C-ICOORDINATED SCIENCE LABORATORY

ON THE EQUIVALENCE OF REGULAR EXPRESSIONS

JOHN P. HAYES

This work was supported in part by the Joint Services Electronics Program (U.S. Army, U.S. Navy, and U.S. Air Force) under Contract DAAB-07-67-C-0199; and NSF GK-1663.

Reproduction in whole or in part is permitted for any purpose of the United States Government.

Distribution of this report is unlimited. Qualified requesters may obtain copies of this report from DDC.

June 5, 1968

Replacement pages for CSL Report R-374, On the Equivalence of Regular Expressions, by John P. Hayes.

Replace pages 2,16 , and 17 by the attached sheets.

An alternate method has been suggested by Brzozowski [2] which involves the direct computation of a sufficient set of derivatives of $R \oplus$ S. Such computation becomes very unwieldy when even moderately long regular expressions are being considered. Also it is necessary to repeatedly compare each new derivative to all preceding ones to determine when the procedure may be halted. This approach has the advantage however that it is directly applicable to extended regular expressions.

In this paper, a relatively simple checking procedure involving only the generation and manipulation of regular equations, is described. It is applicable to extended regular expressions and is suitable for checking the equivalence of very long expressions. Due to its algebraic nature, the method is very suited to computer implementation.

A modification of this algorithm involving minimization of the derivative equations of the given regular expressions is also described. This is of interest as it leads to a canonical form for equivalent expressions。
II. OUTLINE OF THE CHECKING PROCEDURE

Suppose two regular expressions R and S are to be checked for equivalence. There are three main steps in the procedure:

1. Generation of sets of "transition equations" (called T-equations) from both R and S.
R in the usual manner. Then λ is eliminated from all equations in which it occurs and is added to all equations which did not originally contain λ. The resulting equations are the D-equations of $\sim R$ 。

Thus as we implicitly defined binary functions of two sets of D-equations, we can also define the negation (complement) of a set of D-equations. The significant point here is the interpretation of $\delta\left(X_{i}\right)$: the "negation" of λ is ϕ and the "negation" of ϕ is λ.

We now turn to the problem of checking the equivalence of extended regular expressions. These may be conveniently divided into two classes:
(A) Expressions which are some Boolean function F of restricted expressions R_{1}, \ldots, R_{n}. These are denoted by $F\left(R_{i}\right)$ or F, e.g., $10^{*} \oplus \sim 001$.
(B) Expressions formed from expressions of type A by means of concatenation, iteration, Boolean operations or any combination of these, e.g., $\left(\sim 10^{*} 1\right)^{*},\left((\sim 1)\left(1 \& 01^{*}\right)\right)^{*}$.

First, the D-equations of each restricted expression R_{i} are separately determined; this results in n sets of D-equations. In the case of type A expressions, these equations are directly combined to give the following composite equation:

$$
F\left(R_{i}\right)=a_{1}\left(D_{a_{1}} F\left(R_{i}\right)\right)+\ldots+a_{k}\left(D_{a_{k}} F\left(R_{i}\right)\right)+\delta\left(F\left(R_{i}\right)\right)
$$

This gives rise to further equations just as in the case of $f\left(R_{1}, R_{2}\right)$. $\delta\left(D_{t} F\left(R_{i}\right)\right)$ which is a function of λ and ϕ only, is evaluated by applying the normal rules of Boolean algebra with the exception of the special interpretation of \sim 。

In the case of type B expressions, it is necessary to find the D-equations of expressions of the form $F_{1} \cdot F_{2}$ and F_{1}^{*} where F_{1} and F_{2} are of type A. The D-equations of the F_{i} 's are separately derived. In the case of $\mathrm{F}_{1} \cdot \mathrm{~F}_{2}$ we can write

$$
\begin{equation*}
F_{1} \cdot F_{2}=a_{1}\left(D_{a_{1}} F_{1}\right) F_{2}+\ldots+a_{k}\left(D_{a_{k}} F_{1}\right) F_{2}+\left(\delta F_{1}\right) F_{2} \tag{24}
\end{equation*}
$$

which gives rise to further D-equations in the usual manner. If $\delta F_{1}=\lambda$, then (24) may be non-deterministic, i.e., of the form of equation (10), and must be reduced to deterministic form as previously described.

In the case of $R=F_{1}^{*}$ we can write $R=F_{1} R+\lambda$ which has the same form as (24) and thus leads to a set of D-equations for F_{1}^{*}. In general type B expressions are much more cumbersome than those of type A.

Example 4: Suppose $R=\sim\left(01^{*} \& 0^{*} 1\right)$ where \& denotes intersection. Let $S=01^{*}$ and $T=0^{*} 1$. The D-equations of S and T are

$$
\begin{array}{ll}
S=0 A+1 B & T=0 T+1 C \\
A=0 B+1 A+\lambda & C=0 D+1 D+\lambda \\
B=0 B+1 B & D=0 D+1 D .
\end{array}
$$

These equations are now combined to form the D-equations of $\sim(S \& T)$.

$$
\begin{align*}
& \sim(S \& T)=0(\sim(A \& T))+1(\sim(B \& C))+\sim(\phi \& \phi) \\
& \sim(A \& T)=0(\sim(B \& T))+1(\sim(A \& C))+\sim(\lambda \& \phi) \\
& \sim(B \& C)=0(\sim(B \& D))+1(\sim(B \& D))+\sim(\phi \& \lambda) \\
& \sim(B \& T)=0(\sim(B \& T))+1(\sim(B \& C))+\sim(\phi \& \phi) \tag{25}\\
& \sim(A \& C)=0(\sim(B \& D))+1(\sim(A \& D))+\sim(\lambda \& \lambda) \\
& \sim(B \& D)=0(\sim(B \& D))+1(\sim(B \& D))+\sim(\phi \& \phi) \\
& \sim(A \& D)=0(\sim(B \& D))+1(\sim(A \& D))+\sim(\lambda \& \phi)
\end{align*}
$$

John P. Hayes
Coordinated Science Laboratory University of Illinois
Urbana, Illinois 61801

Abstract

Some existing techniques for checking the equivalence of regular expressions are examined and their shortcomings discussed. A checking procedure based on the construction of regular equations is described. First, a set of transition or T-equations is obtained from the given expressions R and S. These are then converted to derivative or D-equations. Finally, a set of D-equations corresponding to $R \oplus S$ is constructed. It is shown that $R=S$ if and only if the D-equations of $R \oplus S$ do not contain the empty string λ.

Upper bounds are determined for the number of equations involved in each step of the procedure; Unlike previously-described methods, neither the construction of graphs nor the computation of derivatives is required. This technique is also applicable to extended regular expressions involving any Boolean operators.

A modified procedure involving minimization of the D-equations of R and S is also discussed. $R=S$ if and only if their respective

minimized D-equations are isomorphic. Finally, it is shown that these equations lead to a canonical form for equivalent expressions.

KEY WORDS AND PHRASES: regular expressions, equivalence, regular equations, derivatives of regular expressions, extended regular expressions, transition graphs, finite-state machines, minimization, canonical forms.

CR CATEGORIES: 5.22

I. INTRODUCTION

There are several approaches to the problem of determining if two regular expressions are equivalent. In certain cases, it is possible by application of the basic laws of regular algebras (e.g., the distributive laws for union and concatenation), and certain simple identities (e.g., $R R^{*}+\lambda=R^{*}$) to convert the given expressions to forms which are identical. Another approach is to check if all the elements of one are in the other and vice versa. These techniques are only applicable when the regular expressions are either very short or have a relatively simple structure.

General methods of testing for equivalence invariably exploit the relationships between regular expressions, the derivatives of the regular expressions, regular equations and transition graphs.

Ginzburg's algorithm [1] requires construction of a transition graph from each of the given expressions R and S. A tabular method is then used to determine the characteristic derivatives of R and S from the transition graphs. Pairs of derivative equations are then constructed from which equivalence may be checked by inspection.

This procedure is unsatisfactory in several respects. The method of constructing the transition graph is not clearly defined. The use of graphs and tables as well as regular equations makes the procedure rather complicated and difficult to implement on a computer. Furthermore, it is not possible to treat extended regular expressions involving any Boolean operators.

An alternate method suggested by Brzozowski [2] requires the direct computation of the characteristic derivatives of $R \oplus S$. To employ this approach, it is necessary to be able to check the equivalence of the derivatives; this appears to lead to a vicious circle.

The methods mentioned above become extremely unwieldy when even moderately long regular expressions are being compared. In no case are bounds given on the number of steps required.

In this paper, a relatively simple checking procedure involving only the generation and manipulation of regular equations, is described. It is applicable to extended regular expressions and is suitable for checking the equivalence of very long expressions. Due to its algebraic nature, the method is very suited to computer implementation.

A modification of this algorithm involving minimization of the derivative equations of the given regular expressions is also described. This is of interest as it leads to a canonical form for equivalent expressions.
II. OUTLINE OF THE CHECKING PROCEDURE

Suppose two regular expressions R and S are to be checked for equivalence. There are three main steps in the procedure:

1. Generation of sets of "transition equations" (called T-equations) from both R and S.
2. Conversion of the T-equations to derivative equations (called D-equations).
3. Construction of the D-equations of $R \oplus S$ from the D-equations of R and S. It is shown that $R=S$ if and only if λ does not appear in the D-equations of $R \oplus S$.

The procedure can be modified by replacing Step 3 above by: reduction of the D-equations of R and S to a form isomorphic to their respective characteristic equations. It is proved in [3] that to every regular expression there corresponds a unique set of characteristic equations. From this it follows that $R=S$ if and only if the reduced D-equations are isomorphic.
III. THE TRANSITION EQUATIONS

Suppose two regular expressions R and S over the alphabet $Z=\left\{a_{1}, a_{2}, \ldots, a_{k}\right\}$ are to be compared. R and S are assumed to be in "restricted" form, i.e., to contain only the operators concatenation (denoted by or juxtaposition), logical union (+) and iteration (*). This restriction will be lifted later.

A left-linear term is an expression of the form $a_{i} X_{j}$ where $a_{i} \in Z$ or $a_{i}=\lambda$, and X_{j} is a symbol denoting a non-empty regular expression. A set of left-linear equations, i.e., equations containing only the union of left-linear terms, is derived from each of the given expressions. The technique described is essentially that used by Kuck [4] to obtain
state diagrams from regular expressions.
The given expression R is denoted by some symbol X_{1} and the equation

$$
x_{1}=R
$$

is written. This equation is systematically converted to leftlinear form by introducing new symbols X_{i} to denote sub-expressions in R. Each new "unknown" X_{i} introduces another equation which is in turn reduced to left-linear form. A finite set of equations is eventually obtained. The procedure is best described by the following set of rules which are applied in sequence to the given regular expression:

A. Equation Rules

Consider a regular equation of the form

$$
\begin{equation*}
X_{i}=R \tag{1}
\end{equation*}
$$

A1: If R is already left-linear, (1) is left unchanged.
A2: If R is of the form $a R_{1}$ where $a \in Z$, replace (1) by

$$
X_{i}=a X_{j}
$$

where X_{j} is a new symbol, and introduce the equation

$$
\begin{equation*}
X_{j}=R_{1} \tag{2}
\end{equation*}
$$

The equation rules are now applied to (2).

A3: If R has the form $R_{1}^{*} R_{2}$ then using Arden's Theorem, (1) is replaced by

$$
\begin{equation*}
X_{i}=R_{1} X_{i}+R_{2} \tag{3}
\end{equation*}
$$

The term rules are now applied to each term on the right-hand side of (3).

A4: If the foregoing rules are not applicable, R must be in the form $\left(R_{1}+\ldots+R_{n}\right) R_{t}$ where R_{t} may be implicitly λ. If R_{t} is some previously introduced unknown X_{t}, then the distributive laws are used to replace R by $R_{1} X_{t}+\ldots+R_{n} X_{t}$. The term rules are then applied to each $R_{i} X_{t}$. If R_{t} is not an unknown then a new unknown X_{t} is introduced to denote it. R is now replaced by $R_{1} X_{t}+\ldots+R_{n} X_{t}$ and the term rules are applied to each $R_{i} X_{t}$. Furthermore, a new equation

$$
\begin{equation*}
x_{t}=R_{t} \tag{4}
\end{equation*}
$$

is added. The equation rules are applied to (4).

B. Term Rules

These rules are applied in turn to each term R obtained by application of either the equation or term rules.

B1: If R is left-linear, it is left unchanged.
B2: If R is of the form $a R_{1}$ where a εZ, replace it by $a X_{j}$ and introduce the equation

$$
x_{j}=R_{1}
$$

to which the equation rules are applied.

B3: If R is of the form $R_{1}^{*} R_{2}$, replace it by X_{j} and add the equation

$$
\begin{equation*}
X_{j}=R_{1} X_{j}+R_{2} \tag{5}
\end{equation*}
$$

The term rules must now be applied to the terms on the right-hand side of (5).

B4: R must have the form $\left(R_{1}+\ldots+R_{n}\right) R_{t}$ where R_{t} may be λ. If R_{t} is already some unknown X_{t}, then R is replaced by $R_{1} X_{t}+\ldots+R_{n} X_{t}$, and the term rules are applied to each term $R_{i} X_{t}$. Otherwise, X_{t} must be introduced to denote $R_{t} . \quad R$ is replaced by $R_{1} X_{t}+\ldots+R_{n} X_{t}$, the term rules are applied to each $\mathrm{R}_{\mathrm{i}} \mathrm{X}_{\mathrm{t}}$ and the equation

$$
\begin{equation*}
x_{t}=R_{t} \tag{6}
\end{equation*}
$$

is introduced. The equation rules must be applied to (6).

A simple upper bound on N, the number of equations generated, may be deduced from the rules themselves and from the number of operators in the given expression R. Let N_{u} and N_{c} denote the number of occurrences in R of the union and concatenation operators respectively. Each concatenation in R introduces at most one unknown (from rules A2 and B2). Each union operator gives rise to at most two terms, each of which may require introduction of a new unknown; in addition, the unknown X_{t} may be introduced (rules A4 and B4). Thus at most $2 N_{u}+1$ unknowns can be associated with the union operators. Finally it can be seen that no unknowns are introduced by the iteration operators (rules A3 and B3). An upper bound on N is therefore
given by

$$
\begin{equation*}
\mathrm{N} \leqq \mathrm{~N}_{\mathrm{c}}+2 \mathrm{~N}_{\mathrm{u}}+2 \tag{7}
\end{equation*}
$$

where an extra 1 is added to account for X_{1}.
In general, (7) gives a loose upper bound on the number of equations generated (it becomes an equality in certain cases, e.g., when $R=1^{*}+0^{*}$). A formula giving N exactly would depend on the structure of R in a very complex manner and is probably not worth deriving.

A transition graph for R may be constructed directly from these equations; each unknown X_{i} corresponds to a state on the graph. This method of construction is more truly "mechanical" than the wel1known algorithm [5] referred to by Ginzburg [1] and it gives rise to fewer states. From their close relationship to transition graphs, the equations will be referred to as transition or T-equations.

The T-equations may also be regarded as a set of productions representing the given expression R. In this case, " $=$ " denotes the replacement symbol " \rightarrow " and the X_{i} are non-terminal symbols in the phrase-structure grammer specifying R.

Example 1: Consider the regular expression $R=\left(01^{*} 0\right)^{*} 01^{*}$ over the alphabet $\{0,1\}$. Application of A3 gives

$$
\mathrm{R}=\mathrm{A}=01^{*} 0 \mathrm{~A}+01^{*}
$$

Using $B 2$, define $B=1^{*} 0 A$ and $C=1^{*}$. Finally, we get the T-equations

$$
\begin{align*}
R=A & =O B+O C \\
B & =O A+1 B \tag{8}\\
C & =1 C+\lambda
\end{align*}
$$

IV. THE DERIVATIVE EQUATIONS

Every T-equation has the following general form:

$$
\begin{equation*}
X_{s}=a_{1} X_{a}+a_{1} X_{b}+\ldots+a_{m} X_{n}+X_{p}+\ldots+X_{q}+\delta\left(X_{s}\right) \tag{9}
\end{equation*}
$$

where each $a_{i} \in Z, X_{j}$ is an unknown and $\delta\left(X_{s}\right)=\lambda$ or ϕ. All terms of the form X_{j} on the right-hand side of (9), i.e., all unknowns not preceded by some a_{i}, are replaced by the right-hand side of the equation for the particular X_{j}. This process is repeated until all X_{j} terms have been eliminated. There are at most $N-1$ such terms. If this substitution results in repetition of terms in the same equation, then all occurrences except one of the repeated term are eliminated. This change does not affect the equality. Thus the T-equations are reduced to the following form

$$
\begin{equation*}
x_{s}=a_{1} X_{a}+a_{1} X_{b}+\ldots+a_{m} X_{n}+\delta\left(X_{s}\right) \tag{10}
\end{equation*}
$$

Some unknowns may no longer occur on the right-hand side of any T-equation. The equations corresponding to such unknowns may be eliminated.

Next, all terms in the equation for X_{1} (which denotes the original expression R) beginning with the same a_{1} are grouped together as follows:

$$
x_{i}=a_{1} \sum_{i} x_{i}+a_{2} \sum_{i} x_{i}+\ldots+a_{m} \sum_{i} X_{i}+\delta\left(X_{1}\right)
$$

Replace each group of more than one unknown by some new symbol Y_{j}. This gives

$$
\begin{equation*}
X_{1}=a_{1} Y_{1}+a_{2} Y_{2}+\ldots+a_{m} Y_{m}+\delta\left(X_{1}\right) \tag{11}
\end{equation*}
$$

A new equation must be added for each distinct Y_{j}. This is formed by taking the union of all the equations corresponding to the X_{i} 's which form Y_{j}. This added equation may be in the same form as (10). If so, it is reduced to the form of (11) by grouping unknowns and introducing new symbols as needed. This process continues until no new symbols are required. Clearly the number of new symbols (and equations) which may be produced is bounded by

$$
\begin{equation*}
\sum_{i=2}^{N} C_{i}^{N}=2^{N}-(N+1) \tag{12}
\end{equation*}
$$

where N is the initial number of T -equations.
Thus the T-equations have been transformed into a set of at most $2^{N}-1$ equations of the form

$$
\begin{equation*}
Y_{s}=a_{i} Y_{1}+a_{2} Y_{2}+\ldots+a_{r} Y_{r}+\delta\left(Y_{s}\right) \tag{13}
\end{equation*}
$$

It follows from the definition of a derivative of a regular expression, that each Y_{i} in (13) denotes the derivative $D_{a_{i}}\left(Y_{s}\right)$. The new equations will henceforth be referred to as derivative or D-equations. If there is no term in (13) corresponding to some $a_{j} \in Z$, then $D_{a}\left(Y_{s}\right)=\phi$; in this case the equation is said to be "incompletely specified". The D-equations are completely specified
by defining a symbol $Y_{d}=\phi$. The term $a_{i} Y_{d}$ is added to all D-equations not already containing an a_{i}-term, and the equation

$$
Y_{d}=a_{1} Y_{d}+a_{2} Y_{d}+\ldots+a_{k} Y_{d}
$$

is appended to the set of D-equations, bringing the maximum number possible to 2^{N}. (Y_{d} corresponds to a dead state in the finite-state machine which accepts R.)

Let U be the set of unknowns in the completely specified D-equations obtained from R. Every derivative of each X in U is some other element of U. Hence U contains all the characteristic derivatives of R. In general, not all the unknowns in U are distinct, i.e., some $X, Y \in U$ may denote equivalent derivatives of R.

The bound 2^{N} on the number of D -equations generated seems rather forbidding at first glance. However, a similar but even larger bound applies to the method by which the characteristic derivatives are obtained in Ginzburg's algorithm. For if a transition graph of N^{\prime} states is obtained from R, Ginzburg's derivative table may have up to $2^{N^{\prime}}$ distinct patterns of check marks. Furthermore, to ensure that all the characteristic derivatives have been obtained, it is necessary to examine many derivatives which have the same pattern of check marks. As mentioned already, N^{\prime} is generally greater than N. Finally, it should be noted that in many examples the number of D-equations, N_{d}, is much less than 2^{N}.

The D-equations of R are closely related to the state diagram
representation of a deterministic finite-state machine which accepts R. This state diagram is obtained from the D-equations by associating each unknown Y_{i} with a particular state. The unknowns whose equations contain λ correspond to accepting states.

Consider again Example 1. The first equation in (8) may
be rewritten as

$$
\begin{equation*}
A=0(B+C) \tag{14}
\end{equation*}
$$

Letting D denote $(B+C)$, we get from the equations for B and C :

$$
\begin{aligned}
D=(B+C) & =0 A+1(B+C)+\lambda \\
& =0 A+1 D+\lambda
\end{aligned}
$$

Since (14) is not completely specified, we introduce the unknown E corresponding to \varnothing. The final set of D-equations is

$$
\begin{align*}
R=A & =0 D+1 E \\
D & =0 A+1 D+\lambda \tag{15}\\
E & =0 E+1 E
\end{align*}
$$

In this example, $N_{d}=3=N$. In the following example however, N_{d} is quite close to the maximum possible, 2^{N}.

Example 2; Let $R=\left(0+(0+1) 0^{*} 10^{*} 1\right)^{*}$. The T-equations obtained by application of the equation and term rules are

$$
\begin{align*}
& A=O A+O B+1 B+\lambda \\
& B=O B+1 C \tag{16}\\
& C=O C+1 A
\end{align*}
$$

Thus N is again 3. The unknowns are grouped to yield the following
set of D-equations:

$$
\begin{align*}
A & =0(A+B)+1 B+\lambda \\
B & =0 B+1 C \\
C & =0 C+1 A \\
(A+B) & =0(A+B)+1(B+C)+\lambda \tag{17}\\
(B+C) & =0(B+C)+1(A+C) \\
(A+C) & =0(A+B+C)+1(A+B)+\lambda \\
(A+B+C) & =0(A+B+C)+1(A+B+C)+\lambda
\end{align*}
$$

Hence there are 7 D-equations, whereas $2^{N}=8$. It can be shown (using the reduction technique described in Section VII) that none of the equations in (17) is redundant.

V. THE D-EQUATIONS OF $R \oplus S$

The D-equations specifying $R \oplus S$ are constructed from the D-equations of R and S. It is proved in [3] that for every Boolean operator $f, D_{t}(f(R, S))=f\left(D_{t} R, D_{t} S\right)$ for all $t \in Z^{*}$. If f is exclusiveOR, then for all $t \in Z^{*}$

$$
\begin{equation*}
D_{t}(R \oplus S)=D_{t} R \oplus D_{t} S \tag{18}
\end{equation*}
$$

Now $R \oplus S$ can be written in the following form:

$$
R \oplus S=a_{1} D_{a_{1}}(R \oplus S)+\ldots+a_{k} D_{a_{k}}(R \oplus S)+\delta(R \oplus S)
$$

Using (18), this equation may be rewritten as

$$
\begin{equation*}
R \oplus S=a_{1}\left(D_{a_{1}} R \oplus D_{a_{1}} S\right)+\ldots+a_{k}\left(D_{a_{k}}^{R} \oplus D_{a_{k}} S\right)+\delta(R \oplus S) \tag{19}
\end{equation*}
$$

Suppose that in the D-equations for R and $S, X_{r_{i}}$ denotes $D_{a_{i}} R$ and

$$
\begin{align*}
& X_{s_{i}} \text { denotes } D_{a_{i}} S \text {. Then (19) is equivalent to } \\
& \quad R \oplus S=a_{1}\left(X_{r_{1}} \oplus X_{s_{1}}\right)+\ldots+a_{k}\left(X_{r_{k}} \oplus X_{S_{k}}\right)+\delta(R) \oplus \delta(S) \tag{20}
\end{align*}
$$

This equation can be formed directly from the D-equation of R and S. Another equation is added for each unknown ($\mathrm{X}_{\mathrm{r}_{\mathrm{i}}} \oplus \mathrm{X}_{\mathrm{r}_{\mathrm{i}}}$) on the righthand side of (20) which differs from $(R \oplus S)$; this new equation is obtained by forming the exclusive-OR combination of the equations of $X_{r_{i}}$ and $X_{s_{i}}$. This process is repeated until no new unknowns are generated. The result is a set of D-equations for $R \oplus S$. There are at most $N_{r} N_{s}$ such equations, where N_{r} and N_{S} are the numbers of D-equations of R and S respectively.

The test for equivalence is based on the theorem which follows. First a simple lemma is stated without proof.

Lemma: Two regular expressions R and S over alphabet Z are equivalent if and only if $D_{t} R=D_{t} S$ for all $t \in Z^{*}$.

Theorem 1: Two regular expressions R and S are equivalent if and only if none of the D-equations of $R \oplus S$ contains λ.

Proof: (i) Suppose $R=S$. Then by the lemma, $D_{t} R=D_{t} S$ for all $t \in Z^{*}$. Thus if $\lambda \in D_{t} R$, then $\lambda \in D_{t} S$ and if $\lambda \& D_{t} R$, then $\lambda \notin D_{t} S$. This implies that $\delta\left(D_{t} R\right) \oplus \delta\left(D_{t} S\right)=\phi$ for all $t \in z^{*}$. Hence λ cannot appear in any D-equation of $R \oplus S$.
(ii) Suppose none of the D-equations of $R \oplus S$ contains λ. Since the set of unknowns includes all characteristic derivatives of $R \oplus S$, we
can say that $\delta\left(D_{t} R\right) \oplus \delta\left(D_{t} S\right)=\phi$ for all $t \in Z^{*}$. Hence $\lambda \in D_{t} R$ if and only if $\lambda \in D_{t} S$, which means that $t \in R$ if and only if $t \in S$. It follows that $R=S$. Q.E.D.

Thus, having generated the D-equations of R and S, construct the D-equations of $R \oplus S$. If λ appears in any of these equations then $R \neq S$. If λ never appears, then we conclude that $R=S$.

Example 3: Consider the regular expression

$$
S=\left(01^{*} 0\left(011^{*} 0\right)^{*} 00\right)^{*}\left(01^{*} 0\left(011^{*} 0\right)^{*}\left(011^{*}+0\right)+01^{*}\right)
$$

Application of the equation and term rules yields

$$
\begin{align*}
S=A & =O B+O C+O D \\
B & =O E+1 B \\
C & =O J+1 C \\
D & =1 D+\lambda \\
E & =O F+O G \\
F & =1 H \tag{21}\\
G & =O A \\
H & =O E+1 H \\
J & =O K+O L+O M \\
K & =1 N \\
L & =1 P \\
M & =\lambda \\
N & =O J+1 N \\
P & =1 P+\lambda
\end{align*}
$$

Thus $N=14$. However, the T-equations (21) give rise to only 6 D-equations. These are (with the unknowns renamed for brevity)

$$
\begin{align*}
\mathrm{S}=\mathrm{F} & =0 \mathrm{G}+1 \mathrm{~L} \\
\mathrm{G} & =0 \mathrm{H}+1 \mathrm{G}+\lambda \\
\mathrm{H} & =0 \mathrm{~J}+1 \mathrm{~L} \tag{22}\\
\mathrm{~J} & =0 \mathrm{~F}+1 \mathrm{~K}+\lambda \\
\mathrm{K} & =0 \mathrm{H}+1 \mathrm{~K}+\lambda \\
\mathrm{L} & =0 \mathrm{~L}+1 \mathrm{~L}
\end{align*}
$$

We now compare S with R in Example 1 . The D-equations of $R \oplus S$ are found from (15) and (22) to be
$(R \oplus S)=(A \oplus F)=0(D \oplus G)+1(E \oplus L)$
$(D \oplus G)=0(A \oplus H)+1(D \oplus G)$
$(E \oplus L)=0(E \oplus L)+1(E \oplus L)$
$(A \oplus H)=0(D \oplus J)+1(E \oplus L)$
$(D \oplus J)=0(A \oplus F)+1(D \oplus K)$
$(D \oplus K)=0(A \oplus H)+1(D \oplus K)$

Since no equation in (23) contains λ, we conclude that $R=S$.

Finally, we note that in a computer implementation of this prodecure, it is not necessary to store all the D-equations of $R \oplus S$. Once all the equations corresponding to new unknowns which appeared on the right-hand side of some preceding D-equation have been generated, the original equation may be erased. If λ appears in any D-equation of $R \oplus S$, the procedure may be terminated immediately with the conclusion that $R \neq S$.

VI. EXTENDED REGULAR EXPRESSIONS

The technique just described for obtaining the D-equations of $R \oplus S$ is applicable to $f(R, S)$ where f is any binary Boolean operator and R and S are restricted regular expressions. The D-equations for the various binary operators differ only in the occurrence or nonoccurrence of λ as determined by $f\left(\delta\left(D_{t} R\right), \delta\left(D_{t} S\right)\right)$.

In the case of the unary operator \sim (negation), the D-equations for $\sim R$ can be found by first deriving the D-equations of
R in the usual manner. Then λ is eliminated from all equations in which it occurs and is added to all equations which did not originally contain λ. The resulting equations are the D-equations of $\sim R$. This follows from the fact that if $\lambda \in R$, then $\lambda \notin \sim R$. Hence $\delta(R)=\lambda$ but $\delta(\sim R)=\phi . \quad$ Similarly if $\delta(R)=\phi$, then $\delta(\sim R)=\lambda$. Each X_{i} which originally denoted some $D_{t} R$ now denotes $D_{t}(\sim R)$.

Thus as we implicitly defined binary functions of two sets of D-equations, we can also define the negation (complement) of a set of D-equations. The significant point here is the interpretation of $\delta\left(\mathrm{X}_{\mathrm{i}}\right)$: the "negation" of λ is ϕ and the "negation" of ϕ is λ. The negation case is best understood by considering state diagrams. A machine which accepts R will accept $\sim R$ if all accepting states are changed to non-accepting states and vice versa. This is analogous to replacing λ by ϕ and ϕ by λ in the D-equations of R.

We now turn to the problem of checking the equivalence of extended regular expressions. Every extended regular expression R may be regarded as a composite Boolean function F of restricted regular expressions $R_{1}, R_{2}, \ldots, R_{n}$. This is denoted by

$$
R=F\left(R_{1}, R_{2}, \cdots, R_{n}\right)=F\left(R_{i}\right)
$$

First, the D-equations of each restricted expression R_{i} are separately determined; this results in n sets of D-equations. Then by combining the n equations corresponding to $R_{1}, R_{2}, \ldots, R_{n}$, the following composite equation is obtained:

$$
F\left(R_{i}\right)=a_{1}\left(D_{a_{1}} F\left(R_{i}\right)\right)+\ldots+a_{k}\left(D_{a_{k}} F\left(R_{i}\right)\right)+\delta\left(F\left(R_{i}\right)\right)
$$

This gives rise to further equations just as in the case of $f\left(R_{1}, R_{2}\right)$. The difference is that n equations must be combined at each stage instead of two. Also $\delta\left(D_{t} F\left(R_{i}\right)\right)$ is, in general, more difficult to evaluate than $\delta\left(D_{t} f\left(R_{1}, R_{2}\right)\right) . \delta\left(D_{t} F\left(R_{i}\right)\right)$ which is a function of λ and \varnothing only, is evaluated by applying the normal rules of Boolean algebra with the exception of the special interpretation of \sim. As usual, the identity of unknowns is unimportant and they may be replaced by single symbols for brevity.

The following simple example illustrates the method.

Example 4: Suppose $R=\sim\left(01^{*} \& 0^{*} 1\right)$ where \& denotes intersection. We can write this as $\sim(S \& T)$ where $S=01^{*}$ and $T=0^{*} 1$. The $D-$ equations of S and T are

$$
\begin{array}{ll}
S=0 A+1 B & T=0 T+1 C \\
A=O B+1 A+\lambda & C=O D+1 D+\lambda \\
B=O B+1 B & D=O D+1 D
\end{array}
$$

These two sets of equations are now combined to form the D-equations of $\sim(S \& T)$.

$$
\begin{align*}
& \sim(S \& T)=0(\sim(A \& T))+1(\sim(B \& C))+\sim(\phi \& \phi) \\
& \sim(A \& T)=0(\sim(B \& T))+1(\sim(A \& C))+\sim(\lambda \& \phi) \\
& \sim(B \& C)=0(\sim(B \& D))+1(\sim(B \& D))+\sim(\phi \& \lambda) \\
& \sim(B \& T)=0(\sim(B \& T))+1(\sim(B \& C))+\sim(\phi \& \phi) \tag{25}\\
& \sim(A \& C)=0(\sim(B \& D))+1(\sim(A \& D))+\sim(\lambda \& \lambda) \\
& \sim(B \& D)=0(\sim(B \& D))+1(\sim(B \& D))+\sim(\phi \& \phi) \\
& \sim(A \& D)=0(\sim(B \& D))+1(\sim(A \& D))+\sim(\lambda \& \phi)
\end{align*}
$$

Evaluating the δ-terms and renaming the unknowns, we get

$$
\begin{align*}
\mathrm{R}=\mathrm{A} & =0 \mathrm{~B}+1 \mathrm{C}+\lambda \\
\mathrm{B} & =0 \mathrm{D}+1 \mathrm{E}+\lambda \\
\mathrm{C} & =0 \mathrm{~F}+1 \mathrm{~F}+\lambda \\
\mathrm{D} & =0 \mathrm{D}+1 \mathrm{C}+\lambda \tag{26}\\
\mathrm{E} & =0 \mathrm{~F}+1 \mathrm{G} \\
\mathrm{~F} & =0 \mathrm{~F}+1 \mathrm{~F}+\lambda \\
\mathrm{G} & =0 \mathrm{~F}+1 \mathrm{G}+\lambda
\end{align*}
$$

which are the D-equations for R. Now R can be compared with any other regular expression R^{\prime} by constructing the D-equations of $R \oplus R^{\prime}$ using (26) and the D-equations of R^{\prime}. Thus if

$$
R^{\prime}=(00+1+01(0+1))(0+1)^{*}+0+\lambda,
$$

it can be easily shown that $R=R '$.
VII. MINIMIZATION OF THE D-EQUATIONS

As remarked earlier, a set of D-equations may not be minimal, i.e., two or more unknowns may denote equivalent regular expressions. This may result, for example, from using different symbols to denote equivalent sub-expressions while generating the T-equations.

The problem of minimizing the D -equations is analogous to that of minimizing the states of the corresponding finite-state machine. The latter problem has been extensively studied [5,6]. States are generally distinguished by their responses to various input sequences. This requires some type of iterative table look-up, e.g., inspections of the state table. A modification of this approach is used here to minimize the D-equations. This leads to another method
for checking the equivalence of regular expressions.
The set of unknowns U contains all the characteristic derivatives of R; U is therefore called a complete set of derivatives of $R . X, Y \in U$ are said to be $\underline{\lambda \text {-equivalent }}$ if $\delta(X)=\delta(Y)$. The partition induced on U by λ-equivalence is called a λ-partition. If X and Y are λ-equivalent, we write, using the notation of Hartmanis and Stearns [6], $X \equiv Y(\lambda)$ 。

Theorem 2: Two elements X and Y in U, the set of unknowns in the D-equations of R, denote equivalent regular expressions if and only if $D_{t} X \equiv D_{t} Y(\lambda)$ for all $t \in Z^{*}$.

No proof is needed for this theorem as it is essentially a reformulation of Theorem 1.

The concept of a partition of states with the substitution property [6] can usefully be applied to regular expressions.

Definition: A partition π on a complete set $X_{0}, X_{1}, \ldots, X_{n}$ of characteristic derivatives of a regular expression R is said to have the substitution property if and only if $X_{i} \equiv X_{j}(\pi)$ implies that $D_{s} X_{i} \equiv D_{s} X_{j}(\pi)$ for all $s \in Z^{*}$.

The minimization procedure is now described. First, the D-equations of R are obtained in the manner already described. This yields a set of unknowns U. Next, partition U under λ-equivalence. We can write this as

$$
\begin{equation*}
\mathrm{u}=\left\{\overline{\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{h}}} ; \overline{\mathrm{x}_{\mathrm{k}}, \ldots, \mathrm{x}_{\mathrm{n}}}\right\} \tag{27}
\end{equation*}
$$

By inspecting the D-equations, find the derivatives of each $X_{i} \in U$ with respect to all $a \in Z$. If $X_{i} \equiv X_{j}(\lambda)$, then from Theorem 2 we can say that $X_{i} \neq X_{j}$ if

$$
\begin{equation*}
D_{a} X_{i} \not \equiv D_{a} X_{j}(\lambda) \tag{28}
\end{equation*}
$$

for some $a \in Z$, i.e., if $D_{a} X_{i}$ and $D_{a} X_{j}$ are in different blocks in (27). Define a new partition $\mathrm{U}_{\mathrm{a}}^{1}$ in which unknowns in the same block in (27) which do not satisfy (28) are put in separate blocks. Thus U_{a}^{1} is a refinement of U. This operation is repeated for all aє Z. Let U^{1} denote the product $\prod_{a \in Z} U_{a}^{1}$. This partition shows all the elements of U which are distinguished by their derivatives with respect to a single alphabet symbol. Elements in different blocks of U^{1} are not equivalent.

The foregoing procedure is repeated, this time unknowns in the same block in U^{1} are compared. Unknowns are distinguishable (non-equivalent) if any corresponding one-symbol derivatives belong to different blocks in U^{1}. In this way, a sequence of partitions, $\mathrm{U}, \mathrm{U}^{1}, \ldots \mathrm{U}^{i}$ is produced. The process terminates when two successive partitions are identical, i.e., when

$$
U^{i}=U^{i+1}
$$

Derivatives in the same block in U^{i} are equivalent, derivatives not in the same block are not equivalent. Clearly U^{i} is a partition with the substitution property.

Thus U has been partitioned into classes of equivalent unknowns. All but one unknown in each equivalence class is eliminated. The equations of the retained unknowns constitute the minimal set of D-equations. This reduced set of D-equations is isomorphic to the set of characteristic equations of the corresponding regular expression. If the sets of reduced D-equations obtained from R and S are isomorphic, i.e., if there is a one-to-one correspondence between the symbols for the unknowns, then $R=S$; otherwise $R \neq S$.

Returning again to Example 3, the set of unknowns U from (22) is $\{F, G, H, J, K, L\}$. Partition U under λ-equivalence.

$$
\mathrm{U}=\{\overline{\mathrm{F}, \mathrm{H}, \mathrm{~L}} ; \overline{\mathrm{G}, \mathrm{~J}, \mathrm{~K}}\}
$$

We proceed to generate refinements of U using (22).

$$
\begin{aligned}
& U_{0}^{1}=\{\overline{\mathrm{F}, \mathrm{H}} ; \overline{\mathrm{L}} ; \overline{\mathrm{G}, \mathrm{~J}, \mathrm{~K}\}} \\
& \mathrm{U}_{1}^{1}=\{\overline{\mathrm{F}, \mathrm{H}, \mathrm{~L}} ; \overline{\mathrm{G}, \mathrm{~J}, \mathrm{~K}\}}
\end{aligned}
$$

Hence

$$
\begin{equation*}
U^{1}=U_{0}^{1} \cdot U_{1}^{1}=\{\overline{F, H} ; \bar{L} ; \overline{G, J, K}\} \tag{29}
\end{equation*}
$$

(29) is now refined by comparing the first-order derivatives of unknowns in the same block. The result is

$$
\mathrm{U}^{2}=\{\overline{\mathrm{F}, \mathrm{H}} ; \overline{\mathrm{L}} ; \overline{\mathrm{G}, \mathrm{~J}, \mathrm{~K}}\}
$$

which is identical to U^{1}. It follows that $F=H$ and $G=J=K$.

Equations (21) now reduce to

$$
\begin{align*}
S=F & =0 G+1 L \\
G & =0 F+1 G+\lambda \tag{30}\\
L & =0 L+1 L
\end{align*}
$$

Comparing S to R in Example 1 , it is seen that (30) and (15) are isomorphic (where $A \rightarrow F, D \rightarrow G$ and $F \rightarrow L$). Hence we again conclude that R and S are equivalent.

It is quite apparent that much less effort is needed to construct the D-equations of $R \oplus S$ than to minimize the D-equations of R and S. The former approach is therefore more suitable for a practical algorithm to determine equivalence. However, the latter approach is significant in that it makes it possible to reduce all regular expressions to canonical forms.

Consider the minimized D-equations (30) obtained from S
in Example 3. These may be solved for S by eliminating all other unknowns by means of Arden's Theorem and substitution. Application of Arden's Theorem to the equation for L yields

$$
L=(0+1) * \phi=\phi
$$

Similarly for G,

$$
G=1^{*}(0 F+\lambda)
$$

Substitute for L and G in the equation for S.

$$
\begin{aligned}
S=F & =01^{*} 0 F+01^{*} \\
& =\left(01^{*} 0\right)^{*} 01^{*}
\end{aligned}
$$

This is equivalent to but much simpler than the original expression for S. It is in fact identical to R in Example 1.

The structure of the regular expression obtained by solving the minimized D-equations depends on the order in which unknowns are eliminated. By specifying this order, (e.g., eliminate the unknown X_{i} with the highest subscript first, then X_{i-1}, etc.) the form of the resultant regular expression is fixed. This means that all equivalent expressions can be reduced to a unique form. This canonical form is always a restricted regular expression.
VIII. SUMMARY AND CONCLUSIONS

Some existing approaches to the problem of checking regular expressions for equivalence were considered and their limitations were noted. A practical checking algorithm based on the construction of regular equations was described. Two types of equation were used: the T-equations which are closely related to transition graphs, and the D-equations which are related to (deterministic) state graphs and state tables. The D-equations of R and S are used to construct D-equations for $R \oplus S$, from which equivalence may be determined by inspection. This technique is applicable to both restricted form and extended regular expressions.

Bounds were obtained for the number of equations which may be generated. The procedure, which essentially involves algebraic symbol manipulation, is particularly suited to the comparison of long
regular expressions and to implementation on a computer.
In addition, a method for minimizing the sets of D-equations was outlined. It was shown that the equivalence of two regular expressions can be determined by comparing their respective minimized D-equations. This technique is analogous to finding and comparing the minimum-state machines which accept the given expressions. Finally, it was shown that the solution of the minimized D-equations leads to a canonical form for equivalent expressions.

In dealing with very long regular expressions, it might be worthwhile to combine the two checking algorithms. Minimization (or even partial reduction) of intermediate sets of D-equations may reduce the total amount of computation required. Redundancy in a regular expression tends to introduce a corresponding redundancy in the T -equations and ultimately in the D -equations.

This investigation has shown the usefulness of regular equations for checking equivalence. Furthermore, regular equations provide a valuable tool for other operations with regular expressions, e.g., conversion to restricted form and length reduction.

ACKNOWLEDGEMENT: The author wishes to express his gratitude to Mr. Sharad Seth and Professor Gernot Metze for their helpful criticism.

REFERENCES

1. GINZBURG, A. A Procedure for checking the equality of regular expressions. J. ACM 14 (April 1967), 355-362.
2. BRZOZOWSKI, J. A. Review of Reference [1] in CR 8 (Sept-Oct 1967), 474.
3. BRZOZOWSKI, J. A. Derivatives of regular expressions. J. ACM 11 (Jan 1964), 481-494.
4. KUCK, D. Lecture notes for CS 301, University of Illinois, Urbana, Illinois, Spring 1967.
5. HARRISON, M. A. Introduction to Switching and Automata Theory, McGraw-Hill, New York, 1965.
6. HARTMANIS, J. and STEARNS, R.E. Algebraic Structure Theory of Sequential Machines, Prentice-Hall, Englewood Cliffs, N. J., 1966.

1 Dr. Edward M. Reilley
Asst. Director (Research)
Ofc. of Defense Res. \& Engrg.
Department of Defense
Washington, D. C. 20301
1 Office of Deputy Director (Research and Information Rm, 3D1037) Department of Defense The Pentagon Washington, D. C. 20301

1 Director
Advanced Research Projects Agency Department of Defense
Washington, D. C. 20301

1 Director for Materials Sciences Advanced Research Projects Agency Department of Defense
Washington, D. C. 2030

1 Headquarters
Defense Communications Agency (333)
The Pentagon
Washington, D. C. 20305
50 Defense Documentation Center
Attn: TISIA
Cameron Station, Bldg. ${ }^{5}$
Alexandria, Virginia 22314
1 Director
National Security Agency
Fort George G. Meade, Maryland 20755
1 Weapons Systems Evaluation Group Attn: Col. Daniel W. McElwee Department of Defense Washington, D. C. 20305
1 National Security Agency Attn: R4-James Tippet Fort George G. Meade, Maryland 20755
1 Central Intelligence Agency Attn: OCR/DD Publications Wa shington, D. C. 20505
1 Colone 1 Kee
AFRSTE
Room 1D-429, The Pentagon
Washington, D. C. 20330
1 Colone1 A. Swan
Aerospa A. Wial Division
Brooks Air Force Base, Texas 78235
1 AUL3T-9663
Maxwe11 AFB, Alabama 36112
1 AFFTC (FTBPP-2)
Technical Library
Edwards AFB, California
93523
1 Space Systems Division
Los Angeles Air Force Station Los Angeles, California 90045 Attn: SSSD
1 Major Charles Waespy
Technical Division
Space Systems Division, AFSC Los Angeles, California 90045

1 SSD(SSTRT/Lt. Starbuck) AFUPO
Los Angeles, California 90045
1 Det. \#6, OAR (LOOAR)
Los Angeles, California 90045
1 Systems Engineering Group (RTD) Technical Information Reference Branch Attn: SEPIR
Directorate of Engineering Standards Wright-Patterson AFB, Ohio

1 ARL (ARIY)
Wright-Patterson AFB, Ohio 45433
1 Dr. H. V. Noble
Wright-Pattersics Laboratory

1 Mr. Peter Murray Air Force Avionics Laboratory
Wright-Patterson AFB, Ohio 45433

1 AFAL (AVTE/R.D. Larson) Wright-Patterson AFB, Ohio 45433

2 Commanding General
Attn: STEWS-WS-VT
White Sands Missile Range,
New Mexico 88002
1 RADC (EMLAL-I)
Griffiss AFB, New York 13442
Attn: Documents Library
1 Academy Library (DFSLB) Colorado Springs, Colorado 80912
1 Lt. Col. Bernard S. Morgan Frank J. Seiler Research Laboratory Colorado Springs, Color

1 APGC (PGBPS-12)
Elgin AFB, Florida 32542

Commanding Officer
Human Engineering Laboratories Aberdeen Proving Ground, Maryland 21005

1 Director
U. S. Army Engineer Geodesy, Intelligence and Mapping
Research and Development Agency
Fort Belvior, Virginia 22060
1 Commandant
U. S. Army Command and General Staff College Fort Leavenworth

1 Dr. H. Robl
Deputy Chief Scientist
U. S. Army Research Office (Durham) Box CM, Duke Station

1 Commanding officer
U. S. Army Research Office (Durham)

Attn: CRD-AA-IP (Richard 0. Ulsh)
Box CM, Duke Station
Durham, North Carolina 27706
1 Librarian
U. S. Army Military Academy

1 The Walter Reed Institute of Research Walter Reed Medical Center
Washington, D. C. 20012
1 Commanding Officer
U. S. Army Electronics R\&D Activity Fort Huachuca, Arizona 85163
1 Commanding Officer
U. S. Army Engineer R\&D Laboratory

Fort Belvoir, Virgini
Commanding Officer
U. S. Army Electronics R\&D Activity

White Sands Missile Range, New Mexico 88002
Dr. S. Benedict Levin, Director
Institute for Exploratory Research Fort Monmouth, New Jersey 07703

1 Director
Institute for Exploratory Research
U. S. Army Electronics Command

Attn: Mr. Robert O. Parker, Executive
Fort Monmouth, New Jersey 07703
1 Commanding General
U. S. Army Electronics Command
Fort Monmouth, New Jersey 07703 Attn: AMSEL-SC
$-S C$
RD-D
RD-G
RD-GF
RD-MAT
XL-D
XL-E
XL-C
XL-S
HL-D
HL-CT-R
HL-CT-P
HL-CT-L
HL-CT-0
HL-CT-I
HL-CT-A
NL-D
NL-A
NL-P
NL-R
NL-S
KL-D
KL-E
KL-S
KL-T
VL-D
WL-D

1 Chief of Naval Research Department of the Navy Attn: Code 427

3 Chief of Naval Research
Department of the Navy Washington, D. C. 20360 Attn: Code 437

2 Naval Electronics Systems Command
Falls Church, Virginía 22046
1 Naval Ship Systems Command SHIP 031 Washington, D. C. 20360

1 Naval Ship Systems Command SHIP 035
Washington, D. C. 20360
Washington, D. C. 20360
2 Naval Ordnance Systems Command ORD 32 Washington, D. C. 20360

2 Naval Air Systems Command AIR 03 . 20360 Washington, D. C. 20360

2 Commanding Officer
Office of Naval Research Branch Office Box 39, Navy No. 100 F.P. 0

AFETR Technical Library (ETV, MU-135)
Patrick AFB,Florida 32925
1 AFETR (ETLLG-I) STINFO Officer (For Library)
Patrick AFB, Florida 32925

1 Dr. L. M. Hollingsworth AFCRL (CRN)
L. G. Hanscom Field

Bedford, Massachusetts 01731
1 AFCRL (CRMXLR)
AFCRL Research Library, Stop 29
L. G. Hanscom Field

Colonel Robert E. Fontana Department of Electrical Engineering Air Force Institute of Technology
Wright-Patterson AFB, Ohio 45433

1 Colonel A. D. Blue RTD (RTTL) Bolling Air Force Base, D. C. 20332
$1 \quad \begin{array}{ll}\mathrm{Dr}, \mathrm{I} . & \text { R. Mirman } \\ \text { AFSC }\end{array}$
Andrews AFB, Maryland 20331
1 Colone 1 J. D. Warthman AFSC (SCTR) Andrews AFB, Maryland 20331

1 Lt. Co1. J. L. Reeves AFSC (SCBB)
Andrews AFB, Maryland 20331

2 ESD (ESTI)
L. G. Hanscom Field

Bedford, Massachusetts 01731
1 AEDC (ARO, INC)
Attn: Library/Documents
Arnold AFS, Tennessee 37389
2 European Office of Aerospace Research She 11 Building Brussels, Belgium

5 Lt. Co1. Robert B. Kalisch Chief, Electronics Divisio
Directorate of Engineering Sciences Air Force Office of Scientific Research Arlington, Virginia 22209
U. S. Army Research Office Attn: Physical Sciences Division 3045 Columbia Pike Arlington, Virginia 22204
1 Research Plans Office U. S. Army Research Office Arlington, Virginia

Commanding General
U. S. Army Materiel Command

Attn: AMCRD-RS-DE-E
Washington, D. C. 20315
1 Commanding General
U. S. Army Strategic Communications Command Washington, D. C. 20315

1 Commanding officer
U. S. Army Materials Research Agency

Watertown Arsenal
Watertown, Massachusetts 02172
1 Commanding officer
Commanding Officer
U. S. Army Ballistics Research Laboratory
Attn: V. W. Richards
Aberdeen Proving Ground
Aberdeen, Maryland 21005
1 Commandant
U. S. Army Air Defense School
U. S. Army Air Defense School
Attn: Missile Sciences Division, C\&S Dept
P.O. Box 9390

1 Redstone Scientific Information Center Attn: Chief, Document Section Redstone Arsenal, Alabama 35809

1 Cormanding General
Frankford Arsenal
Attn: SMUFA-1310 (Dr. Sidney Ross)
Philadelphia, Pennsylvania 19137
1 U. S. Army Munitions Command
Attn: Technical Information Branch
Dover, New Jersey 07801
1 Commanding Officer
Harry Diamond Laboratories
Attn: Dr. Berthold Altman (AMXDO-TI)
Connecticut Avenue and Van Ness Street, N.W.
Washington, D. C. 20438

- Commanding Officer
U. S. Army Security Agency

Arlington Hall
Arlington, Virginia 22212
Commanding officer
U. S. Army Limited War Laboratory

Attn: Technical Director
Aberdeen, Maryland 21005

1 Commanding Officer Office of Naval Research Branch Office 219 South Dearborn Street Chicago, Illinois 60604
1 Commanding officer
Office of Naval Research Branch Office Office of Naval Resear
1030 East Green Street Pasadena, California 91101

1 Commanding Officer
Office of Naval Research Branch Office 207 West 24th Street
New York, New York 10011
1 Commanding Officer Office of Naval Research Branch Office 495 Sunmer Street Boston, Massachusetts 02210
8 Director, Naval Research Laboratory Technical Information Officer Attn: Code 2000

Conmander
Naval Air Deve lopment and Material Center Johnsville, Pennsylvania 18974
2 Librarian
U. S. Naval Electronics Laboratory San Diego, California 95152

1 Commanding Officer and Director U. S. Naval Underwater Sound Laboratory Fort Trumbull
New London, Connecticut 06840
1 Librarian
U. Navy Post Graduate School Monterey, California 93940
1 Commander
U. S. Naval Air Missile Test Center Point Mugu, California 95468

1 Director
U. S. Naval Observatory
Washington, D. C. 20390

2 Chief of Naval Operations OP-07
Washington, D. C. 20350
Director, U. S. Naval Security Group Attn: G43
3801 Nebraska Avenue
Washington, D. C. 20016
2 Commanding officer Naval Ordnance Laboratory
White Oak, Maryland 21162

1 Commanding Officer Naval Ordnance Laboratory
Corona, California 91720

1 Commanding officer Naval Ordnance Test Station China Lake, California 93555

1 Commanding Officer Indianapolis, Indiana 46218
1 Commanding officer
Naval Training Device Center Orlando, Florida 32813

1 U. S. Naval Weapons Laboratory Dahlgren, Virginia 22448
1 Weapons Systems Test Division Naval Air Test Center atuxtent River, Maryland 20670 Attn: Library

1 Head, Technical Division U. S. Naval Counter Intelligence Support Center Fairmont Building 4420 North Fairfax Drive Arlington, Virginia 22203

1 Mr. Charles F. Yost
Special Asst, to the Director of Research National Aeronautics and Space Administration Washington, D. C. 20546
1 Dr. H. Harrison, Code RRE hief, Electrophysics Branch National Aeronautics and Space Administration Washington, D. C. 20546

1 Goddard Space Flight Center National Aeronautics and Space Administration Attn: Library C3/TDL
Green Belt, Maryland 20771

1 NASA Lewis Research Center
Attn: Library
Cleve land, Ohio 44135
1 National Science Foundation
Attn: Dr. John R. Lehmann Division of Engineering Washington, D. C. 20550

1 U. S. Atomic Energy Commission Division of Technical Information Extension P. O. Box 62

Oak Ridge, Tennessee 3783
1 Los Alamos Scientific Laboratory Attn: Reports Library Attn: Reports
P. 0 . Box 1663 Los Alamos, New Mexico 87544

2 NASA Scientific \& Technical Information Facility
Aten: Acquisitions Branch (S/AK/DL)
P. O. Box 33

Director
Research Laboratory of Electronics Massachusetts Institute of Technology Cambridge, Massachusetts 02139

1 Polytechnic Institute of Brooklyn 55 Johnson Street
Brooklyn, New York 11201
Attn: Mr. Jerome Fox
Research Coordinator
1 Director
Columbia Radiation Laboratory
Columbia University
538 West 120th Street
New York, New York 10027
1 Director
Coordinated Science Laboratory University of Illinois
Urbana, Illinois 61801
1 Director
Stanford Electronics Laboratories Stanford University Stanford, California 94305

1 Director
Electronics Research Laboratory University of California Berkeley, California 94720
1 Director
Electronic Sciences Laboratory University of Southern California

1 Professor A. A. Dougal, Director Laboratories for Electronics and Related Sciences Research
University of Texas
Austin, Texas 78712
1 Division of Engineering and Applied Physics
210 Pierce Hall
Cambridge, Massachusetts 02138
1 Aerospace Corporation P. O. Box 95085 , California 90045 Attn: Library Acquisitions Group

1 Professor Nicholas George California Institute of Technology Pasadena, California 91109
1 Aeronautics Library
Graduate Aeronautical Laboratories California Institute of Technology 1201 East California Boulevard Pasadena, California 91109

1 Director, USAF Project RAND Via: Air Force Liaison Office The RAND Corporation
Santa Monica, Cal
Attn: Library 90406

1 The Johns Hopkins University Applied Physics Laboratory 8621 Georgia Avenue Silver Spring, Maryland 20910 Attn: Boris W. Kuvshinoff Document Librarian

1 Hunt Library
Carnegie Institute of Technology
Schenley Park
Pittsburgh, Pennsylvania 15213
1 Dr. Leo Young
Stanford Research Institute Menlo Park, California 94025

1 Mr. Henry L. Bachmann Assistant Chief Engineer Wheeler Laboratories Great Neck, New York 11021

1 School of Engineering Sciences Arizona State University

1 University of California at Los Angeles Department of Engineering Los Angeles, California 90024

1 California Institute of Technology Pasadena, California 9110 Pasadena, California 9110
Attn: Documents Library

1 University of California Santa Barbara, California 93106 Attn: Library
1 Carnegie Institute of Technology Electrical Engineering Department

1 University of Michigan Electrical Engineering Department Ann Arbor, Michigan 48104
1 New York University College of Engineering

1 Syracuse University Department of Electrical Engineering Syracuse, New York 13210

1 Yale University
Engineering Department New Haven, Connecticut 06520

1 Airborne Instruments Laboratory Deerpark, New York 11729
1 Bendix Pacific Division 11600 Sherman Way 11600 Sherman Way
North Hollywood, California 91605

1 General Electric Company Research Laboratories Schenectady, New York 12301

1 Lockheed Aircraft Corporation
P. O. Box 504

Sunnyvale, California 94088
1 Raytheon Company Attn: Librarian

1 Dr, G. J. Murphy The Technological Institute Northwestern University Evanston, Illinois 60201

1 Dr. John C. Hancock, Director Electronic Systems Research Laboratory Purdue University Lafayette, Indiana 47907
1 Director
Microwave Laboratory
Stanford, Californía 94305
1 Emil Schafer, Head
Electronics Properties Info Center
Hughes Aircraft Company
Culver City, California 90230

1. ORIGINATING ACTIVITY (Corporate author)

University of Illinois
Coordinated Science Laboratory
Urbana, Illinois 61801
3. REPORT TITLE

ON THE EQUILVALENCE OF REGULAR EXPRESSIONS

> 4. DESCRIPTIVE NOTES (Type of report and inclusive dates)
5. AUTHOR(S) (First name, middle initial, last name)

HAYES, JOHN P.

10. DISTRIBUTION STATEMENT

Distribution of this report is unlimited.

11. SUPPLEMENTARY NOTES	12. SPONSORING MILITARY ACTIVITY
	Joint Services Electronics Program
	thru U.S. Army Electronics Command
	Ft. Monmouth, New Jersey 07703

Some existing techniques for checking the equivalence of regular expressions are examined and their shortcomings discussed. A checking procedure based on the construction of regular equations is described. First, a set of transition or T-equation is obtained from the given expressions R and S. These are then converted to derivative or D-equations. Finally, a set of D-equations corresponding to $R \oplus S$ is constructed. It is shon that $R=S$ if and only if the D-equations of $R \oplus S$ do not contain the empty string λ.

Upper bounds are determined for the number of equations involved in each step of the procedure. Unlike previously-described methods, neither the construction of the graphs nor the computation of derivatives is required. This technique is also applicable to extended regular expressions involving any Boolean operators.

A modified procedure involving minimization of the D-equations of R and S is also discussed. $R=S$ if and only if their respective minimized D-eauations are isomorphic. Finally, it is shown that these equations lead to a canonical form for equivalent expressions.

