
August 1995 UILU-ENG-95-2223
ACT-135

Applied Computation Theory

Implementing a Program
Checker for Linked Lists

D. Deavours

Coordinated Science Laboratory
College of Engineering
UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN

Approved for Public Release. Distribution Unlimited.

2b. DECLASSIFICATION/DOWNGRADING SCHEDULE

4. PERFORMING ORGANIZATION REPORT NUMBER(S)

$4. n a m e o f p e r f o r m in g o r g a n iz a t io n
Coordinated Science Lab
U n iversit^ o f^ ^ I^ ^ rjg jL s_

6b. OFFICE SYMBOL
(If app lican t)

a/A .-
6c ADORESS {City, Stata, and ZIP Coda)

1308 W. Main St.
Urbana, IL 61801

7b. ADDRESS (City, Stata, and ZIP Coda)

8a. NAME OF FUNOING/SPONSORING
ORGANIZATION

8b. OFFICE SYMBOL
(If a p p lic a la)

9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER

8c ADDRESS (City, Stata, and ZIP Coda) 10. SOURCE OF FUNDING NUMBERS
PROGRAM PROJECT TASK
ELEMENT NO. NO. NO.

WORK UNIT
A c c e s s io n n o .

11. TITLE (Induda Security Classification)

Implementing a Program Checker for Linked Lists
12. PERSONAL AUTHOR(S)

D. Deavours
13«. TYPE OF REPORT

Technical
13b. TIME COVERED

FROM___________ TO 114. DATE OF REPORT (Yaar, M onth, Day) |15. PAGE COUNT
______ 1 ^

16. SUPPLEMENTARY NOTATION

17. COSATI CODES
FIELD GROUP SUB-GROUP

18. SUBJECT TERMS (Continue on reverse i f nacassary and identify by block number)
multiplication algorthms,program checking, program verification, implementation,
software fault-tolerance, linked lists, hash functions,

19. ABSTRACT (Continue on ravana i f nacassary and identify by block number)

A program checker verifies that for a certain input, the corresponding output of a
program is correct. We present implementations of some probabilistic program checkers
and examine how well they work. First, we discuss an implementation of a probabilistic
checker for sorting that uses epsilon-biased hash functions. We show how these hash
functions may be computed with efficient methods for multiplying large integers. We
apply the hash functions to finally present a probabilistic on-line checker for linked
lists and prove its correctness.

20. DISTRIBUTION/AVAILABILITY OF ABSTRACT
Q UNCLASSIFIEDAJNLIMITED □ SAME AS RPT. □ OTIC USERS

21. ABSTRACT SECURITY CLASSIFICATION
Unclassified

22b. TELEPHONE (Include Area Code) I 22c. OFFICE SYMBOL22a. NAME OF RESPONSIBLE INDIVIDUAL

DO Form 1473, JUN 86 Previous editions are obsolete. SECURITY CLASSIFICATION OF THIS PAGE

UNCLASSIFIED

Implementing a Program Checker for Linked Lists

D. Deavours*

August 3, 1995

Abstract
A program checker verifies that for a certain input, the corresponding output of a

program is correct. We present implementations of some probabilistic program checkers
and examine how well they work. First, we discuss an implementation of a probabilistic
checker for sorting that uses epsilon-biased hash functions. We show how these hash
functions may be computed with efficient methods for multiplying large integers. We
apply the hash functions to finally present a probabilistic on-line checker for linked
lists and prove its correctness.

1 Introduction to Program Checking
Because people increasingly rely on computers for critical applications, it is important for
the output of a program to be correct. The purpose of a program checker is to verify that the
output of a program is correct. To illustrate this concept, we introduce a model for program
checking (see Figure 1). In the program checking model, the user may be a program, which
uses the facilities of the resource manager as a black box, such as an abstract data type.
In order to check that the values returned by the resource manager are correct, the user
always makes calls to the checker, which in turn makes calls to the resource manager. If the
resource manager returns an incorrect value, then the checker declares an error; otherwise,
the checker returns the value returned by the resource manager. The checker should be
transparent to the user, except when an error occurs. Furthermore, the design of the checker
should be independent of the design of the resource manager.

The checker is allowed a small, reliable workspace. The resource manager may use a large
workspace, but the workspace is not guaranteed to be reliable. A program checker may be
classified into several categories, depending on its characteristics. A deterministic checker
always declares an error whenever an error has occured. A probabilistic checker declares an
error with a certain probability whenever an error has occured. The probabilistic checker is
useful if the checker is efficient and the probability is high. An on-line checker declares an
error immediately after the error occurs, and an off-line checker declares an error sometime
after one has occured.

The resource manager provides the procedures for performing the operations requested
by the user. It contains procedures for manipulating data structures, and it may have a

* Supported by the National Science Foundation under Grant CCR-9315696.

1

Figure 1: Program Checker Model.

large, unreliable workspace. From the perspective of the checker, the resource manager may
be viewed as a black box. The checker may consider the resource manager as an adversary
that tries to sneak errors past the checker.

In this paper, we present an implementation of a probabilistic on-line linked list checker.
We first introduce hash functions in Section 2 as a tool in solving the set equality problem
in Section 3. In Section 4, we discuss the efficient multiplication of large numbers, which is
necessary for implementing the hash functions. We then apply these tools to check the Unix
so rt command in Section 5. Finally, in Section 6, we explain how to implement the linked
list checker.

2 Hash Functions
Fix n and k. Let A = { 0 ,..., 2" - 1}, B = { 0 ,..., 2* - 1}. Consider h: A - t B. If n > k,
then h maps more than one element in A to the same element in B. Our goal in constructing
a hash function h is to minimize the probability that two elements in A are mapped to the
same element in B. We can state more precisely that given x ± y, for a randomly chosen hash
function /i, ideally h(x) = h(y) with probability 1/2*. We shall construct h from a family of
simpler functions. Let T be a collection of functions / : A —>• {0,1} so that given x ^ y, for
randomly chosen function / , f(x) = f(y) with probability 1/2. By choosing k functions from
T independently and randomly without replacement, we can define h(x) = Ŷ i=o fi(x)2l-

We can construct a function / by first generating an array of 2n independently random
bits. The value of f(x) is the value of the xth bit in the array. The result is that given
x ^ y, for a random choice of / , f(x) = f(y) with probability 1/2. The drawback to using
this method is that each function / requires 2n bits of memory.

In order to use less memory, we may define a new function f which constructs a bit for
f'(x) by using fewer than 2n random bit variables. The result is that when i / j/, then
f i x) = f (y) with probability less than 1 - (3. The construction of f which we will examine
has (3 — 1/8, and requires only 0(n) memory for each / '. To construct h, we must use more
/ ' functions than / functions. The number of }' functions needed comes from solving the
equation (1/2)* = (l/8)m for m. In this case, m « 5.2k, so for h : A -> { 0 ,..., 2m - 1}, if
x ± y, then h(x) = h(y) with probability 1/2*.

The construction of f can be conceptualized as generating a random bit vector r which
is 2n bits long. At any instant, only one bit of r is needed, so we will show how to construct
this bit. We denote r[x] to be the bit vector of r in the x-th dimension. Naor and Naor [1]
suggest the following method for constructing r[x]:

• At the start of the program, assign independent random values uniformly distributed
in A to the variables do, di, bQ, &i, 62? &4, &6, and c.

• Each time we wish to compute r[rr], we execute the procedure given in Figure 2.
Throughout this paper, we use the following font conventions for programs:

typew riter font is used for checker procedures, linked list procedures, and class
names. Read is the checker procedure, while read is the linked list procedure.

3

declare array of words ao ,a i,b0, &i, ¿5? &6,c
(* These are assigned random values previous to calling hash. *)

procedure hash (array of words x)
declare array of words s
declare word j , i
declare bit r
s := ((((((&6 * x + 65) * x + 64) * x + 63) * x + 62) * x + 61) * x + bQ)
if (parity(s) = 1) then

return (0)
else

s := a\ * x -f- do
j := log n — highbit(s) (* Log base 2 *)
r := 0
for i := 0 to j — 1 do

r := r © c[i]
(* The operation © is bitwise XOR *)
(* c[i] is the z’th significant bit in c *)

return r
endif

Figure 2: Implementation of Hash Function / '.

italics are used for other procedures and variable names,
bold is used for key words, declarations, and flow of control.
(* comment *) Comments are enclosed between (* and *).

The declaration type word is the natural word size of the computer. When a variable
is larger than the natural word size of the computer, it is represented by an array of
words. The function highbit(x) is max{2|x, = 1}, where x* is the z-th bit position in
the binary representation of x.

The motivation for and correctness of this construction are given by Naor and Naor [1]. An
implementation is given in Figures 2 and 3.

The complexity of computing a single bit r[x] is largely determined by the parameter n.
The time required to compute a bit is 0(1) for n-bit sized words. However, n may be much
larger than the word size of a computer. The real computational cost is proportional to
multiplying words of n-bits. An analysis of multiplying long words is presented in Section 4.

The exact amount of memory required to compute the bit r[x] is 9n bits. One method
to create m such r vectors is to use 9mn random bits. Another method, suggested by Naor
and Naor, uses expander graphs. However, the explicit construction of an expander graph is
prohibitively complex [3], and so we did not implement it.

4

procedure Hash(a.nay of words x , array of words y)
(* x is the element to hash into the set *)
(* y is the hashed value which we update, passed by reference *)
declare integer i
for i := 0 to size of y do

Vi := Vi ® hash(x)
(* The operator ® is bitwise XOR *)
(* yi is ith bit in y *)
(* hash is the hash procedure in figure 2 *)

endfor

Figure 3: Implementation of Hash Function h.

3 Set Equality
Consider the finite sets I and D , both containing only distinct elements. We say that I is
equal to D if they contain the same elements, that is, / C D and D C L

One way to solve the set equality problem is to create a large hash table. Then for each
element in / , insert the element into the hash table while keeping track of the number of
elements in I. Next, for each element in D, delete the element from the hash table. If we
attempt to delete an element which which is not in the hash table, or the size of I is not the
size of D, then the two sets are not equal. Otherwise, I = D. If n = |/ |, then this method
uses Q(n) memory and takes 0(n) time to compute.

A probabilistic method using hash functions shown in Figure 4 may also be used to solve
this problem. Let h : A —> { 0 ,..., 25,2* - 1} be a hash function described in Section 2. The
pseudo code given in Figure 4 shows how this hash function can be used. The parameter
k passed to the procedure SetEq is the confidence parameter, so that if the two sets are
not equal, then the procedure returns Equal with probability less than 1/2*. Let m be the
maximum size of an element in bits. This procedure runs in 0{n) time for a word size of
5.2k bits, but uses only 0(km) bits of memory. We show how the running time changes with
a word size smaller than 5.2A; in Section 4.

The insertion and deletion procedure does the same thing, namely invoking Hash(e, H),
because Hash is an involution because of ®.

4 Multiplying Large Numbers
Multiplying large numbers is a problem computers are often required to do, so finding an effi­
cient method is important. One application of multiplying large numbers is in generating the
hash function described in Section 2. Several different methods are known for accomplishing
this. The Schonhage and Strassen algorithm can multiply m-word numbers in O(mlogm)
time on a random access machine [4]. Another simpler method, though asymptotically less

5

declare procedure initialize(a,na.y of words x, word i)
(* Initializes each word in x to i *)

procedure SetEq(set / , D, word k)
declare array of words H[5.2 x k/wordsize]
(* k is the confidence parameter desired *)
declare element e
declare word count
initialize(H, 0)
foreach e G / do

Hash(e, H)
(* Element e may be larger than one machine word, so cast Element into array of words *)
(* The procedure Hash is defined in Figure 3 *)
count := count + 1

endfor
foreach e € D do

Hash(e, H)
count := count — 1

endfor
if (count = 0 and H = 0) then

return Equal
else

return NotEqual
endif

Figure 4: Probabilistic Set Equality.

6

efficient, takes advantage of some properties of multiplication, which makes it solvable in
0(m1+€) time, where e may be arbitrarily small.

In this study of program checking, values of m stay relatively small, but are still large
enough that using an efficient method is important. We examine two methods here: a
straightforward method using 0(m2) time, and a recursive method which uses 0 (m L585)
time.

The first method is similar to one we are accustomed to when multiplying multi-digit
numbers by hand. Example code is given in Figure 5. This procedure requires 0 (m 2) words
of intermediate memory. A modification to this method uses less intermediate memory, and
example code for this is given in Figure 6. Each multiplication and addition operation is
performed in a single step using this method, and this modified method requires only a small
amount of intermediate memory (0(1)). We will call this Method 1. This improved method
still requires 0 (m 2) time.

The second method uses recursion and some algebraic properties. First, we introduce the
notation (xi,x0) = Xi2w/2 + x0 if x0 is w/2 bits long. For an example, we wish to multiply
(ai,ao) by (b\,bo), with with ai, a0, £>i, and b0 each w/2 bits long. The number of bits w
must be even. First, we compute some intermediate values.

p := a\b\
q := ao&o
t ai + ao
u := 6i -+■ bo
r := tu

Then, {aX} a0)(6i, b0) = p2w + (r - q - p)2w!2 + q. We call this Method 2.
Notice that there are only three multiplications of (u;/2)-bit numbers in this step. There­

fore, two numbers represented by m words can be multiplied recursively using three multipli­
cations of m/2-word numbers. It follows that an m-word multiplication may be computed
in mlog23, or m1585 word multiplications. Example code for this is given in Figure 7. To en­
sure that the recursive multiplications are limited to m/2 words in length, the computation
of (ai + ao) is done in a temporary memory location of size m/2-words, which leaves the
possibility of an overflow. To compensate, we keep two carry bits (ci and c2) and perform
further additions whenever necessary.

The caller passes to Multiply two m-word arrays representing the two numbers to be
multiplied, and one 2m-word array res to place the product of x and y. Since they don’t
overlap, p and q may be computed and written directly to the product array res. As a result,
the memory used in one step is by t, u, r, and the memory required to multiply two m/2
word sized numbers. The variables t and u are m/2 words long, and r is m words long, so
the memory used by this algorithm (M(m)) to multiply two m-word numbers is

M(m) = m/2 + m/2 + m + M(m/2) + 0(1)
= 4m-I-0(1).

Since Method 2 requires a considerable amount of intermediate memory allocations and
many 0(m) operations, the overhead involved in multiplying small numbers may be sub-

7

procedure Multiply (array of words x, y, res, word m)
(* x and y are factors, res is the product *)
(* m is the size of the x and y, and res is 2-m words *)
declare word i, j , c , d
(* i and j are index variables, c and d are temporary carry variables *)
declare array of words q[0. . . m — 1][0. . . 2m — 1]
(* q stores the intermediate values in the computation *)
initialize(q, 0)
in itia lize^ es, 0)
(* Do all multiplications and store in intermediate memory *)
for i := 0 to m — 1 do

c := 0 (* c is the carry to the next significant word *)
for j := 0 to m — 1 do

q[i][i + j] := low half of (x[i] x y\j] + c)
c := high half of (x[i] x y\j] + c)

endfor
q[i\\i + j + 1] := c

endfor
(* Add up all intermediate values and put result in res *)
for i := 0 to m — 1 do

c := 0
for j := 0 to 2m — 1 do

d := high half of (res[i] + q[i][j] + c)
res[i] := low half of (res[i] + q[i][j] + c)
c := d

endfor
endfor

Figure 5: Naive method, res = x x y.

8

procedure Multiply (array of words x, y , res, word m)
declare word i, j , c, d
initialize^es, 0)
for j := 0 to m — 1 do

c := 0 (* C is the carry to the next significant word *)
for i := 0 to m — 1 do

d := high half of (x[i] x y[j] + res[i 4- j] + c)
res[i + j] := low half of (x[i] x y[j] + res[i + j] + c)
c := d

endfor
res[j + m] := c

endfor

Figure 6: Method 1.

stantial. In order to determine whether Method 1 or Method 2 is better to use for a certain
range of lengths, we implemented these methods and took performance measurements.

This experiment was done on a SPARCstation IPC, compiled using the GNU C compiler
with a word size of 32 bits. The results are given in Table 1 and plotted in Figure 8. A
moderate amount of effort was used to make the procedures efficient.

The results are interesting, but can be misleading. The numbers reflect both the quality
of the algorithm and the particular implementation. For example, when the input is two
words long, Method 1 is faster even though it is the base case of Method 2. Method 2 could
be changed to optimize the base case so it would be faster. One of the first versions read
32 bits at a time from the array and then did 16 bit manipulations on it. Subsequent versions
read 16 bits at a time for simplicity, and the results were a substantial (constant) loss in
performance. Also, a check for multiplication by zero may or may not yield a performance
gain, depending on the frequency of zeros.

Basically, the programs follow theoretical results quite closely. As the input size doubles,
the time to compute the result triples (Method 2) or quadruples (Method 1.) Method 1 has
time complexity 0 (m 2), and the time can be closely approximated as t = (2.764ps) x m2,
where m is the length in words. The time taken by Method 2 can also be closely approximated
by t = (16/.is) x m1-585.

For our purposes, this experiment yielded valuable results. For 32 to 512 bit numbers,
Method 1 provides better performance, and for numbers longer than 512 bits, Method 2 is
faster.

9

declare procedure MultiwordAdd(&nay of words x, y , res, word size)
(* res := x + y. Return carry bit (0 or 1) *)
declare procedure MultiwordSub(axi&y of words x, y, res, word size)
(* res := x — y *)

procedure Multiply (array of words x, y, res, word length)
(* length must be power of 2 *)
(* res is passed by reference *)
if (length = 1) then

res[0] := x x y /BASE
resjl] := x x y mod BASE

else
declare array of words r[length + 1], t[length/2], u[length/2]
declare word halflen, c\, c2
halflen := length/2
Multiply(x, y, res, halflen)
M ultiply(x + halflen, y + halflen, res + length, halflen)
ci := MultiwordAdd(x, x + halflen, t, halflen)
C2 := MultiwordAdd(y, y + halflen, u, halflen)
Multiply(t, u, r, halflen)
if (ci = 1 and c2 = 0) then

Ci := MultiwordAdd(r + halflen, u ,r + halflen, halflen)
r [length] C\

else if (ci = 0 and c2 = 1) then
c2 := MultiwordAdd(r + halflen, t ,r + halflen, halflen)
r [length] := c2

else if(ci = 1 and c2 = 1) then
ci := MultiwordAdd(r + halflen, t ,r + halflen, halflen)
c2 i= MultiwordAdd(r + halflen, u ,r 4- halflen, halflen)
r[length] := Ci + c2 4-1

endif
MultiwordSub(r, res, length)
MultiwordSub(r, res + length, length)
Ci := MultiwordAdd(res + halflen, r, res 4- halflen, length)
res[length + halflen] := res[length + halflen] + Ci

endif

Figure 7: Method 2.

10

Figure 8: Tim
e plots for m

ethods 1 and 2.

Multiplication Timings

Length
(bits)

Method 1 Method 2

32 20.91 fis 40.64 ns
64 70.71 /xs 127.8 ns
128 259.1 ns 414.0 ns
256 932.7 ns 1.256 ms
512 3.346 ms 3.804 ms
1024 12.34 ms 11.41 ms
2048 47.14 ms 34.61 ms
4096 184.0 ms 104.8 ms
8192 727.0 ms 316.9 ms
16384 2.891 s 948.6 ms
32768 11.52 s 2.849 s
65536 46.38 s 8.548 s
131072 187.6 s 25.68 s
262144 733.7 s 77.13 s
524288 3036.6 s 232.0 s

Table 1: Methods 1 and 2.

5 Checking the Unix sort program
Many sorting programs use algorithms which run in 0 (n log n) time, where n is the number
of elements to sort. To determine that the output of a sorting program is correct, a checker
verifies that the output is in sorted order and that the input and output sets are equal.
Determining that the output is in sorted order is a simple problem that can be solved in
0(n) time with 0(1) memory. Our checker determines whether the input and output sets
are equal by using the probabilistic technique described in Section 3. Using this method,
the sort program can be checked in 0(kri) time using 0(km) memory, where m is the
maximum size of an element and k is the confidence parameter. This checker detects errors
with probability 1 — l /2 fc.

Our Unix sort checker is simply an application of the set equality algorithm discussed
in Section 3 with an additional check that the output is in sorted order. It is important
to note that it is common for text files to have identical lines. For example, all blank lines
are identical. In order for the elements of the sets (which are text lines) to be distinct, we
append a line number to each line before it is hashed and sorted, and then strip the line
numbers before printing sorted text.

The program checker works as follows:

1. Open files and pipes, and fork a subprocess to run sort.
2. Read in the input, append a line number to each line, insert the line into I set, and

pipe lines to sort. Continue until end-of-file.

3. Read in each line of the output of sort, insert the line into D set, determine that the
output is sorted, strip the line numbers, and send line to standard out. Continue until
end-of-file.

12

4. Determine whether / = D.

For n input lines, sort runs in 0 (n log n) time, and the checker runs in O(kn) time. With
a fixed k and a sufficiently large n, the checker should run faster than sort. For practical
sizes of n, however, this is not the case. The constants for sort are much smaller than the
constants for the checker. With the input lines bounded to 118 characters, the checker can
check approximately 350/A; lines per minute. For n < 100,000, sort can sort 7500 lines per
second. With k = 1, the checker will run as fast as sort with n « io700’000.

The primary benefit of using this checker is that it uses a small amount of memory
(5.2A; logm bits). Any sort program can be checked using this method, and the output can
be checked within any desired probability. The drawback is that the constants of operation
are so large that it is impractical to use in many cases. If a sort program needs to be checked
efficiently, using a deterministic checker, while using 0{n) memory, may be more practical
since most sort programs use 0(n) intermediate memory as well.

6 On-line Linked List Checker
6.1 Introduction
The linked list is an important fundamental data structure. Since implementations of linked
lists are often simple, it is possible to formally verify the correctness of a linked list program.
Why, then, implement a program checker for linked lists?

There are several reasons for designing and implementing a linked list checker. Formal
verification, though a powerful academic tool, can not detect compiler bugs, operating sys­
tem bugs, or hardware faults. Program checkers provide a mechanism for detecting errors
wherever they occur, and on-line checkers catch any errors immediately. Whenever data
reliability is paramount, a program checker assures that errors are detected.

Though linked lists are inefficient for many applications, they are simple. It is this sim­
plicity which allows us to easily study, implement, and present a program checker. The same
principles demonstrated here may be applied to more complex and useful data structures.

To implement the program checker efficiently, we use a probabilistic checker, utilizing
the tools explained earlier in this paper. These ideas are based on a paper of Amato and
Loui [2].

6.2 Linked List Checker Overview
In this section, we define the procedures used in the linked list checker and the restric­
tions that apply to them. In Section 6.7, we discuss how the checker’s data structures are
implemented and explain how each procedure modifies the data structures.

Each element of the linked list L contains the following fields:

e.id = unique identifier
e.sid = identifier of the successor of e
e.data = data field

13

The e.id field may contain the address of the element plus some unique information so the
address may be efficiently extracted from the id and yet be unique.

The resource manager provides the following procedures:

headQ:
next(e):
read(e):
write(e):
in se r t (pred,e):
d e le te (pred, e):

returns a copy of the head element
returns a copy of the successor of e
returns a copy of the element with identifier e.id
copies element e to the element in the list with identifier e.id
inserts element e into list after pred
deletes e, successor of pred, from list

These procedures may be called by the checker.
The checker provides the user with the same procedures, which we denote Next, Head,

Read, Write, Insert, and Delete. When the user calls one of these procedures (which
are implementations of user operations), the checker may call procedures in the resource
manager. If the resource manager makes an error, then with high probability the checker
detects and declares the error. The checker also provides the procedure Deactivate(e),
which is explained here.

To implement a program checker efficiently, the checker must introduce some restrictions.
We allow the user to invoke linked list procedures only on active elements. This means that
every element passed as a parameter must be active, except for e in the In se rt (pred, e)
procedure. The head element is always considered active. The element returned by Next(e)
is considered active. An element remains active until either e is deleted or Deactivate(e)
is called. No other operation changes the activity of an element. The reason for restricting
user operations to active elements is discussed in Section 6.3.1.

6.3 Internal Structures
In the program checking model, the checker has a small, reliable memory. Our linked list
checker keeps several structures in its reliable memory. First, the checker keeps a copy of
the head element of the list. The checker also keeps a list of (hashed) sets for each active
element, as discussed in Section 6.3.1.

6.3.1 Logarithmic Subdivisions

The checker keeps a logarithmic subdivision (LSD) for each active element. An LSD is simply
a collection of sets. Each set contains elements which are copies of contiguous elements in
the linked list. Each element in the linked list L is duplicated in exactly one set. The sets
are ordered 50, Si, S2, • • •, Sn. In general, 5*+i contains twice as many elements as 5», and
So always contains one element.

Consider the case with one active element eo- We will label subsequent elements in the
L as e i,e2, __ Each |S*| = 2*, except the last set, which may contain fewer elements.
Therefore

Si = {e2»_i,.. •, e2i+i_2}.

If more than one element is active, then the LSD includes all elements starting from the
active element and extending to (but not including) the next active element.

14

Let a be the maximum number of active elements in the list, d be the total number of
elements in the list, and m be the maximum size of an element. There are at most [log cf| sets
per LSD, and 0(a log d) sets per list. If a becomes large, for example, if a is proportional
to d, then the number of sets becomes 0(d). This is why a must be small relative to d.
Since each hashed set takes 0(km) where k is the confidence factor and m is the maximum
element size, and the checker keeps 0(a\ogd) sets, the total amount of space the checker
uses is 0(akm log d).

6.3.2 Relaxed Logarithmic Subdivisions

To maintain a rigid 1,2,4,8, . . . structure for the size of sets in a LSD is computationally ex­
pensive: each insertion or deletion requires 0(d) work. To avoid this, we relax the restriction
on the size of the sets. We require

2* < \Si\ < 3 x 2 * .

We call an LSD observing these restrictions a relaxed logarithmic subdivision (RLSD). If Si
gets too large, then the checker moves 2* elements to S,+1, or if 5* gets too small, then the
checker moves 2* elements from Si+1 to Si. The checker moves elements so that elements in
the set are contiguous elements in the list. We also require that \So\ = 1 always.

For a set Si, moving elements can occur at most once every 2* user operations. This is
easy to see because after moving elements from one set to another, |S*| = 2 x 2*. It takes
2* insertions or deletions to make the set too large or too small again. Since the checker
does 0(2*) work at most once in every 2* user operations for each of alogd sets, the checker
averages 0 (a log d) work per In se rt or Delete operation. The number of sets in an RLSD
is at most one more than the number of sets in an LSD, so memory usage is approximately
the same.

6.4 Checker Procedures
The checker maintains several invariants. First, the checker always keeps hashed sets, which
include elements in L as they were last written. Second, the checker reads only elements from
L that comprise an entire set so the checker can compare the set of elements read from L
with the (hashed) set kept by the checker for equality. The checker keeps a copy of the head
element of L and maintains an RLSD for each active element as described in Section 6.3.2.
Finally, whenever a new element is inserted into L , the checker gives the element a unique
identifier id. To simplify computation, the id may be the address of the element in memory
concatenated with a unique number. In this section, we explain how each user procedure
modifies the checker’s data structures.

For the procedure Read(e), we insist that e be an active element. Let So be the first set
in the RLSD for e, so So = {e}. In the Read(e) procedure, the checker does the following:

1. Create a new, empty set D.
2. read(e) and add e to D.
3. Determine whether D = So-

15

procedure Insert (element pred, e)
(* This procedure does not conform to Section 6.7.1 *)
Insert e into Si
(* Si is second set in RLSD for pred *)
if (|5i| > 3 x 2*) then

ForceRLSD(1)
endif

Figure 9: Insertion algorithm,which uses the ForceRLSD procedure shown in Figure 10.

Therefore, a Read(e) procedure can be checked in 0(k) time.
The HeadQ procedure differs from the ReadQ procedure because the checker keeps a copy

of the head element in reliable memory. To check the statement e = head(), the checker
simply determines whether e is identical to the copy of the head element stored in the
checker’s reliable memory. The time to check the head() procedure is 0(1).

The Write(e) procedure makes simple changes to the data structures. Let So be the set
which contains e. The checker does the following:

1. Create a new empty set D.
2. Add e to D.
3. Replace So with D.
4. write(e).

If the resource manager fails to write e correctly, then we do not consider the write fault an
error. Only the subsequent erroneous read of e will be designated as an error.

In Section 6.3.2, we explained how the checker moves elements between sets to maintain
the RLSD structure. The In se rt operation requires the checker to move elements from Si
to S{+1 when |S,| > 3 x 2 * . For the operation In se rt (pred, e), the element pred must be
an active element, so So = {pred}. Since we require |So| = 1, we may insert e into Si. If
|Si | > 6, then the checker moves elements according to algorithm shown in Figures 9 and 10.

For the Delete operation, we require that for Delete(pred, e), both pred and e be active
elements. Let S0 = {pred}, S'Q = {e}, and S'0, S[, S '2, . . . be the RLSD for e. Since e is deleted,
it is no longer active. The checker simply makes the RLSD for pred to be So,S[,S2 —

The Next(e) procedure is more complex than the other procedures. Let e be active, / be
inactive, and suppose the user executes / := Next(e). After the Next operation, e remains
active and / is active. The change of / forces a change in the structure of the RLSD. For
example, let the sets in the RLSD for e be ordered So, Si, S2, ----Since e is active, So = f a -
Assume Si = {ei,e2,e3}. In order to subdivide the set Si, the checker creates new sets
S'Q = {ei} and S[= f a , 63}. In this example, ei would become the new active element, SJ
would be the first set in the list, and S[would become the second set.

16

procedure ForceRLSD (integer i)
if (\Si\ > 3 x 2 *) then

if Si+i does not exist then
Create a new, empty Si+i
M oveLast(i). (* Move the last 2* elements from Si to 5*+1. *)

else
MoveLast(i) (* Move the last 2* elements from Si to Si+i *)
ForceRLSD(i + 1) (* Re-balance Si+i *)

endif
else if (| 5,| < 2*) then

if Si+i exists then
MoveFirst(i) (* Move the first 2* elements from Si+i to Si *)
ForceRLSD(i + 1) (* Re-balance 51+i *)

endif
endif

Figure 10: RLSD balancing algorithm,which uses procedures in Figures 12 and 11.

Let the sets in the RLSD be ordered 50, Si, — Here is how the checker may implement
the Next(e) operation:

1. Let / := next(e).
2. Check whether /.id = e.sid.

This is necessary to ensure the correctness of the checker, as shown in Section 6.6.

3. Subdivide S\ (Figure 13).
Remember that insertions and deletions of elements in a hashed set can be done in
0(k) time.

4. Make / active.

The pseudo code for subdividing is given in Figure 13. Each set Si has a size of approxi­
mately 2* elements, and Next requires calling MoveFirst only once per 2* successive Next
invocations. Since there are O(logd) sets per list, the amortized time for each Next operation
is O(logd).

6.5 Variations
To improve the performance of the checker, we suggest several variations. First, instead
of having each RLSD keep sets of minimum size 1, 2, 4, 8, . . . the RLSD could keep sets
of minimum size 1 , 1 , 2, 4, 8, . . . , which has the property that \Si\ = \Sj\. Several
procedures may take advantage of this change, as we shall now see.

17

(* Move last 2* elements from 5* to 5»+1 to maintain RLSD *)
procedure MoveLast(integer i)
declare new, empty set D , S[
declare integer j
declare element e
e := first element in Si
for j := 0 to |5j| — 2* — 2 do

Insert e into S[(* Actually uses hashed sets *)
Insert e into D
e := next(e)

endfor
for j := |Sj| - 2* - 1 to \S{\ - 1 do

Insert e into Si+i
Insert e into D
e := next(e)

endfor
if D 7̂ Si then “BUGGY” (* Uses probabilistic set equality procedure *)
Set new 5* := S[

Figure 11: MoveLast procedure.

18

(* Move first 2* elements from S*+1 to S* to maintain the RLSD *)
procedure M oveFirst{integer i)
declare new, empty set D, S'i+l
declare integer j
declare element e
e := first element in S,+1
for j := 0 to 2* — 1 do

Insert e into S*
Insert e into D
e := next(e)

endfor
for j := 2* to |Sj| — 1 do

Insert e into S[+l
Insert e into D
e := next(e)

endfor
if D ^ S i+1 then “BUGGY” (* Uses probabilistic set equality procedure *)
Set new Si+i := S[+1

Figure 12: MoveFirst procedure.

19

(* Subdivide S\ and force RLSD structure. *)
(* This will not work with relaxed Next and Delete restrictions of Section 6.5.*)
procedure Subdivide^lement e)
(* e is the active element in Next operation *)
declare new and empty sets D,S'0,S'1
declare elements / , g
declare integer i
/ := Next(e)
if f.id # e.sid then “BUGGY”
for i i— 1 to |5i| do

Insert / into S[
Insert / into D
g := Next(/)
if g.id ^ f.sid then “BUGGY”
f - = 9

endfor
if Si then “BUGGY”
Set new So := S'0
Set new S\ := S[
(* Note: \S[\ = \Si \ - 1, so S[may be too small. *)
ForceRLSD(1)

Figure 13: Subdivide 5i and re-balance the RLSD.

20

Several improvements rely on lazy evaluation, which means the checker waits as long as
possible to do work and then updates the data structures only where necessary. For the
Delete or Next procedures, the checker need only make |5o| = 1 by subdividing the next set
in the RLSD, instead of re-balancing the rest of the RLSD. If a set becomes empty in the
process, the checker deletes the set from the RLSD. For example, let the sets in the RLSD
be So, S{, Si+i, . . . then execute the Delete operation. The set Si becomes subdivided into
sets So, . . . , Si-i, and the sets in the RLSD will be So, S i , . . . , S i-1, Sj+i, — The subdivision
of Si into So,. . . , Si-1 takes advantage of |5*| = £J=o \Sj\.

Every user operation except Write requires the checker to execute read on the active
element and insert e into a hashed set D\ then compare D with So- The checker may instead
keep a copy of the active element in reliable memory and compare copies instead of hashed
sets; this avoids dealing with any sets. This method uses 0(akm log d + am) memory where
m is the maximum element size (see Section 6.3.1), or simply 0 (a k m logd).

6.6 Correctness of the Checker
Lemma. If a user operation op € O malfunctions, then with high probability the checker
immediately detects the error.

Proof. Assume some op € O malfunctions. Let e be the element involved in the error.
There are two ways that an error can occur.

1. next(e) fails to return the next element
2. the value read from the list for e are not the same as the value last written to e.

Both are read errors.
The program checker reads from the linked list in only two circumstances:

1. a read occurs on an active element, or
2. all the elements of a subdivision are read while subdividing.

We will see that the checker catches the error in both circumstances.
Let ew be e as it was last written to, and er be e as it was read.

Case Is If the checker reads from an active element e, then the subdivision contains a single
element in S0, which is {ew}. We create a new set D = {er}. If er ^ ew, then clearly D ^ S0,
and the checker detects this error (with high probability).
Case 2: If the checker reads an entire subdivision, then let S, be the set of elements in the
subdivision {eg', ef, e j , ...} . Let D = {er0, e[, er2, ...} . If some e\ ^ e f, then two possibilities
exist.

1. Si # D, therefore the checker outputs “BUGGY” with high probability.
2. Si = D, but as the checker was traversing the list, elements were read in the wrong

order. Let e be the first element read out of order, and pred be the predecessor.
When subdividing the list for the operation e := next (pred), the checker finds that
pred.sid ^ e.id and declares an error. □

21

This algorithm is an improvement over the algorithm presented by Amato and Loui [2]
because it does not require time stamps.

Lemma. If the checker declares an error, then a malfunction occurred.

Proof. We declare an error in two circumstances

1. If pred.sid ^ e.id, then the checker declares an error.
2. If S{ ^ D, then the checker declares an error. Each element in Si is unique and correct.

Some element ef e Si but e? £ D. This means e? ^ e-, so e\ is incorrect. □

6.7 Implementation
In this section, we discuss an implementation based on Section 6.

6.7.1 A ctivity of Elements

We loosely say in Section 6.2 that an element is active if it may be used as a parameter for
one of the checker procedures. For our implementation, we must define the word active more
precisely.

Head The head element is always active, so executing this procedure does not change the
activity of any element.

Next Let / := Next(e). Previous to the execution of this statement, e must be active and /
may or may not be active. After executing this statement, if / is active (and e remains
active).

Read Let / := Read(e). Previous to executing this statement, e must be active. After
execution of this statement, e remains active.

Write Previous to executing Write(e), e must be active. After executing the procedure, e
remains active.

Insert Remember that Insert (pred, e) inserts e after pred. Before executing this state­
ment, pred must be active. After executing this statement, both pred and e are active.

Delete Remember that Delete(pred, e) deletes e, the successor of pred. Before executing
this statement, both pred and e must be active. After executing this statement, pred
remains active.

Deactivate Before executing Deactivate(e), e must be active. After executing the proce­
dure, e is not active.

The tendency of these procedures is to make a large number of active elements. This
requires careful use of the Deactivate procedure. Since, for example, most of the time the
user may want execute Deactivate(e) after / := Next(e), the user may wish to add an
additional layer between the checker and the user to more carefully manage active elements.

22

class Active {
declare RLSD rlsd := NULL (* RLSD S0 *)

Active prev := NULL (* Previous Active element in list *)
boolean activejvar := false
integer id := 0 (* The id of the active element *)

}

Figure 14: The Active object.

class RLSD {
declare RLSD next := NULL

prev := NULL
tail := NULL

integer size := 0 (* Size of the set *)
head := 0 (* id of head element *)

HashedSet set := empty HashedSet;
}

Figure 15: The RLSD object.

6.7.2 Internal Data Structures

The checker keeps track of active elements by keeping an array of Active objects. The
Active object is the highest level object which contains references to all other information,
such as the active element and RLSDs. A graphical representation of the data structures
is given in Figure 16. The Active object is given in Figure 14. Our implementation of the
linked list checker is written in C++, so the code in the figures for this section resembles
C ++ style. All the class definitions are cumulative.

The RLSD class is specified in Figure 15. It is a doubly linked list with a pointer to the
tail of the list. Each instance of the RLSD class contains a set of elements in an RLSD, and
the whole structure of linked RLSD classes makes up an RLSD. The RLSD must know the size
of the set, the sequence number (n of 5„ in Section 6.3.1), and the head element of the set.
It must also keep the hashed sets 5* (see Section 6.3.1).

The HashedSet class is shown in in Figure 17. The HashedSet object is similar to the
SetEq procedure shown in Figure 4. Instead of using two sets and comparing them, we
may insert and delete elements from the set, and then we may (probabilistically) determine
whether the set is empty. This is equivalent to adding elements into the insertion set, adding

23

Linked List

el e2 e3 e4 e5 e6 e7 e8 e9 elO ell el2 el3

Figure 16: Graphical representation of checker data structures.

elements to the deletion set, and then determining if the two sets are equal.

6.7.3 Checker Procedures

We wish to design the procedures for the checker so they operate efficiently and manipu­
late the data structures correctly. Here we describe how each procedure changes the data
structures.

First, there is a useful subroutine called subdivide. This subroutine, given in Figure 18,
differs from the subroutine given in Figure 13 in that subdivide works with the relaxed
techniques in Section 6.5, but is only used for Next.

The implementation of the head procedure is simple. The code is given in Figure 19.
The Read procedure is also simple. Figures 20 and 21 shows pseudo code for our imple­

mentation. Determining whether e is active requires checking e.id against all active[i\.id for
i in [1 ..MaxActive].

The Write procedure shown in Figure 22 is similar to the Read procedure.
The Insert and Delete procedures are more involved than the Read and Write proce­

dures. The Delete procedure is shown in Figure 23. The procedure begins by determining
that pred and e are active elements, then finding the RLSD which contains pred and e. Next,
the Active object containing e is removed from the active array, which simply involves
changing pointers. Finally, since the delete procedure changes prev in the linked list, we
ensure that the RLSD containing prev has an accurate copy of it in its (hashed) set. The code

24

class HashedSet {
declare integer count (* Number of elements in set *)

array of words H (* Similar to Figure 4 *)
procedure Insert(element e)

Hash(e, H) (* See Figure 3 *)
c o u n tc o u n t + 1

procedure Delete (element e)
Hash(e, H)
count := count — 1

procedure Empty ()
if {count — 0 and H = 0) then

return true
else

}
return false

Figure 17: The HashedSet object.

shown in Figure 23 is simplified in that it assumes that e is not the head element of the list.
The Insert procedure is similar to the Delete procedure except that e is obviously not

active. The Insert procedure begins by determining that pred is active, then assigns a
unique id to e, which is an important feature for correctness (Section 6.6). Next, it does
the equivalent of Read(e), which is necessary because prev.sid is changed by the insert
procedure. After insert, it makes sure that the set in the RLSD containing pred contains an
accurate value for pred.

The Next procedure is more complex. Remember that the statement / := Next(e) begins
with e active and / possibly active, and leaves / active. The procedure must first make sure
e is active. Since e is modified, the record is read and therefore must be checked using the
probabilistic set equality checker (check if {e} = So). Next, S\ must be subdivided so that
|Si | = 1 (see Figure 18). The checker then checks whether / is the successor of e, and inserts
/ into the active array.

6.8 Checking the Checker
The purpose of using a program checker is to ensure reliability of a system, but it is not
obvious whether the implementation of the checker is correct. To ensure the checker is
correct, we would require a checker for the checker, and there are obvious problems with
that. We use a simple heuristic to check the checker: after every user operation, check all
the internal data structures to see if they are consistent and valid. By internally consistent,
we mean that the data structures make sense with respect to basic data structure rules, so
that pointers point to valid data, e.next.pred = e, etc. By valid, we mean that the data

25

class Checker {
declare

procedure RLSD subdivide(RLSD rlsd)
declare RLSD newjrlsd, oldjrlsd

element e, /
int j , new size

if (rlsd.size = 1) th en (* Trivial case *)
e.id := rlsd.head (* Determine {ew} = {er} in case 1 of Section 6.6 *)
e := read(e)
if (not rlsd.set.Empty()) th en E R R O R

(* Determine if D = So *)
rlsd.set.Insert(e) (* Put e back into RLSD set *)
re tu rn rlsd

else
e.id = rlsd.head (* Case 2 of Section 6.6 *)
e := Read(e)
new jrlsd.set.Insert(e)
Link newjrlsd into head of list.
i := 1
newsize := 1
while (i < rlsd.nextsize) do

oldjrlsd := newjrlsd
newjrlsd := New RLSD
oldjrlsd.next := newjrlsd
newjrlsd.prev := oldjrlsd
newjrlsd.tail := rlsd.tail
for j = 1 to Min((r/sd.neztsz2e — i), newsize) do

/ := Next(e)
if (f.id ■=/=■ e.sid) th en E R R O R
e := /
newjrlsd.set.Insert(e)
rlsd.set.Delete(e)

endfor
i := i + j
newsize := newsize x 2

endwhile
if (not rlsd.set.Empty()) th en E R R O R
rlsd.next.prev := newjrlsd
endif

}

Figure 18: The subdivide procedure.

26

class Checker {
declare element headcopy

procedure element HeadQ
declare element e

e := head()
if (e = headcopy) then ERROR
return e

}

Figure 19: The head procedure.

declare procedure integer Deter mine Activity (e)
(* Returns index of element e in active array *)
declare integer i
for % := 1 to M A X A C T IV E do

if (active[i\.id = e.id) then
return i

endif
endfor
return INVALID

Figure 20: Determine if element e is active.

27

class Checker {
define Max Active Maximum number of active elements
declare Array of Active active[l.. Max Active]
declare p rocedure Read(element e)

declare RLSD rlsd
integer i
boolean found := false

i DetermineActivity(e)
if (i = INVALID) th en E R R O R

(* e must be active *)
r lsd a c tiv e [i] .r lsd
e := read(e)
rlsd.set.Delete(e)
if (not rlsd.set.EmptyQ) th en E R R O R
rlsd.set.Insert(e)
re tu rn e

}

Figure 21: The Read procedure.

28

class Checker {
declare procedure Write (element e)

declare RLSD rlsd
integer i
boolean found := false
element /

i := Deter mine Activity (e)
if (i = INVALID) th en E R R O R

(* e must be active *)
rlsd := active[i].rlsd
f := read(e)
rlsd.set.Delete(f)
if (not rlsd.set.emptyQ) th en E R R O R
f.data = e.data
w rite (/)
rlsd .set.Insertd)
re tu rn

}

Figure 22: The Write procedure.

29

class Checker {
declare procedure Delete (element pred, e)
(* Assume e is not the head of the list *)

declare RLSD rlsdjpred, rlsdje
element /
integer i
boolean found := false

i := Deter mine Activity (pred)
if (i = INVALID) th en E R R O R (* pred must be active *)
rlsdjpred := active[i].rlsd

Find rlsdje similarly.
Remove e from the array of active elements
rlsdjprev.next := rlsdje.next
rlsdjprev.tail := rlsdje.tail
rlsd-e.next.prev := rlsdjprev

(* d e le te procedure will change pred *)
/ := read (pred)
rlsdjprev .set. Delete(f)
if (not rlsdjprev.set.Empty()) th en E R R O R
f.sid := e.sid
d e le te (pred, e)
pred := read (pred)
if (pred 7̂ /) th en E R R O R (* Assume de le te (pred, e) changes only pred.sid *)
rlsd.prev.set.Insert(pred)
D elete rlsdje (* Garbage collection on rlsdje *)
re tu rn

}

Figure 23: The Delete procedure.

30

class Checker {
declare integer IDcounter = 0

procedure In se rt (element pred, element e)
declare RLSD rlsdjpred

element /
integer i
boolean found = false

i := DetermineActivity(e)
if (i = INVALID) then ERROR

(* e must be active *)
rlsdjpred — active[i\.rlsd
e. id := IDcounter (* Or address of e concatenated with IDcounter *)
IDcounter := IDcounter + 1
pred := read(pred)
rlsdjprev .set.Delete(pred)
if (not rlsdjprev.set.Empty()) then ERROR
/ := pred
in se r t (pred, e)
f . sid := e.id
pred := read(pred)
if (pred ± f) then ERROR (* Assume insert (pred, e) changes only pred.sid *)
(* This check is not necessary, but it may declare errors sooner *)
rlsdjprev .set.Insert (pred) (* If avoiding the check, rlsdjprev .set. In sert(f) *)
rlsdjprev .next.set.Insert(e)

Figure 24: The In se rt procedure.

31

class Checker {
declare procedure element N E X T (element e)

declare RLSD rlsd.e, rlsd-f
element /
integer i

i := Deter mine Activity (e)
if (i = INVALID) then ERROR (* e must be active *)
rlsdje := active[i\.rlsd

e := read(e)
rlsdje.set.Delete(e)
if (not rlsd-e.set.Empty()) then ERROR
r l sd.e.set .Insert (e)

subdivide(rlsdje.next)

rlsd-f := rlsd-e.next
f := next(e)
if (f.id ± e.sid) then ERROR (* Check the next procedure *)
rlsd -f .set.Delete(f)
if (not rlsd-f .set. Empty ()) then ERROR
rlsd -f .set.Insert(f)

if (/ is not already active) then
Insert / into active array with index i
active[i].rlsd := rlsd-f

endif
return f

Figure 25: The Next procedure.

32

is accurate and reflective of the state of the linked list. For example, the S0 for e is {e},
the size of the hashed sets follow the RLSD rules within the variations of Section 6.5, and
all the elements in the active array are truly active. These are necessary but not sufficient
conditions for the correctness of the checker, however they do provide a higher degree of
confidence.

The checker’s checker is not presented here in detail because it does not provide significant
insight to the working of the checker, and it was not developed to the state where it could
find any errors within the checker. However, a nearly complete implementation gives us a
useful and powerful debugging tool.

7 Acknowledgments
Several important people helped me in this work. I would like to thank Professor Loui
for helping me with the endless revisions, helpful suggestions, countless explanations, and
patience with this report. Nancy Amato provided me with some useful dialogues and en­
couragement. Finally, thanks to the guys who hang out at Hessil Park and play volleyball
for the wonderful distraction and sore muscles.

References
[1] J. Naor and M. Naor, “Small-bias probability spaces: efficient construction and appli­

cations,” SIAM J. Comput. vol. 22, no. 4, Aug. 1993, pp. 838-856.

[2] N. M. Amato and M. C. Loui, “Checking linked data structures,” Proceedings of the
24th Annual International Symposium on Fault-Tolerant Computing, Austin, Texas,
June 15-17, 1994, pp. 164-173.

[3] S. Jimbo and A. Marouka, “Expanders obtained from affine transformations,” Proceed­
ings of the 17th Annual ACM Symposium on Theory of Computing, Providence, Rhode
Island, May 6-8, 1985, pp. 88-97.

[4] D. E. Knuth, The Art of Computer Programming, vol. 2, Addison-Wesley, 1969.

33

