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Abstract

It is shown that if a nonlinear time-varying capacitor, 

whose incremental elastance is finite and greater than zero for all 

time, is embedded into a lumped linear passive time-invariant RC 

network, then the network is always bounded input-bounded output 

stable. In fact, if the input is periodic with period T, then the 

transient response asymptotically approaches a unique bounded periodic 
response with period T.
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INTRODUCTION

In the past few years a number of papers have appeared on 

frequency domain criteria for the determination of the absolute 

stability or instability of certain nonlinear time-varying systems. 

This work is well documented in the literature [1-5J. However, 

relatively little work has been done on the bounded input-bounded 

output stability of nonlinear time-varying systems. One of the first 

papers to appear on this subject was published by Leon and Anderson 

[6]. The authors considered the Thevenin equivalent circuit shown 

in Figure 1. Application of Kirchhoff's laws results in the equation

e (t)
v (q )

Figure 1. Linear network containing a nonlinear capacitor.

t
e(t) = J z(t-T) i(T)dT + v(q(t)), (1)

a

where, v(q(t)) is the voltage across the nonlinear element which is 
assumed to be continuous in q, thé first and second
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derivatives exist with respect to q, and the first 

derivative is positivé,

z(t) is the impulse response of the linear passive circuit 

due to a current impulse with v(q) = 0, 

e(t) is the bounded Thevenin equivalent voltage, and 

a is the time at which the excitation first appears.

The authors determine an upper bound on the input amplitude e(t), 

which is a function of the nonlinearity and the linear network, such 

that a unique steady state solution exists (a = -co) which is stable 

in the sense that all transients asymptotically approach this steady 

state solution. In the case when e(t) is periodic with period T 

improved estimates of the upper bound on e(t) were obtained [7]. 

Unfortunately both of these estimates can become difficult to compute 

and have no simple graphical interpretation as the frequency domain 

criteria.

In 1964 V. A. Yakubovich published the first results on a 

frequency domain stability criterion for forced systems [8]. He 

considered the following system.

dx
^  = Px + q 0(a) + f(t) , (2)

c = r x  ,

where ̂ x is an n-vector, P is an nxn matrix, q and r are nxl column 
matrices, and ̂ f(t) is a vector function bounded in (-0 0,00). The 

scalar function 0(c) can have isolated points of discontinuity of the 

first kind. Yakubovich proved that if the following conditions are
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satisfied, then the System (2) has in(-oo,oo) a unique solution x (t) 

which is exponentially stable in the large. These conditions are:

1. The roots of the equation det(P-sI) = 0 are in the half plane 
ReX < - oi < 0

2. The function 0(a) satisfied the condition

0 <
0(ax) - 0(a2)

< M< ~ o

where M«o < 00, CT1>CT2 are Points of continuity of 0(a), and -»< a < +«>.

3* l/P'o + Re W(-a + ia)) > 0, where W(s) = rt(P-sI) ̂ q is the
transfer function of the linear part of the system from the

input 0 to the output -a with f̂(t) = 0.

4. If M< = 00, then also o

?lim (JO Re W(-<* + iuu) > 0,
U) -*oo

The most recent bounded input-bounded output stability 

result was derived by I. W. Sandberg C9J. He considered the system
t

£ ( t )  = f ( t )  + |  k ( t - T )  y [ | ( t ) , T ]d T ,  t > 0, (3)

where ĝ(t) } f̂ (t) , and ^(^(t) ,t) are real measurable N-vector-valued 

functions and it is assumed that ĝ(t) is bounded, f(t) is square inte

grable over any finite range (0,y), k(t) is an NxN matrix such that 

tPk(t) is absolutely and square integrable for p = 0,1,2, with

00

K(s) = J* k(t) e Stdt for a > 0, and
o
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(i) det [i + j (a + 3) K(s)] ^ 0 for ct > 0

(ii) |  (3 - a) sup A{[I + j (a + 0) K(iau)]'1 K(iu>)} < 1
-00 <  U) <  oo

where A[m ] denotes the positive square-root of the largest eigenvalue 

of M M (* denotes transpose complex-conjugate of M) . Also it is 
assumed that

Oi <
Y (w,t)

< 3 (n = 1,2,...N), for w 4 0,

Y (0,t) = 0 (n = 1,2,...N),

and
Ï (w t) - y (w t)

at < — ---------- -------< S (n = 1,2,.. .N)
—  w  -  w  —  N 5 5 7W1 2

for t e[o,°°) and all real w-̂ >w2 such that 4 w^. If the above 

conditions are satisfied, then ̂ f(t) is bounded, f̂(t) 0 as t -* 0

whenever J?(t) 0 as t "* 00, and ̂ g(t) ultimately periodic with period

T implies that f̂(t) is ultimately periodic with period T. In the case 

N = 1 the conditions (i) and (ii) have a simple graphical interpre

tation in the K(iU)) plane [4].

FORMULATION OF THE CAPACITANCE PROBLEM 

In this work it will be shown that a passive lumped linear 

T.I. (time-invariant) RC network containing a nonlinear time-varying 

capacitor, whose incremental capacitance is greater than zero, is 

always bounded input-bouncjed output stable. The Thevenin equivalent 

circuit is illustrated in Figure 2.
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Assumption I: The impedance Z(s) is that of a lumped linear

time-invariant passive RC network with all shunt capacitance in Z(s) 

lumped with the nonlinear time-varying element and Re Z(s) > 0  for 

Re s > 0. The Thevenin equivalent voltage, e(t), contains all the 

initial conditions, is assumed to be bounded and measurable, and can 

be written in the form

e(fc) = ep(t) - efc(t) , (4)

where e^(t) is the steady state Thevenin voltage and e^(t) is the 

transient voltage which exponentially approaches zero as t 00.

Assumption II: Let us also assume that the nonlinear time-

varying element is assumed to satisfy the following condition.

v(q,,t) - v(q2,t)
& < ” ------  < 3, for all q and t,

and where 0 < Oi < 3 and v(q,t) is measurable for all t and q 

The integral equation for the above network is

(t) = J z(t-T) dT + v(q, t)

I
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or

e(t) = ¡  z (t-T) ^  dT + i (a + g)q + {v(q, t) - ^ (a + B)q)dT

Solving for q(t) we obtain

t
q(t) = J h(t-T)[e(T)-(v(q,T) - j  (a + 3) q(T))]dT,

where
H(s) = -------- :--------

sZ(s) + j  (a + B)
Yo<8>

(5)

The admittance Y (s) is the reciprocal of Z (s) and Z (s) consists of 
o  o  o

2Z(s) in series with a capacitor of farads. Hence,

Y (s) K n K.
— -----—  + + .£ — +-

S S 00 1=1 S+CT.1
y

where o\ > 0 and is real and positive, However, because of the

series capacitance we note that Y (s) | _ = 0, implies that K =0.o s=0 * r o
Also, the shunt capacitance was removed from Z(s) , therefore K = 0. 

n -CT. t
Thus, h(t) = ^2^ e , for all t > 0, and we conclude that

(A) h(t) is absolutely integrable, and

(B) h(t) > 0, for all t > 0.

This second inequality is a key step in the results which follow.

Mathematical Results for the Nonlinear Time-Varying Capacitor 

First let us state the following theorem;

Theorem 1; If Assumptions (I) and (II) are satisfied for the network



7

in Figure 2, then the network is always bounded input-bounded output 

stable. The output is unique, and if the input is bounded and periodic 

with period T, then the output asymptotically approaches the unique 

bounded periodic response with period T.

Proof: First we will show that the mapping

i.e., there exists a unique fixed point, a solution to Eq. (5), in 

£'co* We say that f(t)e if f(t) is bounded and measurable with norm

F[q(t)] = J h(t-T)[e(T) - v(q(t),T) + | (a + 3) q(T)]dT (6)

is a contraction mapping [lO] in the space Zm for any bounded input,

Ilf sup
“ 00 <  t  <  00

I f  ( t )  I <  °°.

Let us defipe a sequence of iterates as follows.

q(o) (t) = 0

a

The difference between successive iterates is

q(n+1)- q(n)= J h ( t - T )  Cv(q
a

(<*+$) q(n)]dT,
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and

U (n+1)- q ^ l  < /|h(t-T)| |[v(q(n),T)-|(0+e)q(n>].[v (q("-1) >
a

- |(Q'+S)q(n'1)]|dT.

From Assumption (II) we conclude that

lq(n)- q(n+1)l < J‘t |h(t-T)||<B-«)|q(n)- q(n' 1) |dT.
a

Taking the norm of both sides, we obtain

l|q(n)-q(n+1)||<f(^)f|h(t)|dt||q(n)-q(n-1)||.
o

Thus the Mapping (6) is a contraction mapping provided
00

d = |(3-a)J. I h(t) | dt < 1.
o

However, from Property (B) we see that 
00 00

J | h(t) I dt = J h(t) dt = H(s) I s=o.

T)

Thus
;(S-<*)

d =
sZ (s) + £(3-Mf) s=o

(7)

(8)

Since 0 < a < 3 and Re sZ(s) > 0, it is obvious from Equation — s=o —
(8) that d < 1. Since the mapping is a contraction, it follows that

ii „ llq(1)H
Actually, we have only shown that there exists a unique solution 

to Eq. (5) in In order to show that this solution is stable we must

assume that the transient solution q(t) is bounded for all finite t (this 

is generally a good engineering assumption) and show that q(t) asymptotically
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approaches 9p(t) as t — 00, where the unique steady state solution

and is determined from the integral equation 
t

%<*) = I h(t-T)[e (T) - V(q ,T) + i(<*+£)q (T)]dT. (9)

We will now finish the proof of the theorem by showing that the difference

q(t) - q (t) = 6q(t) = J* h(t-T)[e(T>- v(q,T) + |(C*+B) q (T) ]dT
a z

t
- J h(t-T)[e (T) - v(q T) + “ (QH^)q (T)]dT (10)_oo r P P

is unique and asymptotically approaches zero as t 

Equation (10) can be put into the form 

t
6q(t) = M(a,t) + J h(t-T)[v(qp,T) -v(q,T) - ¿(otS) (qp (T) - q(T))]dT, (11) 

and with Eq. (4)
t .a a

M(a,t) = -J h(t-T)e (T)dT - J h(t-T)e (T) dT + J h(t-T)[v(q ,T) - a - «  P . o ,  P

- j(a*3)q (T)]dT.

Since, h(t) is the absolutely integrable impulse response of a lumped 

system, e^(t) and 9p(t) are bounded, and efc(t) exponentially approaches 

zero as t 00, then it follows that there exists positive constants 
and c^ such that

I M(a, t) | <  k^e 1 .

Let us define
v(q ,t) - v(q,t)

k(t)---- q - q-------  > (12)
P

where ot < k(t) < 3.
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It follows as before that the mapping 

t
a[6q(t)] = M(a,t) + J h(t-T)[k(T) - j(<*+0)]6q(T)dT (13)

a

is a contraction mapping and

l|Sq(t)|| <
l|M(a,t)||

1-d » (14)

hence there exists a unique 6q(t)e£00. We must now show that since 

lrm | M(a, t) | — 0 ̂ then lun I ̂ q(t) | = 0. Note that: if we can show that
f-*00 £-*CO

r te 6q(t) is bounded for any positive r, then it follows that 6q(t) -• 0 

as t “♦ 00. Therefore multiplying Eq. (13) by ert weiihave

ert6q(t) = ertlí(a,t) + J er h(t-T) [k(T) - ^(a+|3) rj}ert 6q(T)dT. (15)

First, it is obvious that if we want the above mapping to be a contraction

we should restrict r < c1 so that ertM(a,t) is bounded and erth(t) is

absolutely integrable. This is always possible from the above formulation
r tof the problem. Now e 6q(t) e if

00

= |(3-a)J' |erth(t)|dt < 1. (16)
O

r tHowever, e h(t) > 0, hence Eq. (16) can be expressed as

dx = 2 ^-*)
LsZ(s) + < 1,

s=-r

[
/ ' 1 - 1

1 + (g^C-hzft) <i, (17)

where 0 < e < 1 since 0i > 0. We will now show that one can always pick r
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small enough such that Inequality (17) is satisfied. We must consider 

two cases. First the case in which Z(s) has a pole at the origin, Fig. 3. 

From Fig. 3 it is clear that if one picks z^ < -r < 0, then Z(-r) is

Fig. 3. Pole-zero diagram of an RC impedance with a pole at the origin.

negative. Therefore -rZ(-r) is positive and d^ < 1. In the case where 

there is no pole at the origin, Fig. 4, then for p^ < r^ < 0 the impedance

Fig. 4. Pole-zero diagram of an RC impedance with no 
pole at the origin.

Z(-r) is finite and positive. Thus,

Cnegative, p_< r < 0 
-rZ(-rW

(0 , r = 0
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and -rZ(-r) is continuous in this region. Hence it follows that we can 

pick r small enough such that

( ' r )  ( z ( - r ) )  = 6/2

Substituting this result into Inequality (17) , we obtain
1

< 1 -0 l-e/2 < 1.

x* tInequality (17) is satisfied implies that e 6q(t) is bounded and 

6q(t) “* 0 as t “* 00. Therefore the solution of q(t) is asymptotically 

stable. In fact if e^(t+T) = e^(t) and v(q,t) = v(q,t+T), then from 

Eq. (9)

t+T
= q (t+T) = j H(d+T-T)['eh(T) 

^  « 0 0

v(q ,T) +T(Q^fB)q ]dT.p 2 p

Let X = -T+T, then

qT = J h(t-X) [e (X) - v(qT ,X) + ̂ (<2+3) qTldX. (18)
—  00 *■

Note that Eqs. (9) and (18) are identical. Since the solution is unique, 

then
qT = qp(t+T) = •

The solution is periodic with period T.

CONCLUSION

It follows that the above circuit can never sustain subharmonic 

oscillations, whereas, subharmonic oscillations occur frequently in non

linear RLC networks [7]. The above results are being extended to RC 

circuits containing N nonlinear time-varying capacitors. However, the



13

above method of proof seems to fail in this case and other methods must 

be used.
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