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An alternate method has been suggested by Brzozowski [2 ] 

which involves the direct computation of a sufficient set of deri­

vatives of R 0  S. Such computation becomes very unwieldy when even 

moderately long regular expressions are being considered. Also it 

is necessary to repeatedly compare each new derivative to all pre­

ceding ones to determine when the procedure may be halted. This 

approach has the advantage however that it is directly applicable 

to extended regular expressions.
In this paper, a relatively simple checking procedure 

involving only the generation and manipulation of regular equations, 

is described. It is applicable to extended regular expressions and 

is suitable for checking the equivalence of very long expressions. 

Due to its algebraic nature, the method is very suited to computer 

implementation.
A modification of this algorithm involving minimization of 

the derivative equations of the given regular expressions is also 

described. This is of interest as it leads to a canonical form for 

equivalent expressions.

II. OUTLINE OF THE CHECKING PROCEDURE

Suppose two regular expressions R and S are to be checked 

for equivalence. There are three main steps in the procedures

1. Generation of sets of "transition equations" (called 

T-equations) from both R and S.
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R in the usual manner. Then X is eliminated from all equations in 

which it occurs and is added to all equations which did not originally 

contain X. The resulting equations are the D-equations of ~R«

Thus as we implicitly defined binary functions of two sets 

of D-equations, we can also define the negation (complement) of a set 

of D-equations. The significant point here is the interpretation of 

6(X.): the "negation" of X is 0 and the "negation" of 0 is X.

We now turn to the problem of checking the equivalence of 

extended regular expressions, These may be conveniently divided into 

two classes:

(A) Expressions which are some Boolean function F of restricted expressions 

Rp...,R . These are denoted by F(R^) or F, e.g., 10 ' ©  ~001.

(B) Expressions formed from expressions of type A by means of con­

catenation, iteration, Boolean operations or any combination of 

these, e.g., (~10'vl)*, ((~1) (1 & 01*))*.

First, the D-equations of each restricted expression R^ are 

separately determined; this results in n sets of D-equations. In the 

case of type A expressions, these equations are directly combined to 

give the following composite equation:

F(R ) = a (D F(R )) + ... + a (D F(R )) + 6(F(R )).l i l K â . i i

This gives rise to further equations just as in the case of f ^ ^ R ^  . 

6(DtF(R^)) which is a function of X and 0 only, is evaluated by 

applying the normal rules of Boolean algebra with the exception of 

the special interpretation of
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In the case of type B expressions, it is necessary to find 

the D-equations of expressions of the form anc  ̂ where and

F^ are of type A. The D-equations of the F^'s are separately derived. 

In the case of F-̂ 'F̂  we can write

V F2 " a l < V l > F2 + ••• + ak(\ Fl )F2 + (6F1)F2 (24>

which gives rise to further D-equations in the usual manner. If 

6f  ̂= X, then (24) may be non-deterministic, i.e., of the form of 

equation (10), and must be reduced to deterministic form as pre­

viously described.

In the case of R = F* we can write R = F^R 4- X which has 

the same form as (24) and thus leads to a set of D-equations for F5̂. 

In general type B expressions are much more cumbersome than those of

type A.

Example 4 : Suppose R = ~(01* & 0*1) where & denotes intersection.

Let S = 01* and T = 0'vl. The D-equations of S and T are

S = 0A + IB 
A = OB + 1A + X 
B = OB + IB

T « 0T + 1C 
C = 0D + ID + X 
D = 0D + ID.

These equations are now combined to form the D-equations of ~(S 6c T) .

~(S & T) 
~(A & T) 
~(B & C) 
~( B & T) 
~(A & C) 
~(B & D) 
~(A & D)

= 0(~(A 6c T)) 
= 0(~(B 6c T)) 
= 0(~(B 6c D)) 
= 0(~(B 6c T)) 
= 0(~(B 6c D)) 
= 0(~(B 6c D)) 
= 0(~(B 6c D))

+ 1 ( ~ ( B 6c C ) ) + ~ ( 0 6c 0 )

+ K ~ ( A 6c c ) ) + ~(X 6c 0 )

+ 1 ( ~ ( B 6c D ) ) + ~ ( 0 6c X)
+ 1 ( ~ ( B 6c c ) ) + - ( 0 6c 0 )

+ 1  ( ~ ( A 6c D ) ) + ~(X 6c X)
+ 1 ( ~ ( B 6c D ) ) + ~ ( 0 6c 0 )

+ 1 ( ~ ( A 6c D ) ) + ~(X 6c 0 )

(25)
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ABSTRACT

Some existing techniques for checking the equivalence of 

regular expressions are examined and their shortcomings discussed.

A checking procedure based on the construction of regular equations 

is described. First, a set of transition or T-equations is obtained 

from the given expressions R and S. These are then converted to 

derivative or D-equations. Finally, a set of D-equations corres­

ponding to R © S is constructed. It is shown that R = S if and only 

if the D-equations of R © S do not contain the empty string X.

Upper bounds are determined for the number of equations 

involved in each step of the procedure. Unlike previously-described 

methods, neither the construction of graphs nor the computation of 

derivatives is required. This technique is also applicable to extended 

regular expressions involving any Boolean operators.

A modified procedure involving minimization of the D-equations 

of R and S is also discussed. R = S if and only if their respective



minimized D-equations are isomorphic. Finally, it is shown that 

these equations lead to a canonical form for equivalent expressions
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I. INTRODUCTION

There are several approaches to the problem of determining 

if two regular expressions are equivalent. In certain cases, it is 

possible by application of the basic laws of regular algebras (e.g., 

the distributive laws for union and concatenation), and certain 

simple identities (e.g., RR* + X = R*) to convert the given express­

ions to forms which are identical. Another approach is to check if 

all the elements of one are in the other and vice versa. These 

techniques are only applicable when the regular expressions are 

either very short or have a relatively simple structure.

General methods of testing for equivalence invariably ex­

ploit the relationships between regular expressions, the derivatives 

of the regular expressions, regular equations and transition graphs.

Ginzburg's algorithm [l ] requires construction of a 

transition graph from each of the given expressions R and S. A 

tabular method is then used to determine the characteristic deriva­

tives of R and S from the transition graphs. Pairs of derivative 

equations are then constructed from which equivalence may be checked 
by inspection.

This procedure is unsatisfactory in several respects. The 

method of constructing the transition graph is not clearly defined.

The use of graphs and tables as well as regular equations makes the 

procedure rather complicated and difficult to implement on a computer. 

Furthermore, it is not possible to treat extended regular expressions 
involving any Boolean operators.
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An alternate method suggested by Brzozowski [2] requires 

the direct computation of the characteristic derivatives of R © S.

To employ this approach, it is necessary to be able to check the 

equivalence of the derivatives; this appears to lead to a vicious 

circle.

The methods mentioned above become extremely unwieldy 

when even moderately long regular expressions are being compared.

In no case are bounds given on the number of steps required.

In this paper, a relatively simple checking procedure 

involving only the generation and manipulation of regular equations, 

is described. It is applicable to extended regular expressions and 

is suitable for checking the equivalence of very long expressions. 

Due to its algebraic nature, the method is very suited to computer 

implementation.

A modification of this algorithm involving minimization of 

the derivative equations of the given regular expressions is also 

described. This is of interest as it leads to a canonical form for 

equivalent expressions.

II. OUTLINE OF THE CHECKING PROCEDURE

Suppose two regular expressions R and S are to be checked 

for equivalence. There are three main steps in the procedure:

1. Generation of sets of "transition equations" (called 

T-equations) from both R and S.
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2. Conversion of the T-equations to derivative equations 

(called D-equations).

3. Construction of the D-equations of R © S from the 

D-equations of R and S. It is shown that R = S if 

and only if X does not appear in the D-equations
'K

of R © S.

The procedure can be modified by replacing Step 3 above 

by: reduction of the D-equations of R and S to a form isomorphic to

their respective characteristic equations. It is proved in [3] that 

to every regular expression there corresponds a unique set of 

characteristic equations. From this it follows that R = S if and 

only if the reduced D-equations are isomorphic.

III. THE TRANSITION EQUATIONS

Suppose two regular expressions R and S over the alphabet 

Z = [a^ja^, ... ,â } are to be compared. R and S are assumed to be 

in "restricted" form, i.e., to contain only the operators concaten­

ation (denoted by * or juxtaposition), logical union (+) and 

iteration (*). This restriction will be lifted later.

A left-linear term is an expression of the form a.X. where----------------------  L j

a^ e Z or a_̂  = X, and X̂ . is a symbol denoting a non-empty regular expression 

A set of left-linear equations, i.e., equations containing only the 

union of' left-linear terms, is derived from each of the given expressions. 

The technique described is essentially that used by Kuck [4] to obtain



4

state diagrams from regular expressions.

the equation

X l = R

is written. This equation is systematically converted to left-

turn reduced to left-linear form. A finite set of equations is 

eventually obtained. The procedure is best described by the following 

set of rules which are applied in sequence to the given regular 

expression:

A. Equation Rules

Consider a regular equation of the form

linear form by introducing new symbols X̂, to denote sub-expressions 

in R. Each new "unknown" introduces another equation which is in

X. = R ( 1 )l

Al: If R is already left-linear, (1) is left unchanged.

A2: If R is of the form aR^ where a e Z, replace (1) by

X. = aX. i J

where X . is a new symbol, and introduce the equation

( 2)

The equation rules are now applied to (2).
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A3: If R has the form t*1611 using Arden's Theorem, (1) is
replaced by

X. = R nX. + R 
1 1 i 2 (3)

The term rules are now applied to each term on the right-hand side 

of (3).

A4: If the foregoing rules are not applicable, R must be in the form

(Rj+ ... + Rn)Rt where Rt may be implicitly X. If R^ is some pre­

viously introduced unknown Xt, then the distributive laws are used 

to replace R by RjXt+ ... + Rnx t- The term rules are then applied to 

each R_jXt. If R^ is not an unknown then a new unknown X̂ _ is intro­

duced to denote it. R is now replaced by R,X + ... + R X and thei t  n t
term rules are applied to each RJĈ _. Furthermore, a new equation

X = R t t (4)

is added. The equation rules are applied to (4).

B . Term Rules

These rules are applied in turn to each term R obtained by application 

of either the equation or term rules.

Bl: If R is left-linear, it is left unchanged.

B2: If R is of the form aR^ where a e Z, replace it by aX . and 

introduce the equation

X . = R J 1

to which the equation rules are applied.
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B3: If R is of the form R*R2, reP̂ -ace it by X and add the equation

X. = R ^ .  + R2 (5)

The term rules must now be applied to the terms on the right-hand 

s ide of (5) .

B4: R must have the form (R,+ ... + R )R. where R. may be X. If—  v 1 n t t J

R^ is already some unknown X , then R is replaced by R,X + ... + R X , t 7 t K J 1 t n t*
and the term rules are applied to each term R.X . Otherwise. Xi t  t
must be introduced to denote R . R is replaced by R.X + ... + R X ,t * J 1 t n t
the term rules are applied to each R X and the equation

x t = Rt (6)

is introduced. The equation rules must be applied to (6).

A simple upper bound on N, the number of equations generated,

may be deduced from the rules themselves and from the number of

operators in the given expression R. Let N and N denote the numberu c
of occurrences in R of the union and concatenation operators respect­

ively. Each concatenation in R introduces at most one unknown (from 

rules A2 and B2). Each union operator gives rise to at most two 

terms, each of which may require introduction of a new unknown; in 

addition, the unknown X^ may be introduced (rules A4 and B4). Thus 

at most 2N^ + 1 unknowns can be associated with the union operators. 

Finally it can be seen that no unknowns are introduced by the iter­

ation operators (rules A3 and B3). An upper bound on N is therefore
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given by

N ^ N  + 2 N  + 2 (7)

where an extra 1 is added to account for X^.

In general, (7) gives a loose upper bound on the number of 

equations generated (it becomes an equality in certain cases, e.g., 

when R = 1 + 0 ) . A formula giving N exactly would depend on the

structure of R in a very complex manner and is probably not worth 

deriving.

A transition graph for R may be constructed directly from 

these equations; each unknown corresponds to a state on the graph. 

This method of construction is more truly "mechanical" than the well- 

known algorithm [5] referred to by Ginzburg [l] and it gives rise to 

fewer states. From their close relationship to transition graphs, 

the equations will be referred to as transition or T-equations.

The T-equations may also be regarded as a set of productions 

representing the given expression R. In this case, "=" denotes the 

replacement symbol and the X^ are non-terminal symbols in the 

phrase-structure grammer specifying R.

Example 1: Consider the regular expression R = (01*0)*01* over the

alphabet {0,l}. Application of A3 gives

R = A = 01*0A + 01*

Using B2, define B = 1*0A and C = 1*. Finally, we get the T-equations

R = A = OB + 0C 
B = 0A + IB 
C = 1C + X

(8)
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IV. THE DERIVATIVE EQUATIONS

Every T-equation has the following general form:

X = a X + a X + . . , + a X + X + . . . + X  + 6(X)s l a l b  m n p  q s (9)

by some a^, are replaced by the right-hand side of the equation for

been eliminated. There are at most N -1 such terms. If this substi­

tution results in repetition of terms in the same equation, then all 

occurrences except one of the repeated term are eliminated. This change 

does not affect the equality. Thus the T-equations are reduced to 

the following form

X — a X + a X + . . . + a X + 6  (X ) s l a  l b  m n  v s ( 10)

Some unknowns may no longer occur on the right-hand side of any 

T-equation. The equations corresponding to such unknowns may be

eliminated.

Next, all terms in the equation for X^ (which denotes the

original expression R) beginning with the same a^ are grouped 

together as follows:

i i i
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Replace each group of more than one unknown by some new symbol Y.. 

This gives

X 1 = alYl + a2Y2 + ••• + amYm + 6 ( V ( U )

A new equation must be added for each distinct Y.. This is formed byJ
taking the union of all the equations corresponding to the X^'s which 

form Yj. This added equation may be in the same form as (10). If 

so, it is reduced to the form of (11) by grouping unknowns and 

introducing new symbols as needed. This process continues until no 

new symbols are required. Clearly the number of new symbols (and 

equations) which may be produced is bounded by

^  C” = 2N - (N + 1) 
i=2

( 12)

where N is the initial number of T-equations.

Thus the T-equations have been transformed into a set of 
Nat most 2 - 1  equations of the form

Y = a.Y. + a Y + ... + a Y + 6 (Y ) s l l  2 2  r r  v s (13)

It follows from the definition of a derivative of a regular

expression, that each Y. in (13) denotes the derivative D (Y ).i a . si
The new equations will henceforth be referred to as derivative or 

D-equations. If there is no term in (13) corresponding to some 

a. e Z, then D (Y ) = in this case the equation is said to beJ a j
"incompletely specified". The D-equations are completely specified
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by defining a symbol Yd = <b. The term a Yd is added to all D-equations 

not already containing an a^-term, and the equation

Yd = alYd + a2Yd + + akYd

is appended to the set of D-equations, bringing the maximum number 
Npossible to 2 . (Yd corresponds to a dead state in the finite-state 

machine which accepts R.)

Let U be the set of unknowns in the completely specified 

D-equations obtained from R. Every derivative of each X in U is some 

other element of U. Hence U contains all the characteristic deri­

vatives of R. In general, not all the unknowns in U are distinct,

i.e., some X,Y e U may denote equivalent derivatives of R.
NThe bound 2 on the number of D-equations generated seems 

rather forbidding at first glance. However, a similar but even 

larger bound applies to the method by which the characteristic 

derivatives are obtained in Ginzburg's algorithm. For if a trans­

ition graph of N 1 states is obtained from R, Ginzburg's derivative
N 'table may have up to 2 distinct patterns of check marks. Furthermore,

to ensure that all the characteristic derivatives have been obtained,

it is necessary to examine many derivatives which have the same

pattern of check marks. As mentioned already, N' is generally

greater than N. Finally, it should be noted that in many examples the
Nnumber of D-equations, N ,  is much less than 2 .d

The D-equations of R are closely related to the-ytrate diagram
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representation of a deterministic finite-state machine which accepts R. 

This state diagram is obtained from the D-equations by associating 

each unknown with a particular state. The unknowns whose equations 

contain X correspond to accepting states.

Consider again Example 1. The first equation in (8) may 

be rewritten as

A = 0(B + C) (14)

Letting D denote (B + C), we get from the equations for B and C:

D = (B + C) = OA + 1(B + C) + X 
= OA + ID + X

Since (14) is not completely specified, we introduce the unknown E 

corresponding to <f>. The final set of D-equations is

R = A = OD + IE
D = OA + ID + X (15)
E = OE + IE

In this example, = 3 = N. In the following example however,
Nis quite close to the maximum possible, 2 .

Example 2; Let R = (0 + (0 + 1)0*10*1)*. The T-equations obtained by 

application of the equation and term rules are

A = OA + OB + IB + X
B = OB + 1C (16)
C = OC + 1A

Thus N is again 3. The unknowns are grouped to yield the following
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set of D-equations:

A = 0(A + B) + IB + X 
B = OB + 1C 
C = OC + 1A

(A + B) = 0(A + B) + 1(B + C) + X (17)
(B + C) = 0(B + C) + 1(A + C)
(A + C) = 0(A + B + C) + 1(A + B) + X

(A + B + C) = 0(A + B + C) + 1(A + B + C) + X

Hence there are 7 D-equations, whereas 2 — 8. It can be shown (using 

the reduction technique described in Section VII) that none of the 

equations in (17) is redundant.

V. THE D-EQUATIONS OF R © S

The D-equations specifying R © S are constructed from the 

D-equations of R and S. It is proved in [.3] that for every Boolean 

operator f, Dt(f(R,S))= f(DfcR, DfcS) for all t e Z*. If f is exclusive- 
OR, then for all t e Z*

Dt(R © S) = DtR © DfcS (18)

Now R © S can be written in the following form:

R © S = a D (R © S) + ... + a D (R © S) + 6 (R © S)® 1 K cL1 k

Using (18), this equation may be rewritten as

R © S = a (D R © D S) + ... + a (D R © D S) + 6 (R © S) (19) 
i i K \  ak

Suppose that in the D-equations for R and S, X denotes D R andr . a .l l
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X denotes D S. Then (19) is equivalent toS • S i .1 1

R © S = a, (X © X  ) + . . . +  a (X © X ) + 6 (R) © 6 (S) (20)S-. k r, s1 1  k k

This equation can be formed directly from the D-equation of R and S.

Another equation is added for each unknown (X © X ) on the right-
i i

hand side of (20) which differs from (R © S); this new equation is

obtained by forming the exclusive-OR combination of the equations

of X and Xg . This process is repeated until no new unknowns are 
i i

generated. The result is a set of D-equations for R © S. There are

at most N N such equations, where N and N are the numbers of r s r s
D-equations of R and S respectively.

The test for equivalence is based on the theorem which 

follows. First a simple lemma is stated without proof.

Lemma: Two regular expressions R and S over alphabet Z are equivalent

if and only if DfcR = D^S for all t e Z*.

Theorem 1: Two regular expressions R and S are equivalent if and only

if none of the D-equations of R © S contains X .

Proof: (i) Suppose R = S. Then by the lemma, D^R = D^S for all

t e Z*. Thus if X e D R ,  then X e D S and if X 4 DR, then X 4 D S.t t t t
This implies that 6 (D^R) © 6(D^S) = for all t e Z*. Hence X cannot 

appear in any D-equation of R © S .

(ii) Suppose none of the D-equations of R © S contains X .  Since the 

set of unknowns includes all characteristic derivatives of R © S, we
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can say that 6 (DR) 0 6 (D S) = $$ for all t e Z*. Hence X e D R ifL L t
and only if X e D ^ ,  which means that t e R if and only if t e S . It 

follows that R = S. Q kE.D.

Thus, having generated the D-equations of R and S, construct 

the D-equations of R 0 S . If X appears in any of these equations 

then R ^ S. If X never appears, then we conclude that R = S.

Example 3: Consider the regular expression

s = ( o i* o ( o ii* o ) * o o ) * ( o i* o ( o n * o ) * ( o n *  +  o) +  01*)

Application of the equation and term rules yields

S = A = OB + OC + OD 
B = OE + IB 
C = OJ + 1C 
D = ID + X 
E = OF + OG 
F = 1H 
G = OA 
H = OE + 1H 
J = OK + OL + OM 
K = IN 
L = IP 
M = X
N = OJ + IN 
P = IP + X

( 21)

Thus N = 14. However, the T-equations (21) give rise to only 6 

D-equations. These are (with the unknowns renamed for brevity)

S = F = OG + 1L
G = OH + 1G + X 
H = OJ + 1L 
J = OF + IK + X 
K = OH + IK + X 
L = OL + 1L

( 22)
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We now compare S with R in Example 1. The D-equations of R © S are 

found from (15) and (22) to be

(R © S) = (A © F) = 0(D © G) + 1 (E © L)
(D © G) = 0(A © H) + 1(D © G)
(E © L) = 0(E © L) + 1 (E © L) (23)
(A © H) = 0 (D © J) + 1(E © L)
(D © J) = 0(A © F) + 1(D © K)
(D © K) = 0(A © H) + 1(D © K)

Since no equation in (23) contains \, we conclude that R = S.

Finally, we note that in a computer implementation of this 

prodecure, it is not necessary to store all the D-equations of R © S .

Once all the equations corresponding to new unknowns which appeared on 

the right-hand side of some preceding D-equation have been generated, 

the original equation may be erased. If \ appears in any D-equation 

of R © S, the procedure may be terminated immediately with the 

conclusion that R ^ S .

VI. EXTENDED REGULAR EXPRESSIONS

The technique just described for obtaining the D-equations 

of R © S is applicable to f(R,S) where f is any binary Boolean 

operator and R and S are restricted regular expressions. The D-equations 

for the various binary operators differ only in the occurrence or non­

occurrence of \ as determined by f(6(DtR), 6(D S)).

In the case of the unary operator~ (negation), the 

D-equations for ~R can be found by first deriving the D-equations of
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R in the usual manner. Then X is eliminated from all equations in 

which it occurs and is added to all equations which did not originally 

contain X. The resulting equations are the D-equations of ~R. This 

follows from the fact that if X e R, then X 4 ~R. Hence 6 (R) = X but 

6 ( ~ R )  = Similarly if 6 (R) = fa, then 6 (~R) = X. Each X. whichl
originally denoted some D R now denotes D (~R).t t

Thus as we implicitly defined binary functions of two sets 

of D-equations, we can also define the negation (complement) of a set 

of D-equations. The significant point here is the interpretation of 

6(Xi): the "negation" of X is fa and the "negation" of fa is X . The

negation case is best understood by considering state diagrams, A 

machine which accepts R will accept ~R if all accepting states are 

changed to non-accepting states and vice versa. This is analogous 

to replacing X by fa and fa by X in the D-equations of R.

We now turn to the problem of checking the equivalence of 

extended regular expressions. Every extended regular expression R 

may be regarded as a composite Boolean function F of restricted 

regular expressions R^,R^,. ..,R . This is denoted by

R = F(R ,R , ... ,R ) = F(R.)1 2  n l

First, the D-equations of each restricted expression R. are

separately determined; this results in n sets of D-equations. Then

by combining the n equations corresponding to R., R., ... ,R . the1 2  n
following composite equation is obtained:

F(R ) = a (D F (R )) + . . . + a. (D F (R.)) + 6(F(R.)) l 1 an i k a. i x i"1 k
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This gives rise to further equations just as in the case of fiR^R ). 

The difference is that n equations must be combined at each stage 

instead of two. Also Ô(D^F(R^)) is, in general, more difficult to 

evaluate than Ô (Dtf ( R ^ R ^  ) . 6 (D F (R ) ) which is a function of X

and <b only, is evaluated by applying the normal rules of Boolean 

algebra with the exception of the special interpretation of As 

usual, the identity of unknowns is unimportant and they may be 

replaced by single symbols for brevity.

The following simple example illustrates the method.

Example 4: Suppose R - ~(01* & 0*1) where & denotes intersection

We can write this as ~(S & T) where S = 01* and T = 0*1. The D-
equations of S and T are

S = OA + IB 
A = OB + 1A + X 
B = OB + IB

T = 0T + 1C 
C = 0D + ID + X 
D = 0D + ID

(24)

These two sets of equations are now combined to form the D-equations 
of ~(S & T) .

~  (S 6c T) = 0(~-(A
~(A 6c T) = 0(~(B
~(B 6c C) = 0 (~(B
~(B 6c T) = 0 (~(B
~(A 6c C) = 0(~'(B
~(B 6c D) = 0 (~(B
~(A 6c D) = 0 (~(B

& T)) + 1(~(B & 
& T)) + 1(~(A & 
& D)) + 1(~(B & 
6c T)) + 1(~(B & 
& D)) + 1(~(A 6c 
6c D)) + 1(~(B 6c 
6c D)) + 1(~(A 6c

C ) ) + ~  (Î 6c
c ) ) + ~  (X 6c
D)) + 6c x )
c ) ) + 6c t)
D)) + ~ ( X 6c X )
D)) + ~  (<b 6c ¿)
D)) + ~ ( X 6c

(25)
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Evaluating the 6-terms and renaming the unknowns, we get

R = A = OB 4- 1C + X 
B = OD +  IE +  X 
C = OF + IF + X
D = OD + 1C + X (26)
E = OF + 1G 
F = OF + IF + X 
G = OF + 1G + X

which are the D-equations for R. Now R can be compared with any other 

regular expression R' by constructing the D-equations of R © R' 

using (26) and the D-equations of R 1. Thus if

R ' = ( 00  +  1 +  0 1 ( 0  +  1 ) ) ( 0  +  1 ) * +  0 +  X ,  

it can be easily shown that R = R'.

VII. MINIMIZATION OF THE D-EQUATIONS

As remarked earlier, a set of D-equations may not be 

minimal, i.e., two or more unknowns may denote equivalent regular 

expressions. This may result, for example, from using different 

symbols to denote equivalent sub-expressions while generating the 

T-equations.

The problem of minimizing the D-equations is analogous to 

that of minimizing the states of the corresponding finite-state 

machine. The latter problem has been extensively studied [5,6].

States are generally distinguished by their responses to various input 

sequences. This requires some type of iterative table look-up, e.g., 

inspections of the state table. A modification of this approach is 

used here to minimize the D-equations. This leads to another method
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for checking the equivalence of regular expressions.

The set of unknowns U contains all the characteristic 

derivatives of R; U is therefore called a complete set of deriva­

tives of R. X,Y e U are said to be X-equivalent if 6 (X) = 6 (Y).

The partition induced on U by X-equivalence is called a X-partition.

If X and Y are X-equivalent, we write, using the notation of Hartmanis 

and Stearns [6], X = Y(X).

Theorem 2: Two elements X and Y in U, the set of unknowns in the 

D-equations of R, denote equivalent regular expressions if and only if

DtX S DtY(X) f°r a11 1 S Z* ‘
No proof is needed for this theorem as it is essentially a reformu­

lation of Theorem 1.

The concept of a partition of states with the substitution

property [6] can usefully be applied to regular expressions.

Definition: A partition rr on a complete set X..X....... X of0 1 n
characteristic derivatives of a regular expression R is said to have

the substitution property if and only if X^ = X^ (rr) implies that

D X. = D X . (tt) for all s e Z*. s i  s j
The minimization procedure is now described. First, the 

D-equations of R are obtained in the manner already described. This 

yields a set of unknowns U. Next, partition U under X-equivalence.

We can write this as

U = [x V V  V V (27)
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By inspecting the D-equations, find the derivatives of each X eUi
with respect to all aeZ. If X ± = X^(X), then from Theorem 2 we 
can say that X.^ X if ̂ j

D X j D X . d )  a i a jv (28)

for some a e Z, i.e., if D X . and D X. are in different blocks in (27)a l a j v '

Define a new partition U1 in which unknowns in the same block in (27)3.
which do not satisfy (28) are put in separate blocks. Thus is aa
refinement of U. This operation is repeated for all aeZ. Let U'*’ 

denote the product T^Tu1 • This partition shows all the elements of U 

which are distinguished by their derivatives with respect to a 

single alphabet symbol. Elements in different blocks of are not 
equivalent.

The foregoing procedure is repeated, this time unknowns in 

the same block in U are compared. Unknowns are distinguishable 

(non-equivalent) if any corresponding one-symbol derivatives belong 

to different blocks in U . In this way, a sequence of partitions,

U, U , ... U is produced. The process terminates when two 

successive partitions are identical, i.e., when

uL = u1+1

Derivatives in the same block in U 1 are equivalent, derivatives not 

in the same block are not equivalent. Clearly U is a partition with 
the substitution property.
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Thus U has been partitioned into classes of equivalent 

unknowns. All but one unknown in each equivalence class is eliminated. 

The equations of the retained unknowns constitute the minimal set of 

D-equations. This reduced set of D-equations is isomorphic to the 

set of characteristic equations of the corresponding regular expression. 

If the sets of reduced D-equations obtained from R and S are iso­

morphic, i.e., if there is a one-to-one correspondence between the 

symbols for the unknowns, then R = S; otherwise R / S.

Returning again to Example 3, the set of unknowns U from 

(22) is [f ,G,H,J,K,l] . Partition U under X-equivalence.

U = {F,H,L; G,J,K]

We proceed to generate refinements of U using (22).

uj = [fT h ; L; G,J,K]

= {F,H,L; G,J,K}

Hence

ul = U0 ‘ U1 = ^  g >j>r3 (29)

(29) is now refined by comparing the first-order derivatives of 

unknowns in the same block. The result is

U2 = [fTh ; L; G,J,k}

1which is identical to U . It follows that F = H and G = J = K.
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Equations (21) now reduce to

S = F = OG + 1L
G = OF + 1G + X (30)
L = 0L + 1L

Comparing S to R in Example 1, it is seen that (30) and 

(15) are isomorphic (where A-»F, D-»G and F~*L) . Hence we again conclude 

that R and S are equivalent.

It is quite apparent that much less effort is needed to

construct the D-equations of R © S than to minimize the D-equations 

of R and S. The former approach is therefore more suitable for a 

practical algorithm to determine equivalence. However, the latter 

approach is significant in that it makes it possible to reduce all 

regular expressions to canonical forms.

Consider the minimized D-equations (30) obtained from S 

in Example 3. These may be solved for S by eliminating all other 

unknowns by means of Arden's Theorem and substitution. Application 

of Arden's Theorem to the equation for L yields

L = (0 + l)*rf = <b

Similarly for G,

G = 1*(OF + X)

Substitute for L and G in the equation for S.

S = F = 01*OF + 01* 
= ( 01*0 )* 01*
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This is equivalent to but much simpler than the original expression

for S. It is in fact identical to R in Example 1.

The structure of the regular expression obtained by solving

the minimized D-equations depends on the order in which unknowns

are eliminated. By specifying this order, (e.g., eliminate the

unknown X. with the highest subscript first, then X ,, etc.) the i i-1
form of the resultant regular expression is fixed. This means that 

all equivalent expressions can be reduced to a unique form. This 

canonical form is always a restricted regular expression.

VIII. SUMMARY AND CONCLUSIONS

Some existing approaches to the problem of checking regular 

expressions for equivalence were considered and their limitations 

were noted. A practical checking algorithm based on the construction 

of regular equations was described. Two types of equation were used: 

the T-equations which are closely related to transition graphs, and 

the D-equations which are related to (deterministic) state graphs 

and state tables. The D-equations of R and S are used to construct 

D-equations for R © S, from which equivalence may be determined by 

inspection. This technique is applicable to both restricted form 

and extended regular expressions.

Bounds were obtained for the number of equations which may 

be generated. The procedure, which essentially involves algebraic 

symbol manipulation, is particularly suited to the comparison of long
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regular expressions and to implementation on a computer.

In addition, a method for minimizing the sets of D-equations 

was outlined. It was shown that the equivalence of two regular 

expressions can be determined by comparing their respective minimized 

D-equations. This technique is analogous to finding and comparing 

the minimum-state machines which accept the given expressions.

Finally, it was shown that the solution of the minimized D-equations 

leads to a canonical form for equivalent expressions.

In dealing with very long regular expressions, it might be 

worthwhile to combine the two checking algorithms. Minimization (or 

even partial reduction) of intermediate sets of D-equations may 

reduce the total amount of computation required. Redundancy in a 

regular expression tends to introduce a corresponding redundancy in 

the T-equations and ultimately in the D-equations.

This investigation has shown the usefulness of regular 

equations for checking equivalence. Furthermore, regular equations 

provide a valuable tool for other operations with regular expressions, 

e.g., conversion to restricted form and length reduction.
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examined and their shortcomings discussed. A checking procedure based on the con­
struction of regular equations is described. First, a set of transition or T-equation^ 
is obtained from the given expressions R and S. These are then converted to deri­
vative or D-equations. Finally, a set of D-equations corresponding to R © S  is 
constructed. It is shon that R = S if and only if the D-equations of R ©  S do not 
contain the empty string X.

Upper bounds are determined for the number of equations involved in each step 
of the procedure. Unlike previously-described methods, neither the construction 
of the graphs nor the computation of derivatives is required. This technique is 
also applicable to extended regular expressions involving any Boolean operators.

A modified procedure involving minimization of the D-equations of R and S is 
also discussed. R = S if and only if their respective minimized D-eauations are 
isomorphic. Finally, it is shown that these equations lead to a canonical form 
for equivalent expressions.
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