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1 Introduction

The problem of designing adaptive output-feedback controllers for nonlinear systems with 

unknown constant parameters was recently addressed in [1,2]. These papers considered the 

class of n-dimensional nonlinear systems which have an input-output description expressed 

globally by the n-th order scalar differential equation
n—1

Dny = B(D)<r(y)u+YDi
i=0

¥>o i(y) +  j2 °W ji(y )
j=1

(1.1)

where D denotes the differentiation operator, and

• the coefficients 60, . . . ,  6m(m < n — 1) of the polynomial B (D ) =  bmD m -1-------b b^D +  b0

are unknown, but B (D ) is known to be Hurwitz and the sign of bm is known,

• 0 i , . . . ,  9P are unknown constant parameters, and

• <j(y), y>ji(y)-> 0 <  j  <  n — 1, 0 < i <  p, are smooth nonlinearities with cr(y) ^  0 Wy € IR, 

<¿>¿,(0) =  0, 0 <  j  <  n — 1, 0 <  i <  p.

In the case of known parameters, systems in this class are linearizable by output (and input) 

injection, and input-output linearizable (but not necessarily full-state linearizable) by full- 

state feedback.

In [1], Kanellakopoulos, Kokotovic and Morse extended the direct model-reference adap

tive design developed for linear systems by Feuer and Morse [3] to nonlinear systems of the 

form (1.1), under the additional restriction that for * =  m + 1, • • •, n — 1, the functions <fji(y), 

0 <  j  <  p, are linear, i.e., that the nonlinearities do not enter the system before the control 

does.

This restriction was not present in the design developed by Marino and Tomei in [2], 

which combined their “filtered transformations” , introduced in [4], with the adaptive design 

procedure introduced by Kanellakopoulos, Kokotovic and Morse [5] in the full-state-feedback 

case.

In this paper we consider the same class of nonlinear systems (1.1), and develop a direct 

extension of the adaptive design procedure of [5] to the output-feedback case. This new
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procedure allows us to remove the additional restriction of [1] without using the filtered 

transformations of [2]. As in [1] and [2], the obtained stability and tracking results are 

global, despite the fact that the nonlinearities are not restricted by any growth constraints.

2 The Systematic Design Procedure

Consider the class of n-dimensional nonlinear systems with an input-output description 

given by the differential equation (1;1). An equivalent minimal state representation for 

such systems is

C =  AÇ +  ba(y)u +  <p0(y)
i= l (2.1)

where

A =
I

0

y = m II

0
' 1 '

6 = 0
bm

, c =
0

1 . o .
bo

» w (y) =
<pn (y)

. <Pin{y) .
0 < i < p .  (2.2)

Suppose now that the control objective is to track a given reference signal yr(t) with the 

output y of the system (2.2), and assume that the first p derivatives of yT are also given, 

where p =  n — m. Then, our step-by-step design procedure is as follows:

Step 0: Choose K 0 such that Aq =  A — K qct is a Hurwitz matrix, and define the filters

¿o =  A0£o +  K qV +  Vo{y)

Ît =  Aoii +  <Pi(y), 1 < i <  p
Vj =  A0Vj +  en_j<j(y)u , 0 <  j  <  m ,

where et- is the ¿-th coordinate vector in lRn. It is now easy to see that

(2.3)

£
dt C — ( io +  2̂ Oi£i - f  bjVj 

*=1 j-o
=  A q c — ( io +  YY j V j

1=1 3= 0
(2.4)
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which implies, in particular, that the derivative of the output y is given by

y
p

C2 +  <An (2/) +  E ^ . i  (y)  '
i=l

p m
£02 +  (¿>01 ( y )  4- (£*2 +  <i0; i ( y ) )  +  53 6i v i2 +  e ,

t=l i=0
(2.5)

where e is an exponentially decaying term. Next, define

*1 =  C i - »r = y - y r= cti(y,yT) , (2.6)

and denote by ci, C2, . . . ,  cp positive coefficients and by r l5. . . ,  Tp positive definite symmetric 

matrices to be chosen later.

For convenience of notation, we also define for i =  0 , . . . ,  p

C,i = [Co.li • •• 5 £o,t+i > ̂ 1,1 > • • • » £i,«+i5 • • • » £*>, 17 • • • » £p,*+i] (2.7)

C i v  = K i , . . • ? • • • 1 V-m—1,15 • • • 1 V m —l,*+lj Vm ti, • • • > ^m,t] ? (2.8)

with the understanding that where Ct£ or C{V appear as arguments of a function, that 

function may depend on any of their elements.

Step 1: Using (2.5), write ¿1 as

m — 1
¿1 =  {02 +  <pOl{y) -  ÿr +  53 0i(&2 +  ^ 1(2/)) +  E  b3Vj2 +  hmVm2 +  ^

t= l j = 0

{ p Q. m—1
T [Î02 +  (foi(y) — ÿr] +  E  t ~ [£*2 +  ^*1(2/)] +  E  ~l~vî2 Vm2 f + 6
Om t=i bm j=Q 0m J

=  -  (ci + 1 )  xi +  bm {u m2 +  K?«>i(y,yr>s/r,Ci£i C » }  +  e,
(2.9)

where

T/C, = 1 9\ 9P bo
b i : i

bm—1

i =  ( c i  +  - ) * !  +  io 2  +  <*»1(20 -  f c £ i 2 +  ^ i i ( y ) .

• • • > £p2 +  (fpl(y), VQ2 i • • • > V m - 1 ,2] •

(2.10)

(2.11)
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Let «1 be an estimate of and define the new state x2 as

=  vm2 +  KiWi(y,yT,yr,C it,C iv )

=  % 2 +  a 2(y,yr,yr,C i£ ,C 'it;,«1) .  (2.12)

Substitute (2.12) into (2.9) to obtain

¿1 =  -  (ci +  Xi +  6m 2̂ +   ̂,

where « ! =  « ! — « !. Then, let the update law for kx be

«1 =  sgn(bm)TiWxXx =  wi(y,yr, yr, C if, C iu ) .

The time derivative of the nonnegative function

Vi =  1 (x? +  j T  e2(r)d r) +  (2.15)

along the solutions of (2.13)—(2.14) is

V i  =  - C i X ?  +  bmX iX 2 -  1 ® Î  +  X i «  -  l «2

=  - c , x 2 - 1(®1 -  e)2 +  . (2.16)

(2.13)

(2.14)

Step 2: Using (2.3), (2.5) and the definitions of xi, x2, kx, write ¿ 2 as

dct2
¿2 =  um3 — Ko2vml + dy

da .2 . d a 2 ..

% yr %  Vt +  d“ 1S ' ¿>(CW
T -

Î02 +  ¥>oi (y) +  H  ^t¥>ti(y) +  bi v j2 + e
t= l j —0

dci2 Cxi +  ^ xij +  I t -«^ (y, yr, ÿr, Ci£, C ift

=  Um3 +  ft(y , yr, ÿr, ÿr, C ii, C2u, /ci) +  « Tu/2(y, yr, yr, Ci£, Cxv, um2, *i) +  ,(2.17)

where

/C — [ft, • • • , ft, ft, • • • , fti] (2.18)

and ft , u/2 are defined appropriately, using the fact that the partial derivatives of a2 with 

respect to its arguments are known smooth functions of measured variables.
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Let k2 be an estimate of k and define the new state x3 as

£3 =  vm3 d-
1 ( da2\

C2 +  2 VW )
X2 +  /?2 +  * 2  W2 +  bm2X l

=  V m 3  +  a 3(y ,  2/r, 2/r, 2/r, C i i ,  C 2U, /Cl, « 2)

Substitute (2.19) into (2.17) to obtain

x2 =  -

where k2 =  k — k2, and

1 (d*2y
C2+nwJ 1 d a 2

X2 +  X3 +  k 2 w 2 -  bmx i  +  -3 —  e ,
oy

W2 =W2 +  [0, . . .  , 0,X i] .

Let the update law for k2 be

«2 =  r 2u;2^2 =  W 2 (2 / ,2 / r ,y r ,C 'i i ,C iU ,t ;m2 ,/ C l) .

The time derivative of the nonnegative function

V2 =  Vi +  ^ ( x l  +  ^  e2(r)dr^ +  klY 2xk2

is then given by

T> * 1 /  \2 2 1 / '& * 2  A "V2 =  -ciXj -  —(a?i -  e) -  c2x2 -  -  -r— x2 -  e +  ^2^32 \dy

Step i (2 < i < p): Using (2.3), (2.5) and the definitions of ®i, . . . ,  :c,-, &x, . . . ,  

as

X{ =  ^m,t+l d" /^*(i/»3/r, • • •  1 Vr \  ^t’£ , /Cx, . . . , /C,—l )

+ /CTW,-(y, 2/r, . . .  , 2/i‘_1), C.-lf, <?,•_!V, Um,n *!,•••, **-l) + .

Let be a new estimate of /c and define the new state xt+1 as

*̂ t+l — ^m,t+l d" . 1 / « £ '  

"  +  2
x,- +  ft +  «?«>,• +  Xj_i

(2.19)

(2.20) 

(2.21)

(2.22)

(2.23)

(2.24) 

1, write ft

(2.25)

(2.26)
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Substitute (2.25) into (2.25) to obtain

x% — •+Kv
»p dot{

Xi 4* z,+i 4- «,• Wi -  1 +  - q— e ,
oy

where /ct- =  k — k{. Let the update law for ki be

K{ — r {W{X{ — OJi(y, 2/r? • • • > 2/r 5̂ 1£? ^ l j •••» l )

The time derivative of the nonnegative function

(2.27)

(2.28)

is then given by

*  =  - £
j=1

2 I  ̂ ( d<*j
xi + 2 l - £

+  *?r,. 1«< (2.29)

-f- . (2.30)

Step p: Using (2.3), (2.5) and the definitions of x i , . . . ,  xp, &i,. . . ,  /cp_i, write ¿ p as

xp =  <7(y)tt +  um>p+i +  /3p(y,yn . . . , y i p),^ p iJC'pt;,Ki,...,/Cp_i)

( j j i  2/r? • • • 5 2/r \ C p — l£, Um)P, ACi, . > < , /Cp_l^ “1“ —̂ j ’C . (2.31)

Let /cp be a new estimate of «: and define the control u as

u =
° { y )

/ 1 / dap\2
\ Vm,p+1  4* c" + 2 U J  j

xp +  (3P 4- k^Wp +  x p_i > . (2.32)

Substitute (2.32) into (2.31) to obtain

xn =  - c + - ( ^  '  2 dy
doip

X p  +  K p Wp -  X p .  1 +  - 7̂ e , (2.33)

where kp =  /c — kp. Let the update law for kp be

Kp =  r pWpXp — UJp |y , J/rj ••• 5 yi \ Cp—i£, Op—iU, Vm)P, /Cj, . . . , .

Then, the time derivative of the nonnegative function

v, =  V ,- i +  \ ( x l  +  l  +  k ^ T -xk„

=  5 £ I i +  lt"*|«?'rr1Ki +  £ « J r - 1Kj +  ^  i2(r )dT

(2.34)

(2.35)
j = l 3=2
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is rendered nonpositive (since Cj > 0, j  =  1 , ..., />):

C i X • +  -J ^  9 <  0 .

3 Stability and Tracking

(2.36)

We are now ready to state and prove our main result:

Theorem  3.1. Assume that yT, yT, ..'., axe uniformly bounded, and that y[p̂ is piece- 

wise continuous. Then, if the design procedure o f Section 2 is applied to the nonlinear 

system (1.1), all the signals in the resulting closed-loop adaptive system are well-defined and 

uniformly bounded on [0, oo), and, in addition,

lim [y(i) -2/r(*)] =  0. (3.1)t—*00

P roof. Due to the piecewise continuity of y ^  and the smoothness of the nonlinearities, 

the solution of the closed-loop system has a maximum interval of definition [0, tf). On this 

interval, the time derivative of the nonnegative function Vp defined in (2.35) is nonpositive, 

as shown in (2.36). We conclude that X i , . . . , x p and k i , . . . , k p are bounded on [0,tf) by 

constants depending only on initial conditions. In particular, since Xi and yT are bounded, 

we have that y is bounded, which, by (2.3), implies that £0, £i, . . . , £ p are bounded and 

cr(y) is bounded away from zero. Furthermore, from the differential equation (1.1), the 

boundedness of y, together with the fact that B (D ) is Hurwitz, imply that Hp(D)cr(y)u is 

bounded, where H {(s) denotes any asymptotically stable transfer function of relative degree 

greater than or equal to i. This in turn implies that FjVm-j ,  0 < j  <  m, are bounded, 

where F,v* =  [u^i,. . . ,  In particular, it implies that C\V is bounded. By (2.12),

the boundedness of y, yr, yT, k\, C\£, C\V and x2 implies that vm2 is bounded. Hence, 

Hp_i(D)cr(y)u is bounded, which means that Fj+iUm_j, 0 < j  <  m, are bounded. This 

again implies that C2v is bounded, which, together with the boundedness of x$, implies by 

(2.19) that um3 is bounded. Continuing in the same fashion, we can prove that Hi(D)cr(y)u 

is bounded, which implies that v is bounded. Since cr(y) is bounded away from zero, we
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conclude now from (2.32) that u is bounded. From (1.1), this implies that y , y i , . . .  , y(n_m) 

are bounded. Since the m-dimensional zero dynamics of (1.1) are linear and exponentially 

stable, a standard argument proves that the state of any minimal realization of (1.1) is 

bounded, and, hence, f  is bounded.

We have thus shown that the state of the closed-loop adaptive system is bounded on 

[0,*f). Hence, t{ — oo. To prove the convergence of the tracking error to zero, we first note 

that (2.35) and (2.36) imply that Vp is bounded and integrable on [0,oo). Furthermore, 

the boundedness of all the closed-loop signals implies that Vp is bounded. Hence, Vp —► 0 

as t —► oo, which proves that x \ , . . . ,x p —► 0 as t —► oo. This, in particular, implies that 

y — yT —* 0 as t —► oo. n

4 The Class of Nonlinear Systems

Most models of nonlinear systems are expressed in specific state coordinates. From that 

state-space form it may not always be obvious whether or not the nonlinear system at 

hand has an input-output description of the form (1.1). Therefore, we now give coordinate- 

free geometric conditions which are necessary and sufficient for a single-input single-output 

nonlinear system of the form

z =  / ( z ;  #) +  g(z\ t?)u
y =

(4.1)

to have an input-output description of the form (1.1), which is repeated here for convenience:

n—1

D"y =  B { D ) c { y ) u + Y .Di
»=0

<poi (y) +  j20j<pji{y)
3- 1

(4.2)

In (4.1), z 6 IRn is the state, u G 1R is the input, y € IR is the output, i? is a vector of unknown 

constant parameters, and / ,  <7, h are smooth vector fields with / ( 0 ; t9) =  0 and y(z;t?) ^  0 

Vz 6 lRn. Accordingly, in (4.2), a(y) and y?j,(y), 0 < i <  n — 1, 0 < j  <  p are smooth 

nonlinearities with =  0, cr(y) ^  0 Vy G E . The coefficients 60, . . . ,  bm(m < n — 1) of

the polynomial B(D),  as well as 0 i , . . . ,  9P, are unknown parameters resulting from a possible 

reparametrization in which functions of the original unknown parameters d are treated as 

new parameters.
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The following proposition is a corollary of [1, Proposition 5.2].

P roposition  4.1. The system (4.1) has an input-output description of the form (4.2) if 

and only if the following conditions are satisfied for all z 6 IRn and for the true value of the 

parameter vector d:

(i) the one-forms dh, dLfh, . . . ,  dL” 1h are linearly independent,

(ii) [ad'¡g, ad^g] =  0, i , j  =  0, . . . ,  n — 1, where g is uniquely defined by

L sL'f h  =  [  ! =
y J I I ,  i =  n — 1, (4.3)

(iii) ad"g =  £
t= 0

Voi(y) +  t l  0w'n(y)
J= 1

( - l j ’-'ad*^ ,

ry
with =  /  p'ji^ds, 0 < i  < n  — 1, 0 <  j  <  p ,

Jo

(iv) g =  (J(y) X^t(~l)*ady<7, and
i=0

(v) the vector fields f  and g are complete.

□

Exam ple 4.2 (Single-link flexible-joint m anipulator). In order to demonstrate why a 

reparametrization may be required to write a system of the form (4.1) into the input-output 

form (4.2), we consider a single-link robotic manipulator whose rotary motion is controlled 

by means of an elastically coupled actuator. If the effect of elastic coupling is modeled as a 

linear torsional spring, then the dynamic equations of the system are (cf. [6, p. 231]):

Jiqi +  +  K  U i -  J mgdcos q1 =  0
L (4.4)
K  (  q2\

h h  +  F2q2 — — \ qi — J j)  — u »

where qi and q-2 are the angular positions of the link and the actuator, and u is the torque 

produced at the actuator axis. The inertias J\,J2 , the viscous friction constants F\,F2 , the
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elasticity constant K , the link mass M , the position of the link’s center of gravity d, the 

transmission gear ratio N  and the acceleration of gravity g can all be unknown.

In order to find the input-output description of the system (4.4), where u is the input 

and y — q\ is the measured output, we use the following minimal state representation of

(4.4), where x4 =  qu x2 =  ft, x3 =  q2, x4 =  q2:

Xi = x2
mgd K ( x3x2

Ji
COS X i---- —

Jl
X2

~ Ji
( xi - N.

¿3 = x4

K  ( x3\ f 2
x4 +

1
¿4 — J2N  Vx ' - n ) ~ J2

— u
h

y = Xi .

we obtain x2 == Dy  and

D 2y =
mgd

Ji
F' ncos y -  — Dy ■ 
J1

K  
"  Ji

( y -
X3\
n )

(4.5)

(4.6)

which implies that

x3 =
mgd i*! i f  N— -  cos y -1- — Dy  +  — y 

J1 *>1 ,

£4 =  D x 3 = JiN D3y +  cos y +  ^ - D 2y +  ^-Dy

(4.7)

(4.8)
K  \ * J\ J\ J\

Differentiating (4.8) and substituting x3 and x4 from (4.7) and (4.8), we arrive at the input- 

output description of (4.4):

D 4y =
K

JXJ2N  

- D

K  , K  , FiF2N \  , m</d 
+  - r - r r r  +  T „  ] 2/ +  — r -  c o s  V

FXK  F2N\ mgdF2N
+ ——  ) y + — — 7— cos y

j2n 2 j2k

mgdK
Ji

jxj2n 2 j 2 j 2i f

which is in the form (4.2), if we define

K

JxJ2N 2
cos y (4.9)

, _  -  .  n „  _  Ei _  =  £  , J L _  +  g
60 j Ĵi N  1 j2 ’ 2 J! +  j 2ìv2 +  j 2ir  ’ 3 Ji
„ FXK  , F2N „ mgdF2N n mgdK
V4 =  T T" Af0~ i ------ ; — , t/5 =  — —  , ^6 =

(4.10)

J i J 2iV 2 J 2 J o i f J i J 2iV 2 *

□

11



5 Concluding Remarks

For the class of nonlinear systems considered in [2], we have developed a new systematic 

design procedure for adaptive output-feedback control. The adaptive controller resulting 

from this new procedure has dimension n(m +  p +  2) 4- p(m +  p +  1). Comparing this to the 

controller of [2], which has dimension (n — 1) |n +  p 4- p +  pp +  2p +  n +  1, we see that, 

depending on the values of n, m,p  (recall that p =  n — m), either our new procedure or the 

procedure of [2] may yield the controller of lower dimension. Finally, we should note that in 

both cases the controller dimensions can be reduced if, instead of using the design procedure 

of [5], one employs the improved version of that procedure developed by Jiang and Praly [7].
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