw(y)]r0 (t,p,y,e)}

12



= ( i -^ ) { [ v P̂ (p)]T/(^p ,y = o)}

+(i - d )  { [ v Pv  (p)]T[/(<, p, y) -  /(*, p, y = o)]}

+ 7  {[VyW(y)]rsr(t,p,y,€ = o)}

+7 {[vy^(y)]Tb(^p,y^) -  s(t,p,y,e = o)]}.

We now substitute equations (44),(55), (60), and (79)

V(p,y) < -(1 -  d)ax ||x||i + (1 -  d)fa ||x||2 ||y||2 -  - a 2 ||y|g

+ 7  {< 7i + ^72) I|y||l + *02 ||x||2 ||y||2 + €fi(t) ||y||2| 

= -(1  -  d)a 1 ||x||2 + {(1 -  d)(5i + d(32} 11x112 ||y||2 

+ { - 7«2 + d(7{ + ^72)} ||y|ll + dfi(t) ||y||2 

= -(1 -  d)ai \\x\\l + {(1 -  d)/31 + d(32} ||x||2 ||y||2

-  |“ (o2 -  72) -  d^[ j ||yIII + dn(t) ||y||2.

Let

n2 = (Vdfi(t) -  ¿-v/5 ||y||2)

= V (< ) + j dlly|ll-dMi)l|y|l2 -

Hence,

dp(t) ||y||2 = —n2 + dfj.2(t) + ^d ||y||2 

< dfi2(t) +  jd\\y\\l,

and therefore,

V(p,y) < -(1 -  d)ai ||x||2 + {(1 -  d)/31 + d(32}  ||x||2 ||y||2

-  |^(a2 -  72) -  d{7; + i)| ||y||2 + dfi2(t).

Define

, 1 
7i :=  7i + 4 .

Equation (87) is written

V(p,y)< - x ll2 IM I2 Pd M l

I|y|l2
+ dn2(t),

where,

(83)

(84)

(85)

(86)

(87)

(8 8)

(89)

13



(90)
[ (1 -  d)ax _ (1 -i)fh+dfh

d ~  [ -H=£̂ ±iSi| (a2 _ 72) _ d 7l

From the expression of V, we observe that the right hand side of (89) consists of a quadratic 
expression and the term dp2(t). First o f all note that the quadratic term does not include the 
state 0. Also, Pj, can be made positive definite for some range of e. It will be shown next that 
/i(i) is zero if the desired trajectory is a constant vector. Consequently, we can obtain regulation 
results. In the section that follows these regulation results, we consider arbitrary trajectories and 
give sufficient conditions guaranteeing stability and show that the tracking error converges to a 
residual set, which we quantify. To achieve this, however, the parameter update law of [19] must 
be modified by the a-modification scheme of [9] and [10].

Recall from assumption (a3) that

ll*>(*)ll2 ^  M * ), (91)

where

F  =  Inxn +  JD( q i ) -1 , (92)
/ . n du . du .. d\l (3) 

P{t) =  ’
(93)

and

M(i) =  2||P||i2 fc4(i). (94)

Note that F  is a bounded function since D (q i) and D {q i )-1 are bounded matrices for all q i. Three 
important cases on the nature of /¿(t) are of special interest:

1. Case 1: In the regulation problem, the desired trajectory qj is a constant vector and hence 
all higher derivatives o f q^ are zero and S becomes a time invariant system. All the equations 
derived earlier hold except for two differences. First, none of the terms is an explicit function 
of time any more. Second, /¿2(f) in (89) is zero as is clear from (91)-(94).

2. Case 2: If the desired trajectory is three times continuously differentiable with bounded 
derivatives, so that q q j ,  q j^  E L^,, then V (x ,0 ,y ) E B, equation (93) implies that p(t), 
and hence p,(t) is a bounded function of time (/i(£) E Loo). So 3 p, a positive real constant 
such that fi(t) < p, V£ E R + .

3. Case 3: If qd, qd, q 3̂) E L ^D L^, then V (x ,0 ,y )  G B, equation (93) implies that p(t), and
hence fi(t) E L£ D L ^ , and furthermore lim*__,oo q<f =  0, and limt—,oo qd =  0. For example,
the class of bounded desired trajectories which are eventually constant fits into this category.

6 Regulation Analysis

Since /i(t) =  0 as discussed in Case 1 above, the time derivative o f the Lyapunov Function Candidate 
V along the solution trajectories of S is simply given by

14



V ( x ,e ,y ) <  - (95)Pd Ilx ll2
l|y||2

where

Pd =
(1 -  d)ai _ (i

i { a 2 _ j 2 ) _ d l l  _ ' (96)

It is emphasized that the constants a i, c*2, /?i, /?2> 7i, and 72 are the same as those in the 
previous section. It should be just kept in mind that all quantities used to derive them are time 
invariant. We have the following result

Theorem 1 (Regulation) Assume

1. assumptions (a l)-(a3) are satisfied V(x.,Q, y ) G B.

2. 02 -  72 > 0.

Then, the equilibrium x = 0 ,  6 = 0 — 6 = 0, and y  =  0 of system S is stable for all e € (0, €d) such 
that

_  _____________« l ( « 2  - 7 2 ) _____________

« 1 7 1  +  4d ( i -2 ]  K 1 ~  <001 +  df c ] 2

and an estimate of the domain of attraction is given by

fid =  { ( x ,0 ,y )  G B : V (x ,0 ,y ) < min[( 1 -  d)cr,dcb]}  .

Cld C B and cr and Cb are given by (80) and (81) respectively. 

Moreover, V ^x(O),0(O),y(O)) G fid we get 

lim x (t) =  0
t-HDO V
lim y (t) =  0

t - fo o

lim 0(t) — 0.
t—►oo v '

(97)

(98)

(99)

(100)
(101)

In addition we have

• the maximum value of €d occurs at d* = and is given by

_ « l («2  ~ 72)
e — ¿d=d* «171 + 0102

The corresponding estimate of the domain of attraction is given by 

fid* =  { ( x ,0 ,y )  G B : V (x ,0 ,y )  < min [(1 — d*)cr, d * ,

(102)

(103)
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• the largest estimate of the domain of attraction occurs at d = Cr+Cb and is given by

fl* =  f i j=  {(x ,0 ,y ) 6 B : +  E M  < i | .
1. ar Cff J

(104)

The corresponding upper bound of e is

a i (a 2 -  72)
€d =  €d=d =

ai7i + 4J(i— Ci1 “  c0^1 + d̂
(105)

Proof of Theorem 1: The quadratic term in (95) is negative when Pd is positive definite, i.e.
when

[(1 -  d)ax] -(a 2 -  72) -  ¿7i > - [ ( l - d ) / J i + d / y ;

i d ( l  -  d)at (a2 -  y2) -  d( 1 -  d)a 171 > i  [(1 -  d)/?i + d02?  
<==>

l< i(l -  d)ai(a 2 -  72) >  1 [(1 -  1 +  d fa f +  ¿(1 -  <0<»i7i

(106)

(107)

(108)

7 "i("2 -  *> >  4d(i1-  T) [(1 -  d)/3i +  d/32]2 +  a i7i

€ < ai(«2 - 72)
ai7i +  “  d)Pl +  dfo]4

= : U

(109)

(110)

Given cr and c& from (74), (75), respectively, an estimate of the domain of attraction of the singularly 
perturbed system S is given by

Qd =  {(x ,0 ,y ) E B : V(x,0,y) = (1 -  d)F(x,0) + dW(y) < min [(1 — d)cr , dcf,]|. ( I l l )

Up to this point, we have V(x,0,y) is a locally positive definite function and V(x, 0,y) < 0 
Vc E (0, €(i), V(x,0,y) E Hj, and Wt > 0. We conclude therefore that the equilibrium x  =  0, 0 =  0, 
and y =  0 of S is stable in the sense of Lyapunov.

To show (99)-(101), we now exploit the invariance theory for autonomous systems [27]. Let 
the invariant set M  denote the subset o f f ld defined by

M  =  { ( x ,0 ,y )  e Sid ■ V (x ,e ,y )  =  o}. (112)

It is clear from (95) that V(x, 0 ,y )  =  0 at x  =  0, y  =  0, and V0. To find the nature of 0 in this 
set, we replace x  =  0 and y  =  0 in the original full system S (24)

f x = Aax + $0 + A3y

II 1 i
■6 X = <
[ ey = A2y + (A21B2u X II o II o

0 =  $ 0
¿  =  0 (H 3)
0 =  eA21B2u.
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After replacing the expression of u from (67) we obtain

' 0 =  $0  
< b = o
k 0 =  eA ^ B 2F ^ 0

f ¿ = 0
\ $0  =  0

& = 0 
Y0 =  0.

(114)

Consequently,

M  =  j(x ,0 ,y ) £ fid : x = O ,y  = O ,0  = O,y0 = o | , (115)

and M  is the largest invariant set of S.

Note that f i j  is bounded. In addition, V is bounded from below by zero over the set fij, 
and V < 0 V(x, 0y) £ fi^. Hence any solution (x(£), 0(i),y(£)) of S starting from fid remains 
in it. Furthermore, V — * 0 as t — » oo and V — * Vo, uo is a constant. From the invariance 
theory of autonomous systems, we conclude that solutions (x(£), 0 (t),y (t))  of S starting from fid 
converge to the invariant set M ,  and hence, V(x(O),0(O),y(O)) £  fid , we achieve lim*__>00 X ( i )  =  0,

lim*— ,oo y(£) =  0, lim*—>co 0(t) =  0, and limf—>oo Y0 -  0.
Next, referring to Figure 1 we have that the value of d for which €d achieves its maximum 

can be determined by minimizing the numerator of ( 110) and can be easily verified (see [12]) to be

,* _  Pi 
P1 +P2 '

Therefore

(116)

* _  _  « l ( « 2  “  7 2 )
€ — €d=d* — ---------- . a o -«171 +  P 1P 2

The corresponding estimate of the domain of attraction is obtained by replacing d by d* and is 
given by

fid* =  fid=d* =  { ( x ,0 ,y )  £ B : V (x ,0 ,y )  <  min[( 1 -  d*)cr, <f c j }  . (118)

The largest estimate of the domain of attraction is obtained from (111) by maximizing 
77M7i [ ( l  — d)cr,dcb]. Clearly (see also[12]), this minimum is maximized if d is chosen as

d = d =  — —— , 
cr + Cb

for which

(119)

min [(1 — d)cr,dcb\ =  (1 — d)cr — deb =
Cj-Cj)

Cr +  Cb
(120)

Hence,

17



€ < j

Figure 1: Upper Bounds of e
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ft* = f t ^ j  = {(x ,0 ,y ) £ B : V(x,0,y) < Cr̂ b \ .
I cr + cb)

( 121)

Note that for d =  d

V =  (1 - d ) V
c» +

cr -f cb cr +  cb
Therefore,

V <
crcb Cb .y  +  Cr w  < CrCb

cr "I- Cb Cr -j“ Cb Cr ”1” Cb Cy 4" Cb

and ( 121) becomes

V W   ̂ 1-----1------< 1,
cr cb

ft4 , j (x , 8 , y ) S B , a i 2 + a > 2 < i
Cr Cb

(122)

(123)

(124)

The corresponding upper bound of e is

€d ~ €d=i ~

□

ai(oi2 -  72)

<*171 +  43(1=35 K1 _  d) f t  +

Remark 6.1 Note that since limi__>oo x = 0 and x = T

transformation given by (27), we conclude that limt__^  qi =  0 and limt__„oo q x =  0.

qi
4i

(125)

with T  being the nonsingular linear

Remark 6.2 The results of Theorem 1 can be viewed from two converse directions. First, for a 
desired region of attraction ftj, the constants a i, a2, Pi, P21 71, and 72 limit the range of e for 
which regulation is guaranteed. Therefore, the larger the desired region ftj is, the smaller the range 
of € is and hence the larger the stiffness K  of the joint must be to guarantee regulation. Second, 
for a given stiffness value K , that is e, the region of attraction ft  ̂ for which all inequalities leading 
to a i, a 2, Pi, p2, 71, and 72 are satisfied is given by ftj satisfying (98).

Remark 6.3 One major assumption in Theorem 1 is that a2 — 72 > 0 so that remains positive. 
To determine under which conditions this assumption is satisfied, recall from (44) and (79) that

— ^min[Q]
72 =  2\\P\\i2k2

=  2 ||P||i2 sup || [ JD (qi)~1 0nXn A2
t'2  ’

where P  satisfies the Lyapunov Equation (41), namely, 

A lP  +  PA2 =  -  Q■ 

From (128), it follows

(126)

(127)

(128)

11411a <  2 ||A||i2 ||P||a , (129)
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or equivalently,

l|Olli2 -2||A||i2||P||i2 < 0 .

For a special choice of Q, we can make a2 =  AminfQ] =  ||Q||t-2. Therefore, using (127),

<*2-72 =  IIQIIt'2 — 2 11̂ 11.2 SUP ^ ( q i )  °nxn ¿2 t'2

«2-72 > 11011« ~ 2 \\P\\a M «  sup ||̂ (q i) -1||.2- 

Consequently, we have the following conservative sufficient condition

11011«-2 M a ll^ lla  sup ||̂ (qi)-1| >0  => « 2 - 7 2 > 0 ,

(130)

(131)

(132)

(133)

that is, even though (see (130)) ||Q||,-2 — 2 ||A||t-2 ||P||t-2 <  0, the term sup^ || J Z )(q i)_1 \\i2 has to 
be small enough to make ||Q||i2 — 2||P||i2 ||A2||t-2 supg || JD (qi)~1 ||i2 > 0. This sufficient condition 
is implying that the relative ’’ size” of J and D (q i) is an important factor in the stability of the 
system. Simulation results for an experimental flexible joint system 1 («7 =  0.004, D =  0.031) have 
shown that the system becomes unstable when J > 1. Nevertheless the above sufficient condition 
predicts that stability is insured only for values of J < D =  0.031. This shows that this sufficient 
condition is quite conservative.

R em ark  6.4 The condition <*2 — 72 > 0 occurs even if another adaptive control strategy ur* is 
used instead of ur. The reason is that 72 originates from the expression which is independent 
from the choice of ur (see Fact 5.3 and the derivations that follows.)

R em ark  6.5 In terms of qi and q 2, the fact from Theorem 1 that limi_+00 y (t) — 0 is interpreted 
as follows. Recall that

z ¿r-Ki(q2 -  qi)

ez . 7 ^ i (q 2 - q i )  _

and

y =

So

z
€Z

Z

cz

z
€Z

y = 0

+ A2 1B2U

+ A21A2

+  ~oU '

z =  u
ez =  0

— Fnxn 
Onxn

(134)

u

(135)

q2 — qi = 1u = K 1u
q2 -  qi = 0, ‘ (136)

1For a description of the system, see the section entitled “A  Simulation Example” later in the report.
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Since limi—-oo q i =  qd, and lim*—►<» qi =  0,

y  =  0 = * . (  f  =  ^i +  K ' 1U (137)[ q2 =  o.

Hence, in regulation, the equilibrium points x  and y  are independent of e (i.e. lim*__>00 qi =  q<f
for all e < 6d, and limf__>00 z =  u for all e < e^.) On the other hand, lim*__>oo q 2 depends on e.

7 Tracking Analysis

The regulation (set point tracking) results presented above are similar to the adaptive feedback 
linearization results in [25]. The tracking (of time varying signals) results presented below can be 
thought of as extending the results of [25] from the regulation problem to the tracking problem. 
The extension is nontrivial and exploits the particular nature of robot dynamics and robot tracking 
problem.

7.1 Non-robustness of Tracking

The purpose of this section is to show that based on the Lyapunov analysis presented so far, the 
tracking o f time varying desired trajectories is not robust in the sense that signals are not guaranteed 
to remain in the domain B . Specifically, it will be shown that parameter drift instability mechanism 
is not guaranteed to be stopped by the slow adaptive control law used so far. Recall from (89) that 
the Lyapunov function candidate for the singularly perturbed system S satisfies

V(p , y)< -  ||x||2 ||y||2 Pd llJH l2
l l y ||2 +  dp?{t

where

Pd =
(1 _  d ) Q l  _ (i-< Q ft+ < W »

. Ì («2  -  72) -  <¿71

As shown in the regulation case, Pd is positive definite for e 6 (0 ,e j) where 

______ a i (<*2 - 72)
U  -

a i7 i +  4 ^ f a j [(l -  d)P 1 +  ‘

In the case where fi(t) is bounded, (Case 2 and Case 3 above), (138) is written as

V(p , y)< -  ||x||2 ||y||2 Pd
l|y|l:

+  dp?.

(138)

(139)

(140)

(141)

Define the set
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B := { (M 2,||Ô| ,||y||j) : ( x , ë , y )  6 B} C R+. (142)

B is a prism containing the origin and extending along the positive ||x||2, 0| , ||y||2 axes. Figure 2 
shows a three dimensional view and two side views of the prism B. Now define the sets

P# :=  U llx ll2 > e  j . l lyyeB:  [ llxll2 l|y||2 J

and,
r
j(IMI», o\

ll-*-ll2

11x11»

Ilx ll2

11x11»

< d/i2 V , (143)

-2> dfi

=  B \ Vp. (144)

The set V^ is a subset of an elliptic cylinder enclosed in B extending along the 6 axis, and with 
an elliptic cross section in the ||x||2 — ||y||2 plane defined by

a llxl!, +  b llxl +  c l|y II2 < d\?.

where

a =  (1 — d)a\
b =  -{(1  -d)(h + dfa}
c -  ^(a2 _  72) _  d7l.

(145)

(146)
(147)

(148)

The axes of the ellipse, denoted x' — y', are obtained by rotating the ||x||2-||y||2 axes by an angle d 
given by 2

cot(2i?) =
a — c

Equation (145) is written in the x '  — y ' axes as 

a \ x ')2 +  c '(y ')2 <  d p ?, 

or simply,

(*')2 , (y'f+
{ ¥ )  { ¥ )

< 1 ,

(149)

(150)

(151)

where

(152)
(153)

a' =  acos2($ )  +  6 cos( î?) sin(,i?) +  csin2(i?) 

c• =  âsin2(i?) — 6sin(i?) cos($) +  ccos2( î?)

(see Figure 3 for a typical situation.) Hence, V (||x||2 , 6 , ||y||2) G V can be positive or

négative, and V (||x||2 ,||ô|| ,||y||2) G £>£, V < 0.

We now define the set
2Consult any Calculus book, for example [26].
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&

► llxll

(c)

Figure 2: Set B
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1  :=  {( llx ll2 > H 2 ’ l| y y  e B : V (x ,0 ,y )  < c } , (154)

where c is the largest positive real number such that X C 8. To find the nature of X, recall that 

V (x ,0 ,y )  =  ( l - d ) V ( x , 0 )  +  <W (y)

where

—

^9

Now let

- ( i  -  d)pTPv p +  dyTP y

¿C1 “  d)x "
2 A TKd Onxn

OnXn Af(cji)

< Xx ||x||2 +  A# 6 +  Ay j|y||2 1

sup Amax 
2 B

2Ar Jf£ Onxn
OnXn

=  | ( i  -  O A ,» «  ( r - 1 )
=  dAmax(P ).

x  +  h i  -  +  dyr P y

(155)

(156)

IMIj +  Xs 02 +  As ||y||| <  c,

then, the set X defined above is a subset of an ellipsoid defined by

(157)

+

- II2
G 2 ■ M l  < L+

(* ) (* ) ( t )
(158)

The case where X fl V £ ^  0, is shown in Figure 4.

Based on the above discussion, we conclude that the Lyapunov analysis does not guarantee 
boundedness of signals. Figure 5 illustrates a possible scenario of how signals might leave the domain 
8. The initial conditions (||x(f =  0)||2 , |#(i =  0) | , \\y(t =  0)||2) E X flD J  where V < 0. Hence,

we know that for subsequent times, as long as (||x(i)||2 , ||̂ (0||2 > lly(^)II2) 1S stiH in ^nX>|, it either 
moves to a lower level curve determined by V < c\ < c for some real c\, or remains in the same level 
curve. In addition, (||x(t)||2 , ||0(t)||2 , ||y(̂ )||2) can either remain in X fl X>£, or it may converge to
Vjx where V has unknown sign. Hence, inside V the sign of V is not necessarily negative, and we 
can not conclude where (||x(f)||2 >||̂ (0||2 »IlyCOlb) might converge. In fact, as shown in Figure 5,

it is conceivable that ||̂ (*)|j2 grows while (||x(t)||2 , ||0(/)|| , | |y ( i) l l2)  1S still is 'Dfi until it leaves 

the domain 8. Figure 6 shows other possible scenarios in which (||x(i)||2 , | | ^ ( 0 ||2 5 l ly ( ^ ) I I 2 )  leaves 

the domian 8  due to the growth of ||̂ (0||2 inside X>̂ . We therefore conclude that a parameter 

drift instability mechanism is conceivable in which (||x(t)||2 , |^W |2 , l l y (0 ll2)  leaves the domain 

8  because ||0(t)||2 grows while (||x(t)||2 , ||̂ (0||2 5 IlyWIk) Is m Such a mechanism is possible
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Udii

Figure 4: Case Z n Z>£ ±  0
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Figure 5: Possible Parameter Drift Instability Mechanism
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Figure 6: Other Possible Parameter Drift Instability Mechanisms
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because the set Vp (in which the sign of V is unknown) has a cylindrical shape that extends along 
the whole 0 axis. A robust adaptive control law in which such an instability mechanism would

not happen would result in a set Vjx that does not extend along the whole 
shown in the next section.

axis as will be

7.2 Robustness Via the fixed cr-modification

In the tracking analysis that follows, we modify the parameter update law in (24), using the fixed 
^-modification scheme [9]. The singularly perturbed system «5 becomes

x = Aix + $0  +  Az y

where a > 0

< o  =  — r<^x — (tYO
k ey =  A2y  +  eA^l B2 \x,

is a scalar. The reduced system now becomes

x = Aix + §0 
0  =  — r<^x — aT0 .

(159)

(160)

The boundary layer system «5b is still defined by equation (40).

The analysis o f system «5̂  is very similar to that o f the original singularly perturbed system 
«S. In fact we use the same Lyapunov functions candidates V  (for the reduced system «5^) and W  
(for the boundary layer system <Sb.) Consequently, the Composite Lyapunov Function Candidate 
V (p ,y ) given in (82) is also used for the singularly perturbed system «5a. Recall that the time 
derivative o f W  along the solution trajectories of «5b satisfies (44). We summarize the changes that 
result from using the a-modification scheme. The details are given in Appendix B.

Fact 7.1 : The time derivative of the Lyapunov Function V  along the solution trajectories of the 
reduced system «5̂  satisfies

Vx G R2n, V0 G Rr, Vy G R2n, V* G R+
V =  [VpVr(p)]T /(t,P,y =  0) < - « !  ||x||2 -  \a

— ^min[-ß] > 0 R =
2AtK dA -A  t K d 

- K l A  K d

+ &  m il (161)

Recall that 0 is the constant true parameter vector.

□

Fact 7.2 : The time derivative of u is given by

u =  F’^ [ A 1x  +  $0 + A3 y] +  ^ F ^ A 2y  -  (T(px + (rT^j +  Fp(t). (162)

□
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Fact 7.3 : Assume

• (a2)'

F ^ d < &oi ||x| 2 » ( same as in (a2)) (163)

F ^ ( T ^  + ,TÒ)
de ^ 0̂2 12 » (164)

A ix < &03 ||x||2 ,
2

( same as in (a2)) (165)

and hence,

(  F ^ -A i -  x -  <tF ^ T 0  +
l  &  de I ae ax < k{ 12 »

(166)

where

— &oi 0̂2 *h &03* (167)

Under (a l), (a2); , and (a3), we have V (x ,0 ,y )  E B

IN I < k[ ||x||2 + (k3 + ifc2) ||y||2 + k*(*). (168)

The second interconnection conditions is therefore given by

Vp E B x x B q , Vy E B y, Vi E R+

[vy VV(y)]T [s(i, P, y, f) -  g(t,P, y, c = 0)]
< «M + 772) llylll + e/3j ||x||j ||y||2 + e/x ||y||2

7i=2||P||i2*3 
72 =  2 ||P||i2 k2 
0'2 = 2\\P\\i2k[ 
t i * )  =  2||P||i2fc4(i)
P satisfies the Lyapunov equation (41)
k[,k 2 ,k3, and k4 (t) are given by (a l), (a2)', and(a3).

(169)

□

Fact 7.4 : The time derivative of the composite Lyapunov Function V(x, 0 ,y ) (82) along the 
solution trajectories of Sa becomes

V(p,y)< - P'a
lly lli -  ^  “  d)a 2 +  “  dìa libili + d/J>2(t), (170)

where

30



Pi =
(1 -  d)ai _ (i-0ft+<«5

^(a 2 _ 72) _ d7l
(171)

Note that the difference between P'd and Pd given by (90) is that (32 in Pd is replaced by (3'2 in P'd.

□

We have the following result.

Theorem 2 (Fixed ^-modification, Boundedness of Tracking Errors) Assume

1 . Qdi Qdi £ L^,, so that 3 p a  positive real constant such that p(t) < p Vi E R +  (Case 2 
above).

2. (a l), (a2)7, and (a3) are satisfied V (x ,0 ,y ) E B.

5. a 2 -  72 > 0.

Define the sets V ¿¿)(7 and 72.̂ )iT as follows:

V-^a := IMIa.|»|L,||y||a) € B :  [||X||2 ||y|| P'a llJMl2
l|y||2

+  ¿ (1  -  d)°  \\d\l < -  d) °  II0 II2 +  dP
— 2

and

■■= {(lW|2 ,|e|| ,|ly||2) € : V(x,0,y) < c ^ }  ,

(172)

(173)

where c f̂(7 ¿s the smallest positive real number such that V C IZp,t<x.

If p and cr are such that 7Zjxi<7 C T, then 3 an upper bound of e, namely,

£d =
«l(0!2 -  72)

«111 +  JdfCTjK1 -  d)Pi +  < W  ’
(174)

such that all the solution trajectories o f the singularly perturbed system Sa starting in X converge 
to the residual set IZji,a V e E (0, dd) (Refer to Figure 7.)

Proof of Theorem 2: Recall that the Composite Lyapunov Function of the singularly perturbed 
system Sa is (see (82))

V(x,0,y) = (1 — d)V(p) +  dW (y)

=  -  d)pTPvp  +  ^dyTP y, (175)

where Py and P  are given by (52) and (41) respectively. Using Assumption 2, the time derivative 
of V along the solution trajectories of Sc is given by (170)
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Figure 7: T h e  a- m odification  Case
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v ( p , y ) < lly ll: P)
lly ll:

-  |(1 -  d)o||e||' +  | (1  -  d)a ||0||1 +  V ( i ) .  (176)

where Pd is given by (171). Similar to the case in the proof of Theorem 1, and using Assumption 3, 
the matrix P'd is positive definite when

< ¿a := 0:1(012 -  72)
« l n  +  m f c a j i a - 'O A  +  W "

Using Assumption 1, (176) becomes

v ( p , y )  <  - lly ll:12 11̂ 112 

i2

P'd lly ll:
- ~ ( l - d ) a

+  2 ^  _  +  d/*2-

Define the sets

I ( l l x ll2 > 9 ,||y||2) e ^ : [ ||x||2 ||y||; Pa
lly ll:

+  5(1 -  d)°  m l  < 5 (1  -  d) °  11̂ 112 +  dP
-  2

and

V-"  h,<t • I M I a » | | ® | L » l ly l la )  € B :  [ 11*11» lly ll: p$
lly ll:

+  ¿ (1  -  d)a ||&||’ > 1(1  -  d)a ||0 ||!j +  dp?

=  B \ V ^ .

The set V ¿¿>(T is a subset of an ellipsoid. To see this, note that

lly ll: Pi ll-*-|l2
l ly l l j

+ |(1 -  d)a ¡S||’  < ¿ (1  -  d)a |]0 ||i +  dp?

can be written as

i2 - 2
a||x||2 + 6||x||2||y||2 + c||y||2 +  5 9  ̂ <s\\0\\2 +  dfi ,

where

a =  a =  (1 — d)a\ 
b =  -  {(1 -  d)/3i +

c =  c = ~~(ct2 -  72) -  djl

d = 5(1 -d )a .

(177)

(178)

(179)

(180)

(181)

(182)

(183)
(184)

(185)

(186)

This is the equation of an ellipsoid with axes x'-y'- 9 , where the x'-y' axes are obtained by 
rotating the ||x||2-||y||2 axes by an angle 9 given by
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(187)cot(2d) =
a — c

Equation (182) is written in the x' — y' — axes as

g!(x'Y +  ¿(y 'Y  + s 0 |2 <  s ||0||2 +  d / T , (188)

or simply,

!\2
(*0

,/\2
+ (✓ ) +

( iWU+'t* 2 \ I ¿11^IL+^2
< i , (189)

where

a{ =  a cos2(0 ) +  6cos(i?) sin(d) +  csin2(d)
cf — a sin2(d) — 6sin(d) cos(d) -f ccos2(d).

Hence, V (||x||2 , 0 , ||y||2) £ ,<n V can be positive or negative, and V (||x||2 ,
(E V < 0. (See Figure 7.) Also, define

(190)
(191)

> ii-y ii2

ftp,» := { (llxll2 »H I ,. I|y | | j)  e B : V(x, 0 ,y )  < <:*,„}, (192)

where c^a is the smallest positive real number such that V ^  C TZ^. If ¡i and a are such that 
Hii><7 C X (see Figure 7), choose initial conditions such that (||x(t =  0)||2 , ||0(t =  0)|| , ||y($ = 0)||2)

€ (J  \ Hz,*) C T>1 .̂ We conclude that V (x ,0 ,y ) < 0 as long as (||x(t)||2 , ||0(t)||2 , ||y(0ll2) is 

outside 7 If (||x(i =  0)||2 , ||0(t =  0)|| , ||y(i =  0)||2) starts inside 7Zp,i<7, or if it reaches 1Z¡¡t<T for

some time t > 0, then (||x(t)||2 , ¡ 0 (O |2 » l|y( )̂ll2)  remain in 7Z ^  for all subsequent t. Hence we 
conclude that all solution trajectories starting in X converge to the residual set H .^ . □

R em ark  7.5 Similar to the regulation case, the maximum value of €d occurs at

d* =  - A —
Pi +  02

and is given by

(193)

,* , « i ( « i  ~ 72)€ — €d=d* — ---------t o o '
« 1 7 1  +  P1P2

Choosing d — d* fixes the size of V ^ a, and hence that of the residual set 7Zjii(7. If the size of TẐ  ̂ is 
changed by choosing another d, then a smaller upper bound €d results as it is clear from Figure 1.

□
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R em ark  7.6 The advantage of introducing the fixed cr-modification is that the tracking errors and 
the parameter errors axe ensured to converge to a residual set under the conditions of Theorem 2. 
As far as the desired trajectory is concerned, it is only required that the latter is bounded and is 
three times continuously differentiable with bounded derivatives. The price paid by introducing the 
fixed a-modification is that no conclusion about the convergence to zero of the tracking errors can 
be made even under further restrictive conditions on the desired trajectory such as those of Case 3 
above. Moreover, using the switching cr-modification of [10] for the class of desired trajectories of 
Case 2, Theorem 2 still applies, and no conclusion about the convergence to zero of the tracking 
errors can be made. In the next section we show that for the class of desired trajectories of Case 3, 
the tracking errors converge to zero if the switching cr-modification of [10] is used.

7.3 Asym ptotic Tracking with the switching a-modification

In this section we use the switching cr-modification of [10], and show that for the class of desired 
trajectories described in Case 3 above, the tracking errors converge to zero, and all other signals 
are bounded. The singularly perturbed system with this modification becomes

x  =  A ix  -f $ 0  +  A3y  
i 0 =  — r</>x — crsT6  
k ey =  A2y  +  eA2 l B2 u,

where as is now given by

0

(Js(t) =  < ° 0

Vo

0 (t)
ST

li _  i

if ||*(t)||2 < «0  

if 00 <  ||ê(i)||2 < 20 0  

if ||ê(f)||2 > 200-

(195)

(196)

(To is a positive scalar design parameter. 9q is chosen such that

||0||2 < #o, (197)

and hence, it reflects our knowledge of the true parameter vector 6 . Determining Oq is possible 
since in general the true parameters have known upper and lower bounds.

Assume

• (a2)//: which consists of assumption (a2); with cr, and (3'2 replaced by crs, fc", and ¡32 
respectively.

Consequently, P'd given by (171) when (a2)x was assumed, is now denoted Pd and is given by

P'J = d(nrt_[(a2 -  72) -  ¿7i
(198)
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We have the following result

T h eorem  3 (S w itch ing  ^ -m od ification , C onvergence o f  Tracking E rrors) Assume

1. q^, G fl L ^ q , s o  that 3 p a positive real constant such that p(t) < p Vi G R +, 
and p(t) G L2 (Case 3 above.)

2. (a l), (a2)", and (a3) are satisfied V (x ,0 ,y ) G B.

3. o 2 -  72 > 0.

Define the sets V p><70 and as follows:

V -  — H a . | * | 2 ,lly|l2) e s :  [ H a  lly lla ]^ ' IMIa

. + |(1  -  d)°0 ||fl|’ < i ( l  -  libili + 1 , (199)

V - = B \ V - (200)

and

;= {(llx lla>||8L>llylla) 6 B '■ v (x -8.y) < c»,»o}.

where c^aQ is the smallest positive real number such that

• p̂,<y0 Q 'R'Ji,<to

• V ( H a  - H 2 - Ilylla) 6 \  ( * V o  n v-^)} ,  |d |a >

If p, <r0, and 0o are such that C X, then 3 an upper bound of e, namely,

oli(oc2 ~ 72)

(201)

c"€d
a 7l +  -  d)fo +  ’

(202)

such that all the solution trajectories starting in X converge to the residual set 'Fp^o V i  G 

Furthermore,

lim x (t) =  0t—1-00 v
lim y(t) -  0.t--->00 V '

(<>,€».

(203)

(204)
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P r o o f  o f  T h eorem  3: Using Assumption 2, the time derivative of V along the solution trajectories 
of S(7s is given by (see the proof of Theorem 2)

v(p,y) < - llyll: Pj ' M ,  '
IM I2 J

- ( i  -  d)(7s 9

+ - (1  -  d)(7s \\e\\l + dv2{t), (205)

where P% is given by (198). Using Assumption 3, it is clear that the matrix P'J is positive definite 
when

6 < 4  := a i ( a 2  - 7 2 )
a i7i + 4d(i-d) K1 ~ <001 + dP'2]2

Using Assumption 1, (205) becomes 

V ( p , y )  <  - [ l | x | | 2 ||y||2 1 P'd

Define the sets 

V-,M,<70 •' 12 »

1 P7 Ilx ll2
\rd . I ly ll i  J

1 ,
+ 2 ( 1 '

G S [ I M I

-  - ( i  -  d)a3

r-2

P<! l|x||2 1
r d ----1

__
1

+ ¿(1 -  d)cTo¡ef2 < ¿(1 -  70 ||®||’ +

and

■■= \ ( I M I 2 . . , I ly lla )  6 8 :  [ IM I2 lly ll P" llx ll2 ----1cs

__
1

+  |(1 -  d)a0 ||®||’  > 1(1  -  ||©||1 +  d\?

=  B \ V „ 0.

(206)

(207)

(208)

(209)

The set X>̂ t<To is a subset of an ellipsoid as was shown for the case of X>̂ ((T in the proof of 
Theorem 2. Now define

: =  { ( l l x ll2 .||^ ||2 » l|y|l2)  V (x ,® ,y )< cPt„0} ,

where c^aQ is the smallest positive real number such that

(210)

• Ĵi,cro

V (lMl2.|®||2 .l|y|l2) 6 H I ,  >
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If p, <7o, and 0o are such that 7Zji1<70 C 1, then as shown in the proof of Theorem 2 for the fixed 
^-modification, we conclude that all solution trajectories starting in X converge to the residual set 

and hence x (f) G , 6 {t) G , and y (t) G L ^ . Furthermore, the Lyapunov function 
candidate V is uniformly bounded. To show the convergence of the tracking error to zero, we first 
note that it is easy to check (see the proof of Fact 7.1 and Fact 7.4) that the time derivative of the 
Lyapunov function given by (205) is equivalently written as

V(x,0,y)  <

<

-  x P'J
llyll:

-  ^ i1 -  d)o,0 T{t)b(t) +

< “  (iMIl +  ||y|||) -  ¿(1  -  d)<i,eT(t)8(t) + dn\t). (211)

where for € <

■— — ^min (Pd ) • C2
(212)

We have the following Fact (see Appendix B for proof)

Fact 7.7 :

- a , e T(t)0{t) < 0  Vi 6 R + . (213)

□

We now integrate both sides of (211)
rj"t fj*  ̂ ^  ^

Jq V(x,0,y)<ft < - j f  —  (||x(t)||2 + lly(t)|||) dt -  - ( 1  -  d)a30(t)d(t)dt

+  [  d[i2 (t)dt. (214)
Jo

Taking the limit, rearranging, and recalling that V is uniformly bounded, we obtain
roo 1 , . roo 1 A rco

l  — (l|3t(t)lll +  ily(i)lll) rf* +  Jo ¿ ( i  -  d )a ,e (m t)d t  -  j o dfi2 (t)dt

< V (x (O ),0 (O ),y (O ))- lira V (x (T ),0 (T ) ,y (T ))
1 —>oo

< oo. (215)

Since f.i(t) G L2, we conclude that

roo 1 . . roo  i
Jo -  (||x(<)||| +  lly(i)lll) dt +  j o 5 (1 -  d)o,9 {t)0 {t)dt < 00. (216)

From Fact 7.7, we have as6(t)9(t) >  0. Note therefore that both integrals in (216) are positive, 
and consequently both integrals are bounded. Hence, x (i)  G L^71, y (t) G Ljn, and combined with 
the previous boundedness result we conclude that x (t ) G L^71 ft and y (t ) G L^71 ft L ^ . From 
the boundedness of x (i) , 0 (i), and y(t), we conclude that x(t) G (see (24).) Furthermore,
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using (77), we have from (24) that y (i)  E L ^ . Consequently x (f) and y (t) are both uniformly 
continuous. Since in addition they are elements of L^71, we conclude that

lim x (t) =  0

lim y{t) =  0.
t ---->00 v '

□

R em ark  7.8 In the switching ^-modification scheme presented above, an upper bound 9q on the 
norm of the true parameter vector 0 is assumed to be known as described by equation (197). The 
size of the residual set 7 to which all states x(i), y(f), and 0 (t) are insured to converge depends 
on #o- In general, the larger #o is, the larger the residual set 77.̂ )O-0 becomes. Since the tracking 
results are local, a conservative choice of 90 may not insure the existence of a residual set 7Zjj,f(T0 
inside the domain B. Note that a conservative choice of 9q can result from the fact that in (197) all 
elements o f 0  are equally weighted even though they may not be of the same order of magnitude. 
To make the use of the switching (7-modification scheme more efficient in a local context, note 
that in general we know an upper bound on the magnitude of each individual element 9{ of the 
true parameter vector 0. Hence, we can modify the use of the switching cr-modification scheme as 
follows

(217)

(218)

Be

where

x  =  A ix  +  $ 0  -f A3y 
< ¿  =  - i V x - r £ 0  
. cÿ =  A2y  +  eA ï 1 B2 ù,

(219)

E =  diag [(73i , c s 2 , • ■ •,gsr\ e  R rxr, (220)

and each <jst is now given by

f
0 if 1 Ôi(t) |< 9oi

Osi{t) =  < <*oi 1 i
V 9°' y if Ooi <| »,'(<) l< 2»oi i =  1,2,-•• ,r. (221)

k ^0. if 1 «¡(«) l> 2 %

(Joi is a positive scalar design parameter. 9q{ is chosen such that

| 9i |< 90i i =  1,2,•• • ,r. (222)

Fact 7.9 : Using the modified switching (7-modification scheme as defined by (219)-(222), the 
results of Theorem 3 hold (see Appendix B for details.)

□

7.4 A  Simulation Example

References [6] and [7] contain experimental results that show the effectiveness of the proposed 
composite control technique. In these references, experiments showed excellent results for tracking
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a slow desired trajectory (step response generated from a second order linear system) with no 
modification in the parameter update law. Of course, good tracking of a time varying desired 
trajectory is not guaranteed in general as predicted by the stability analysis in this report. In the 
simulation example that follows, we consider a sinusoidal desired trajectory (Case 2), and illustrate 
the following points

• Without modification of the parameter update law, parameter drift instability mechanism is 
possible.

• Adding ^-modification to the parameter update law, we get boundedness of all signals, but 
nonzero tracking errors (Theorem 2.)

The hardware of a specially constructed single-link flexible-joint arm is shown in Figure 8 
(see [6] and [7].) The dynamics of this system (see Figure 9) are modeled as

Iqi +  Mgl sin(qi) +  k(qi -  q2) =  0 (223)
J h  +  Bq2 -  k(qi -  q2) =  uc. (224)

Nominal and true values for the arm parameters are shown in Table 1. The related rigid model, 
obtained in the limit as k —> oo, is

( /  +  J)qi +  Bqi +  Mgl sin(qi) =  us. (225)

The damping coefficient B is assumed to be known. We define the parameter vector 0 as

' *1 ' ' / + J '
0 2 Mgi _

(226)

The design of the rigid control law us is now based on the rigid model (225). Using the algorithm 
of Slotine and Li [19] for this term, the complete control law with correction is uc =  us +  Uf

u3 =  Oia + 02sin(qi) + Bv -  K pr ,Uf =  K v(qi -  q2). (227)

Recall that

9i =  Qi~ qd, (228)
v = qd -  A$i, (229)
r =  ¿h +  Xqi, (230)

r-<
•»Sri1II« (231)

where qd{t) is the desired trajectory. We choose for the desired trajectory qd{t) 
given in Table 2.

a sinusoidal function

Choosing T 1 =  diag(71, 72), the parameter update law with the modified switching a-
modification is given by 3

0i =  - 7 i a r - 7 1<t3i 01 (232)

d2 =  —~j2 sin(q\)r — ')2 as2 92, (233)

where
3 As discussed in Remark 7.6, either fixed or switching <r modification can be used in the results of Theorem 2.
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Flexible Joint

Figure 8: Sketch of Experimental Hardware

Icji + Mglsinfq,) + k(ql_q2j - 0
Jq2+ Bq2-k(q1-q2) = u

Figure 9: Model of Single-link Flexible-joint
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<7si(i) -  i
0 if

tfo ,• ( i ̂ #0» ■) if
<7o. if

I ^t(0 |< 00*
Ooi <| Ôi(t) \< 260i

I Ôi(t) |> 20o,

i =  1 , 2. (234)

The gains used in the control law and the parameter update law are shown in Table 3.

The simulation results shown in Figure 10-Figure 12 illustrate the parameter drift instability 
mechanism as predicted by the analysis (compare with Figure 5.) The states remain bounded 
for sometime, then the parameter estimates rapidly diverge and all the states become unbounded. 
Introducing the a modification in the parameter update law, the signals are bounded as predicted 
by Theorem 2. Note that the tracking errors do not converge to zero but remain bounded.

8 Conclusions

In this report we have given stability proofs for a composite adaptive control law for flexible joint 
robot manipulators. The complexity of the analysis points out the difficulty o f the control problem 
for this class of systems. Although our results give only sufficient conditions for local stability 
it can be argued, based on what is known about the behavior of adaptive control systems, that 
this is the best one can do without additional compensation. One promising approach to extend 
these results would be to incorporate the integral manifold based corrective control idea. We are 
currently investigating this extension. In addition we have already produced some experimental 
results of this scheme for a single-link, flexible joint mechanism that we have constructed [6]. 
Further experimental results, including an illustration of the instability mechanisms shown in the 
simulation example, are under investigation.
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P aram eter N om inal V alue True Value
Link Inertia:/ (kg — m2) 0.031 (1+0.5)0.031=0.0465
Rotor Inertia: J (kg — m2) 0.004 • 0.004
Rotor Friction: B (N — m — sec/rad) 0.007 0.007
Nominal Load: Mgl (N — m) 0.8 (1+0.5)0.8=1.2
Joint Stiffness k (N — m/rad) 5 5

Table 1: N om inal and True Values o f  the A rm  Param eters

~ Y W A m p litu d e  A F requency u
A sin(<jj t) 0.1 17

Table 2: D esired T ra jectory

G ain A K d K v 7i 72 <T01 002 #01 #02
Value 10 0.2 0.2>/2 0.001 10 100 0.1 0.051005 1.212

Table 3: C on tro l Law and Param eter U pdate  Law G ain Values
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Figure 10: P aram eter D rift Instability  E xam ple : 9\
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9 Appendices

A Singular Perturbation Model Development

The original singularly perturbed adaptive control system is defined as follows.

i) P lant:

£ ( q i ) q i +  C '(q i?q i)q i +  g (q i)  =  z (235)
e2 Jz +  c/f^z +  K iz  =  K i (vl3 — J q i). (236)

ii) C on tro ller  (designed for the rigid plant (13)):

us =  (.D(qi) +  J)a  +  C (q i ,q i )v  +  g (q i)  -  K Dr, (237)

where D , J, C and g represent the terms in (13) with estimated values of the parameters, K d is a 
diagonal matrix of positive gains, and

v  =  qd -  A qi, (238)

r =  q i -  v  =  q i -  qd +  Aqi =  q x +  A qi, (239)

a =  v  =  q d — A qi, (240)

qi = qi -  qd- (241)

Note that

qi =  r +  a, (242)

qi =  r +  v. (243)

A is a constant diagonal matrix, and qd(i) is the reference trajectory which is at least three times 
continuously differentiable.

iii) P aram eter U p d ate  Law:

0 =  - r _1y T(q i ,q i ,a ,v ) r ,  (244)

where T is some symmetric, positive definite matrix, 0  = 6  — 0  is the parameter error, and

(-D(qi) +  J) a +  C (q i ,q i )v  +  g (q i)  =  ^ ( q i ,q 1?a, \)0. (245)

Let’s take equation (236) and rewrite it as
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e2Jz =  — eK2z — K\z +  /iTi(us — Jqi). 

Premultiplying both sides by J -1 , we obtain

62z  =  - e J - 1K 2z - J - 1K 1z +  J -1K 1(u3 -  J q j ) .  

Define

w := z
ez

and

u :=  us -  J q i.

Using (248)-(249), equation (247) can be written in matrix form as follows

6 W  =
€Z

€ 2Z
Onxn -fnXn
J~lK x

Z
+

O n X n
€Z

1

1 h-*

1__
__ u.

Hence, we can write equation (247) as

£W =  A 2w  +  B 2u,

where

A2 OnXn 4 x n  
— 1 K\ -J ~ xK 2 € R 2 n x 2 n *

and

B2 O n x n
J~l K\ G R 2nXn

w and u are given by (248) and (249) respectively.

Now let’s consider equation (235) and rewrite it for convenience

^(qi)qi + C'(qi,qi)qi + g(qi) = z-

We add and subtract u in the right hand side of (254) 

£(qi)qi + C'(qi,qi)q1 + g(qi) = u +  z -  u. 

Now, we replace the expression of u from (249)

(246)

(247)

(248)

(249)

(250)

(251)

(252)

(253)

(254)

(255)
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£(qi)qi + £(qi,qi)qi + g(qi) = us -  Jqi + z -  u, (256)

<*=*►

[-D(qi) +  J]qi + C(qi,qi)qi + g(qi) = u3 + z -  u. (257)

Next, we replace (242)-(243) and obtain

[D(qi) + J][r + a] + C(qi,qi)[r + v] + g(qi) = u3 + z -  u, (258)

[D{q i) + J]r + C(q i, q i)r  = u3 -  g (q i)  -  [-D(qi) + J]a -  C (q i ,qi)v + z -  u. (259)

Now replace u3 from (237)
[_D(qi) + J]r + C(qi,qi)r =  [-D(qi) +  J]sl +  C(qi,qi)v +  g(qi) -  K Dr -  g(qi)

-  [D(qi) + /]a  -  C(qi, qi)v + z -  u, (260)

[-D(qi) +  J]r +  [C (q i,q i)  +  ■K’o lr  =  [-D(qi) +  J]a +  C (q i ,q i )v  +  g (q i)  +  z -  u, (261)

[D(q i) +  J]r +  [C (q i,q i)  +  A b ]r  =  y (q i ,q i ,  v ,a )0  +  z -  u. 

Define

(262)

(263)

Consequently, using (239)-(240),

qi Aixn Onxn qi
r A n̂xn 4i

Also, define

M(qi) := D(qi) + J.

(264)

(265)

Using definitions (263) and (265), equation (262) is written in matrix form as follows

x  = qi
r

- A  Inxn
- M ( q i ) - 1[C(qi,q1) + K d] 0 nXn

OnXn 0nxn 
A f(q i)“ 1 0nXn

Hence, we can write equation (266) as

qi
r + Onxn

A i'(q i)_1i /r(q i ,q i ,v ,a )

+
z
cz + Onxn u. (266)
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x  =  A ix  +  4>0 +  A3w  4- -0iu.

where

(267)

Ai =  A i(x ,q d,q d) = - A 4 x n
- M ( q i ) _1[C (q i,q i)  +  OnXn G R 2nx2n (268)

$  =  $ (x , q d, q j, qd) = O n X r
■^(qi)-1 ^r(qi? ¿115 v ,a) 6 R 2nxr, (269)

A3 =  A3(x ,q d) = Onx n On Xn
M (q i) -1 OnXn G R 2 n x 2 n (270)

01 = 0 i ( x ,q d) = OnXn
- M ( q i ) - 1 G R 2 nXn (271)

The Parameter Update Law (244) is now rewritten in terms of x  as follows 

0  =  - r _1y T(q i ,q i ,a ,v ) r

= - r -1 0r xn y r (q i ,q i ,a ,v ) qi
r

Hence, we can write (272) as

(272)

0  =  —r  1^?x, (273)

where

V? =  ^ (x ,q d,q d) Or xn y T(qi,qi,a,v) G R/X2n

R em ark  a l  : Note that using (249) and (235) we obtain 

u =  ua -  Jq i
=  u , -  J D (q i )_1 [z -  C (q i , qi )qi -  g (q i )]
=  u f x A w .q ^ q d .q j ) .

(274)

(275)

R em ark  a2 :Up to this point we have transformed the original singularly perturbed system given 
by the Plant (235)-(236), the Controller (237), and the Parameter Update Law (244) into an 
equivalent set of singularly perturbed equations given by a slow subsystem, equations (267) and 
(273), and a fast subsystem , equation (251).

To make the stability analysis even more tractable, let’s further define [2] 

y  := w  +  A J102U. (276)
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Using this definition of y, we can write

ey := ew -f eA2l B2 ix. (277)

We now substitute in (277) ew from the equation of the fast subsystem (251)

ey =  A2W +  B2u +  eA2 1 B2u
=  A2[w  +  A£1 B2 u] +  eA2 l B2u
— A2y  +  eA2 l B2 u. * (278)

Hence, the fast subsystem in terms of the fast variable y  is given by

ey =  M y  +  eA2 l B2 U. (279)

Let’s now express equation (267) in terms of the new fast variable y.

R em ark  a3 : We should verify that

A3 W -f i?iu  =  A3 y. (280)

To see this, note first that it is easy to verify that

B2 — a 2 InXn
OnXn

Consequently,

A3 A ^ B 2 a 3a 2 xa 2 — Inxn 
Onxn

=  A3 -̂ nXn
OnXn

Onxn Onxn —̂ nxn OnXn
—A f(q i)-1 OnXn OnXn - M {  q i ) - 1 _

Using (282) and the definition of y , equation (276), we conclude that

A3w  +  R iu A3w +  A3 A2 XB2u 
A 3 [w  + A2l B2xi\ 
A3 y.

Equations (283) suggest that we write (267) as follows

x  =  A ix  +  $ 0  4- A3y.

(281)

(282)

(283)

(284)

In summary, the original singularly perturbed system given by the Plant (235)-(236), the 
Controller (237), and the Parameter Update Law (244) are transformed into an equivalent set of 
singularly perturbed equations given by a slow subsystem, equations (284) and (273), and a fast 
subsystem , equation (279). To conclude, we write the resulting system of equations into two 
equivalent forms both of which are helpful in the analysis,
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(285)
x  =  A ix  +  $ 0  +  A3y  

< o  =  — r -1 <̂ x 
k ey =  A2y  +  €A2 1 B2 ù,

or equivalently,

p = /(i,p,y) = Ai $
—r 1<̂ onxn P + A3

Onxn
k €y = 0(*»p»y,O = A2y + tA 2 1B2ù,

where

P =

x  =

(286)

(287)

(288)

Ai =  i4 i(x ,q d,q d) = 

M (q i)  =  D( q i)  +  J, 

$  =  $ (x ,q d,qd ,qd) =

- A Tnxn
- M ( q i )  1[ C ( q i ,q i )  +  A'd ] 0nXn

G R 2nX2n

Onxr
À f iq iJ ^ Y X q ^ q i^ a ) G R 2nxr

A 3 =  A 3( x , q d) = Onx n 0n xn
^ ( q i ) _1 onxn

G R 2nx2n

r  g R rxr is some symmetric positive definite matrix,

<p =  Y?(x,qd,qd) =  0rxn Y T ( q i , q i , a ,  v ) G R rx2n

0 = 0 - 9  and (2?(qi) +  J )a  +  C ( q i , q i ) v + g ( q i )  =  Y ( q i , q i , a , v ) 0 ,

A2 =

*2 =

OnXn fnXn G R 2nx2n

OnXn
J~l Ki G R 2nXn

u =  u* -  J q i ,

y  =
z

€Z
+  A 2 1i?2U z = AT(q2 -  qi) = ^#1^2  -  qi)

(289)

(290)

(291)

(292)

(293)

(294)

(295)

(296)

(297)

(298)

(299)
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B Detailed Verification of Facts

Fact 5.1 The rigid joint plant, the adaptive control law, and the parameter update law are given
by

(-D(qi) + J) qi + C( qi,qi)qi + g(qi) = us
< u3 =  (Z )(q i) +  J)a  +  C (q i,q a )v  +  g (q i)  -  K Dr (300)
> b =  - r - 1r T(q i ,q 1,a ,v )r .

Combining the plant and the Controller from (300), and recalling from (265) that q i) =  D {q i) +  
J, we obtain

^ ( q i ) q i  +  C '(q i,q i)q i + g (q i )  =  us
=  M (q i)a  +  C (q i,cn )v  +  g (q i)  -  K Dr. (301)

Using the fact that q i =  r +  a and qi =  r +  v  (see (242) and (243)), equation (301) becomes

A f(qi)[r +  a] +  C (q i ,q i) [r  +  v] +  g (q i) =  us
= M (q i)a  +  C (q i ,q i )v  +  g (q i)  -  K D*, (302)

M (q i)r  +  C (q i ,q i ) r + [M (q i )  -  M (q i)]a

+ [C'(qi,qi)-C'(qi?qi)]v + g(qi)-g(q i) + ^r>r = o, (303)

M (q i)r  +  [C (q i,q i)  +  t fD ]r + [M (q i)a  +  C (q i ,q i )v  +  g (q i)] =  0, (304)

M (q i ) r +  [C (q i,q i)  +  K D]r -  y ( q i ,q i ,a ,  v )0  =  0. 

In matrix form, equation (305) is written as

(305)

x  = qi
r

— A fnxn
- M ( q i ) _1[C (q i,q i)  +  KD] 0nXn

=  AiX +  $0 .

From Appendix A, it is obvious that

Ò =  - r _1y r (q 1,q i ,a ,v )r
=  - r ~ V x .

qi
r + OnX n

M (q i) -1 Y (q i ,q i ,v ,a )

(306)

(307)

Thus, we conclude that
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(D( q i)  +  «/)qi +  C iq ijq iJ q i +  g (q i)  =  u3 
i us =  (£>(qi) +  J )a  +  C (q i , q i )v  +  g (q i ) -  K Dr 
k 0 =  - r ~ 1y :r(q i ,q i ,a ,v ) r

J x  =  AiX +  $ 0
\ e  =  - r ~ V x

<=>

: p = A\ $
— r  Onxn P-

□

Fact 5.2 The Lyapunov Function Candidate for the reduced system ST is

(308)

F (p ) =  ¿ r TM (q i ) r +  q f  ATK Dq 1 +  i  0T T 1 0. (309)

The time derivative of V  along the trajectory solution of <Sr is 

v  = [vP̂ (p)]T/(^p,y = o)

=  rTA f(q i)r  +  i r TM (q i)r  +  2 q f AFKd ^l +  0 TT~l9

=  rT[ - C ( q i , q i ) r -  Kd t +  y(qi,qi, v ,a )0 ] +  i r TM (q i)r  +  2 q f ATK Dq 1 +  0TT~1O

=  i r T[M (q i) -  2 C (q i,q i)]r  -  rTK Dr +  2q'(ATK Dq 1 +  rTy ( q i ,q i ,  v ,a )0  +  0TT~x0

= - tt K d t +  2 q f ATK Dqi +  rTy  (q i , q i , v, a )0 +  0T V~l [ ~ r y T(q i , q i , v , a)r]

=  - tt K d t +  2 q f  ATKDql +  rTy ( q i ,q i ,  v ,a )0  -  0Ty r (q i ,q i ,  v ,a )r  
=  —rTKr)T +  2 q iA TKDqi 
= - ttK d r +  2 q f At /(Td [r -  AqJ 
=  —rTK£>r + 2qi ATK pr — 2ci(ATI(d Aqi 
= —vTK dt +  q f  At K d * +  *TKpAqi -  2 cfiATKoAq\

_T ’ 2At K d A - A t Kd ' qir
- k td A K d r

— —x TRx. (310)

where

_  [ 2At K d A - A t K d
—K q A k d

(311)

We should show that R is positive definite. It is clear from above that 

- x TRx  =  - ttK d * +  2 q f ATK d <Ii
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= - l i i  +  q f  AT]KD[ii  +  Aqi] +  2 q f A t K d \̂

= —q iT/^Dqi — qi A'xjAqi — q f ATK pqi — q f ATKnAqi +  2 q fA TA ^ q i

=  - q f  ATK d Ach -  q i '  K Dqi
_• T

- T  - Tqi qi

- T  ~ Tq i qi R*

ATK DA Onxn 
Onxn K D

qi 
qi

qi
qi

(312)

where

R* = A T K d A  Onxn 
OnXn R d

(313)

Clearly R* is positive definite, and R can obtained from R* using the nonsingular linear transfor
mation T  as follows. Recall that T  was defined as

x  =  r qi <=> qi = T _1x ; T  =
i i qi

InXn Onxn
A -fnXn

(314)

Hence (312) can be written as

- x t R x  =  - x T( T - 1)r R " T -1x. (315)

Since definiteness is invariant under nonsingular linear transformations, we conclude that R , simi
larly to R*, is positive definite.

□

Fact 5.3 Recall that

u =  us -  Jq i
=  us -  JD (q i ) -1 [z -  C (q i ,q i)q i  -  g (q i)]
=  us -  JD (q i )_1z +  « /^ (q i)_1C (q i ,q i )q i  + JD (q i )_1g (q i) (316)

u - f  JD (qi) l z = us +  JD (qi) ^ ( q i ,  q i)q i +  J £ ( q i )  Xg (q i) (317)

u + J D (  qi) 1 Onxn
z

6Z
= u , +  J£ )(q i) 1C (q i ,q i)q i  +  JD (qi) ^ ( q i ) . (318)

Substituting from (39), we obtain

u + JD (qi) 1 Onxn ] {y -  A 2 1 B 2 vl}  =

us +  «/jD(qi)_1C (q i ,q i)q i  +  J D (q i)_1g (q i) (319)
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{/nxn  ~ ^ ( q i )  1 OnXn A21B2]  U =

-  [ J D ( q i )_1 OnXn ] y  +  u s +  JI> (q i)“ 1C,(q i ,q i )q i  +  •TD(qi)“ 1g (q i). (320)

Recall from Appendix A, equation (281) that B2 =  A 2 

l  Inxn — 1 0nXn

—Inxn
OnXn

, then (320) becomes

— Inxn 
OnXn

U =

JD (qi)~l 0nxn y  +  us +  J D (q i) lC (q u q 1)qi +  J D (q i)  g (q i)  (321)

{ i n x n  +  J D ( q i) u =

JjD (qi) 1 0nx„ y  +  us +  JD (qi) XC (q i ,q i)q i  +  J D (qi) Xg (q i). (322)

Define

F  := Inxn + JD(qL) \
then (322) is written

Fu  =  - J D (q i ) " 1 0nxn y  +  u3 +  J D (q i) xC (q i ,q i)q i  +  J D (q i)  ^ ( q i ) .

(323)

(324)

To invert F, we use the Modified Matrices Formula ([11], page 656) which states that for A  and C 
nonsingular m X m and n.x n matrices, respectively, we have

[A +  BCV] - 1 =  A - 1 -  A~lB[VA~'B  +  C“ 1] " 1^ “ 1. (325)

Using the following correspondence A  *— ► /„ x n, B *— *• </, C <— *• jD (qi)-1 , and V  ♦— > 7nXn, then 

F - 1 =  [Inxn +  JD {qr)’ 1] " 1 =  [Inxn +  J D ( q i ) ~ l I nxn ]~ l =  /nxn -  J[J +  ^ (q i)] "1. (326)

Hence, F~x is a well defined matrix, and we can write (324) as

JD (q i ) -1 0nxn I y  +  F _1u5 +  JF~1J D (q i)“ 1C (q i ,q i )q iu =  -  F~l

+  F~1JD( qi)_1g(qi).

Recall from (20) that

u 3 =  (D(qi) +  J )a  +  C(qi,qi)v +  g(qi) - K d * 
=  u s( x , 0 , q d, q d, q d ) .

Equations (327) and (328) imply that

(327)

(328)

u =  u (x ,y ,0 ,q d,q d,q d), (329)
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and therefore

du d u . d u . du ~ du . du ..
dt d x X +  d y y  +  dO +  d q j ^  d q ^  +  dq j

du (3)
-----<ù ■ (330)

Define

P(t) d u  , d u  *  . d u  _(3 )

+  W * d +  W é * d '
(331)

then

ù = du
dt

du du d u -
x  +  — y  +  -~ -d  +  p(t). 

dx dy d0
(332)

We now replace the expressions vî a , y,

du du. . - . . d u .l  , du . _ . . .
U = dF = d x ^ lX + + Asyl + dÿ Î7 A2y + A * 52U1 + ^ [ “ r<̂ x  1 + *>(*)• (333)

Rearranging (333), we obtain

rr d u .  d u . 4 - , . 1 du . du ̂  . .
[■fnxn -  g^ A 2'B jJu =  ^ [ A i X  +  § 0  +  A3y] +  -A2y  -  ^ I \ s x  +  p(t). (334)

Note that

du
4 x n  <-w An -®2 — ^nXn — -̂ 2 -̂ 2

du - î
dy

— IfiXn

Equation (334) becomes

dy
du
dy

— InXn 
OnXn

^nXn
OnXn

— InXn  ̂ -F 1 *^F(qi) 1 0nXn j j- Inxn
OnXn

/ » x n - ^ î ^ q i ) " 1
I n x n - F-1 [F — / „ x n ]

F ” 1. (335)

F  *ù =  ^ [ A i x  4- $ 0  4- A3y] 4- - ^ A 2y  -  ^ I V x  +  p(t),
du 1 du du
dx € dy de

(336)

and
A •« A A

ù =  F-7p [A ix  4- $ 0  4- A3 y] +  -F -^ -A 2y  -  F -S lV px 4- F/>(t). 
d x 1 € dy d0

(337)

□
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Fact 7.1 The Lyapunov Function Candidate for the reduced system S? is the same as that of the 
reduced system <Sr, namely,

V(p) = ¿rTM(qi)r + qf h? K dÒì + 7:0T T 16. (338)

Using the derivations in the proof o f Fact 5.2, we conclude that the time derivative of V along the 
solution trajectories of Sf is

v  = [vP̂  (p)]r/(^  p, y = 0)
= - r J Kd r + 2qf ATK oqi +  r 1 F(qi,qi, v,a)0 + 6* T~l0 
= - t t K d t  +  2qf ATI(d ^i +  rTY (qi, qi, v, a)G +  0T V~x[ -r Y r (qi, qi, v, a)r -  aT0] 
= —ttK dt -f 2qf ATKpqi — cr0T 0 
=  —xTjRx — crQT 0,

where R is given by (311). Note that 
~ T  - - T

- a~0 0 = - o ~0 (0 + 0)
- T  -  ~ T=  -<70 0 -  O0 0.

Let

*• -  * ) ■ { &
O - T  ~ <T t  ~ T

= - 6 0  +  - 0 T 0  +  o 0  0 .

Hence

xT.-o0^  0 =  - 0 2 +  | 0T0 +  ° 0 T0.

Combining (340) and (342), we get

-<J0T0 =  - < 70"  0 -  0 2 + - 0"  0 + - 0T 0C tJ' :

< -  0 0 + - 0 T0.
“ 2 2

Using (343) in (339), we get

(339)

(340)

(341)

(342)

(343)

• (7 **T — 71
V < - x T.ftx - - 0 0  +  - 0T0. (344)

We thus conclude that

Vp G R2n+r, Vy G R2n, Vt G R+

V = [vP̂ (p)]T/(i,p,y = 0) < —« 1  ||x||2 — \o + \<r ||0||
Oil =  ^min[- ]̂ ^ 0. (345)

□
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Fact 7.2 Note that u is the same when the cr-modification scheme is used. Hence, using (332) (see 
the proof of Fact 5.3), we conclude that

u =  F ^ [ A lX + *e  + A3y] + ± F ^ A 2y + F ^  + Fp(t)

= F ^ [A ,x  + $ 0  +  A3y] +  i f| ^ A 2y -  (l>x +  <tT6) + Fp(t). (346)

□

Fact 7.3 (169) is derived exactly like the second interconnection condition given by (79).

□

Fact 7.4 The Composite Lyapunov Function Candidate for the singularly perturbed system Sa is 
given by (82), namely,

V(p,y) = (l-d)U(p) + dW(y) , 0 < d < 1.

The derivative of V along the solution trajectories of S is given by (83)

v(p,y) = (i -  d){[vpF(p)]T/(t,p,y)} + ^ {[vy^(y)]T̂ ,p ,y ^ ) }

=  ( i - ^ ) { [ v P ^ ( p ) ] T / ( i , p , y  =  o ) }

+(1 -  d){[Vp^(p)]T[/(i,P?y) -  f{t, P,y = 0)]} 

+ ^ { [ v y ^ ( y ) ] T ^ , p , y , e  =  o ) }

+7 {[v y^(y)]Tb(<, p,y , *)  -  g ( t ,  p , y , e  = o)]}.
We now substitute equations (44),(161), (60), and (169)

V(p,y) < - (1  -  d)ax ||x||| -  (1 -  d)-cr +  ( i - ^ K
d

+ ( i  -  d)Pi l|x||2 l|yII2 ~  7 a 2  llyII

+ 7  |€(7i +  ¿ 72) llylli +  ^2 ||x||2 ||y||2 + €fi(t) ||y||2| . 

Using (85) and (88), we can write (349) as

V(p,y)< - lly|l: Pa
l|y||2

-  7 U -  d)a

+ ^(1 -  d)a \\0\\l +  d/j?(t),

where

(1 _  d)ai - (l~d)fo+d(32
(1 -Qih+dfi d(7(02 -  72) -  d~/i m

□

(347)

(348)

(349)

(350)

(351)

(352)
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Fact 7.7

asdT(t)0(t) =

>

>

<r, ( V ( t )  -  0 (i)

<ya ||d(t)||̂  -  as0T{t)6

°S  ||^(i ) | 2 ll6,ll2

^ 11̂ (̂ 112 (1̂ {/)L -  °̂ + °̂ -  ll̂ ll2)
^  |*M ||2 (||*W ||2 -  *0) + * .  ||*(0||2 («0 -  P II2 )
0.

(354) follows from (353) using (196) and (197).

□

Fact 7.9

Let’s rewrite the equations of the singularly perturbed system S% for convenience

(353)

(354)

¿>£
' x  =  A ix  +  $ 0  +  A3y 

< Ô =  -r ^ x  -  TE0 
k ey =  A2y  4- e A j ^ ù ,

where

E =  diag[<7si,(7S2,---,(Tsr] G R rxr.

and each crst- is given by

=  <

0 if

*0« ( O

1 h-4
v 

y

) if
°0 i if

I Ôi(t) |< doi 
Ooi <| Ôi{t) |< 260i 
I Ôi(t) |> 260i

(355)

(356)

( 3 5 7 )

Using the same analysis methodology as in the original switching a-modification scheme, we first 
follow the lines of Fact 7.1, and choose the same Lyapunov Function Candidate V  for the reduced 
system. It is easy to verify that the time derivative of V along the solution trajectories of the 
reduced system is given by

V  =  - x t Æ x  -  0TE0, ( 3 5 8 )

where R is given by (311). Note that

- 0 r £ 0  =  - è TY,ê -  6TE9. ( 3 5 9 )

Define
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:=  diag [y/v~i, • • •, y/a^\ • (360)

=  | e TE0 +  +  0TS0.

Hence,

- 0 TE0 =  - e 2 +  ^ 0t £ 0  +  \ ot y,o.
Z i ¿ 4

(361)

(362)

Combining (359) and (362), we get

- 0 TE0 = - 0 TZ0 -  E2 +  ¿ 0 TS0 +  ¿ 0 TZ0

<  - i e TE0 +  l f l r E0. 
2 2

(363)

Using (363) in (358), we get

F  < - x TH x - Ì 0 TE0 +  ^ eTS0 
~ 2 2

(364)

< “ « I  IMI2 “  ^  ̂+  H0 ll2 » (365)

where

£*1 =  ^mm[- ]̂ (see (55)), (366)
Cm ’=  min{<rsi , Cs2 , • • •, c ST}, (367)

*=  max{c7sj , c s2i • • •, <7sr}. (368)

The time derivative of u  is given by

A -I A A
ù =  F ^ [ A i X  +  M  +  A3y] +  -F-̂Aiy-  ( l > x  +  TEÒ) +  Fp(t).(369)

Assume

by

(a2)/7/: which consists of (a2),; with c a, k" , and 0% replaced by S, k and 0  ̂ respectively. 

Consequently, P'J given by (198) when (a2)w was assumed, is now denoted and is given

P'J' =
(\-d)fa+dW 

2(1 -  d)ai
-Q = £*F B L i

(370)

Assume the following
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1. qd, q^, q ^  G L 2 fl L ^ , so that 3 // a positive real constant such that ¡j,(t) < /x Vi G R + , 
and //( /)  G L2 (Case 3 above.)

2. (a l), (a2),//, and (a3) are satisfied V (x ,0 ,y ) G B.

3. ct2 -  72 > 0.

Similar to the proof in Theorem 2 and Theorem 3, the time deriyative of the Lyapunov 
Function candidate V along the solution trajectories of «Se can be verified to be (using (365))

V(p,y) <

+

l|y||2

|(1 -  d)<jM||0||2 +

-  -

(371)

where P'J[' is given by (370). Similar to the case in the proof of Theorem 1, and using Assumption 3, 
the matrix P is positive definite when

€ < e'á" := 0:1(02 -  72)
a i'7i +  ~ +  dP'2 } 2

Using Assumption 1, (371) becomes

v(p,y) < -  l|x||2 ||y||2 pm IW I2

1---
-

to a__ -  5 ^  “  d)a'

+  ^(1 -  d)aM ||0||2 +  dfi2.

Define the sets

^ , s : = { ( H 2 ,||è ||2 ,| |y ||2)  6 S :  [ ||x||2 ||y||2 ] j j * j ;

+  5(1 -  <*K*|e| ’ < 1 (1 -  )<70M ||e||’  + dp?} ,

and

n *  - U I W I 2 . » us 112) e B : Pj
. IMIa .

+ 5(1  -  d)°Q |»|¡ > 1 ( 1  -  t y ?  Il<>ll2 +
=  B\ P PlE.

where

(7q :=  m in{<7oi,C7o2,--*,C70r},

a™ :=  max{o-0i,<7o2,--*,iTor}. 

Now define

: =  { ( l l x ll2 » | p | L  > lly |l2)  €  B : V ( x , 0 , y )  <  c A)E}  ,

(372)

(373)

(374)

(375)

(376)
(377)

(378)
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where is the smallest positive real number such that

V ( I M I j  , ||®||2 . Ily |l2)  6  {t\ n  v nX)} ,  ||«<> 2 0,Oi i =  1,2,

If /2, cr0l-, and #on * =  l ,2,***,r  are such that T ^ e C X, then using the same reasoning as in 
the proof Theorem 3, we conclude that for the range of e defined by (372), all solution trajectories 
starting in X converge to the residual set T ^ e? furthermore,

lim x (t ) =  0
t ----KX> V
lim y(t) =  0.

t— ►oo v '

□

(379)

(380)
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