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SUFFICIENT CONDITIONS, COST BOUNDS, AND APPROXIMATION 
ALGORITHMS FOR THE GRAPH BISECTIONING PROBLEM

Youssef Saab and Vasant Rao

Coordinated Science Laboratory 
and Department of Electrical and Computer Engineering 

University of Illinois at Urbana-Champaign 
1101 W. Springfield Avenue,

Urbana, Illinois 61801.

ABSTRACT

The graph bisectioning problem has several applications in VLSI layout such as floor 

planning and module placement [16-19]. In this paper we begin by presenting a necessary 

and sufficient condition for optimality of a given bisection. Two other sufficient condi­

tions are then derived. Upper and lower bounds on the cost of an optimal bisection are 

obtained. A duality between the graph bisectioning problem and a nonlinear programming 

problem of maximizing a concave function is exhibited. We also show that for dense 

graphs, a bisection that approximates an optimal one can be easily found. Finally, we 

exhibit a class of graphs for which the ratio of the upper and lower bounds approaches 1 

as the number of vertices in the graph increases.

t  This work was supported by the Semiconductor Research Corporation under contract #  SRC 86-12-109.
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U Prelim inaries

A graph G (V £ )  consists of a set of vertices V , and a set of edges £ ,  where an edge 

e €£ is a pair of vertices (not necessarily distinct) in V . If an edge e = iu ,v }, then we say 

that e is incident on u and v . We also say that u and v are the ends of e . If each edge in 

£  is an ordered pair of vertices in V , the graph G is said to be directed ; otherwise, G is 

said to be undirected . A weighting f  unction on a set S is a mapping /  . S —> R from this 

set to the reals. The weight of an element s €5 is denoted by /  (s ). A set 5 is said to be 

weighted if it has a weighting function defined on it. In this case, the weight of any sub­

set A QS is defined to be f  (A ) =  £  /  ( s ).. A graph G ( V £ )  is said to be an edge-
sSA

weighted graph if the set £  is a weighted set. Similarly, a graph G(V £ )  is a vertex- 

weighted graph if the set V is a weighted set. A graph G (V £ )  is said to be connected if 

for any two vertices u ,v € V there exist a non-null sequence v 0v { • • • vk of vertices in V 

such that u = v0, v = , and for 0 ^  i ^  k —1 the pair {v. ,v. +1} is an edge in £  (such a

sequence is called a path).

In this paper, we will only consider undirected edge-weighted graphs. These 

graphs may or may not be connected. For more information about graphs, the reader is 

referred to [l].

The Connection matrix of a graph : Let G (V ,£) be an undirected, edge-weighted graph. 

Let n = \V\ be the cardinality of the vertex set V . The connection matrix C(G ) of G is
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Figure 1 : A graph on 4 vertices

an n xn matrix whose ij —th entry is the weight of the edge {z ,j } if | i ,/ ) is an edge, 

and is 0 otherwise. For example, consider the graph shown in Figure 1 with all edges hav­

ing unit weight. Its connection matrix is

[ 0 1 0 0  

1 0  1 1

C 0 1 0  1 '

0 1 1 0

Note that the connection matrix C ( O  is symmetric because G is an undirected graph. If 

there is only one graph under consideration we will use the notation C instead of C (G ) to 

denote the connection matrix.

Partition of a s e t : We say that the two non-empty subsets 5 { and S 2 partition a set 5 if 

S = S j U 5 „ and S j fl S 2 = 0. A partition of a set 5 into two subsets S l and 5 , is denoted



4

the the unordered pair ( S ^ 2) Ci*e., (S^,S2) and (S2̂ i )  represent the same partition). A 

partition of a graph G(V £ )  is a partition of its vertex set V . A partition (V v V 2) of a 

graph G is said to be a bisection if \V J  = \V2\, i.e., the two subsets have equal cardinality. 

An edge e €£ is said to be cut by a partition (V v V 2) of G if its ends belong to two 

different subsets of the partition. The set of ail edges cut in G(V £ )  by the partition 

( V . y J  will be denoted by Ec(V v V 2). Once again we will simply use Ec instead of 

Ec( V vV 2) if there is only one partition under consideration.

Cost of a partition : The cost of a partition is simply the sum of the weights of all the 

edges cut by the partition. More formally, if is a partition of a graph G , then it s

cost is defined by

cost ( v 2) ~  21 îj 22 22 » (l . i)
{ij)ZEc i€V,/€V2

where c;j is the i j  — th entry of the connection matrix C of the graph G . A bisection is 

optimal if it has the lowest cost among all bisections of the graph.

The Graph Bisectioning Problem (GB) : Let G (V £ )  be an undirected, edge-weighted 

graph on an even number n of vertices. The graph bisectioning problem (GB) is to hnd an 

optimal bisection (V v V 2) of G .

The GB problem has been shown to be NP-Complete [2]. Therefore, finding an 

optimal solution is, in general, intractable; and many heuristics have been suggested for 

its solution [3-9]. In this paper, we will focus on some theoretical aspects of GB. In 

another paper [20] we will provide some new heuristics for GB. At this stage we wish to



5

emphasize that finding a partition (not necessarily of equal cardinality) of the lowest cost 

among all partitions of a graph G (V JE) is an easy problem with polynomial-time- 

complexity of 0 ( n \ 2) [23] where n= |V | and m =|£|. It is therefore constraining the 

partitions to be bisections that makes the problem intractable.

Representation, Notations, and Conventions : All the graphs that we consider are 

undirected, edge-weighted graphs. We will always represent a graph G (V £ )  by its con­

nection matrix C . The cardinality of the vertex set V will always be denoted by n , and 

is assumed to be even. Without loss of generality the vertex set V can be assumed to be 

y={ i ,2 , . . . ,  n }. The entries of the connection matrix C can be assumed to be non­

negative. If this is not the case, a constant a greater or equal to the negative of the 

minimum entry in C can be added to all the entries of C . This will not change the 

optimal solution of the graph bisectioning problem since the cost of all bisections will be 

raised by the same amount, namely, n <xl4. Also, the diagonal entries of the matrix C 

can be assumed to be zeroes, since an edge connecting a vertex to itself does not affect the 

cost of a bisection.

The rest of this paper is divided into hve sections. In Section 2, we derive conditions 

for optimality of a given bisection. In Section 3, we derive lower bounds on the cost of 

any bisection. We also exhibit a duality between GB and a nonlinear programming prob­

lem. In Section 4, we give an upper bound on the cost of an optimal bisection. In Section 

5, we introduce the notion of e-approximations and show that for dense graphs an entire 

class of polynomial-time algorithms are eapproximation algorithms. We also exhibit a 

class of graphs for which the ratio of the upper and lower bound approaches one as the
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size of the graph increases.

2. Conditions for Optimality

In this section, a necessary and sufficient condition and two other sufficient conditions 

for the optimality of a given bisection are presented.

Definition 2.1 : A bisection (V v V 2) of a graph G(V,£)  is said to be m-optimal if for 

any subset X C.V x of cardinality m and for any subset Y CV*2 of equal cardinality m . we 

have costfV’j+y’— X ,V 2+X — Y ) ^  cost(VvV 2).

Informally, a bisection (Vv V 2) of V is m -optimal if the exchange of any subset 

J c V j  of cardinality m with any subset Y <ZV2 of equal cardinality m cannot lead to a 

better bisection.

Lemma 2.1 : Let (V^V^ and (PltP 2) be any two distinct bisections. Then there is a con­

stant m such that 0<m <  |n /4], and two subsets A' CV1 and r c V ,  both of cardinality 

m such that exchanging A" and Y in (V v V 2) produces the bisection (PVP 2), i.e., 

P x = v x+ Y - X  and P2 = V 2+ X - Y .

Proof : Let A - P xC\Vv B = P 2r\Vv C = P v and D = P 2flV 2 as shown in Figure 

2. Since both (PVP 2) and (VlfV’2̂  are bisections of the set V , the sets A ,B ,C , and £> are

mutually disjoint. We can also write = A  UC, P 2 — B U D , Vr1 = BUC, and

n
V 2 = A UD.  But each of P 1,P2,V1, and V 2 has cardinality Hence, it follows that 

|A | = \B |, and |C | = \D |.
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V,

V2

Figure 2: Pictorial representation of two distinct bisections

If \a  | =  \B |<  [n /41 then we take X  = B and Y = A . Otherwise, it must be the case 

that.|C | =  \D |<  \n /4 ] became \B | + |C | =  \VX\ = and we take X  = C and Y = D . In

either case we see that P x = V j+Y’’—X and P 2 = V 2+X — Y . □

The above lemma leads us to establish a necessary and sufficient condition for a bisec­

tion to be optimal.

Theorem 2.1 : A bisection (VvV 2) of a graph G(V £ )  is optimal if and only if it is 

m —optimal for each m satisfying 0<m ^  |n /4 ].

Proof : If a bisection is optimal then obviously it has to be m —optimal for 0<m < [n /4 |. 

Conversely, assume that a bisection (VvV 2) is not optimal, and let (PVP 2) be an optimal 

bisection. By Lemma 2.1, there is a subset X C V x and a subset Y C.V2 with 

\x \ = \Y | = 771 < In /4 ] such that if we exchange X  and Y in (V v V 2) we get the bisection 

(PVP,)  which is dehned to be better that (Vv V2). Therefore. (VVv 2) cannot be 

m —optimal for all m such that 0<m ^  \n /4 |. □

*1 P2

c B

A D
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Although Theorem 2.1 provides us with a necessary and sufficient condition for a

bisection to be optimal, it is computationally intractable to check for m —optimality for all 

m such that 0 < m < l n /4 j .  For example; the brute force algorithm to check for

m -optimality of a given bisection (V v V 2) would require the generation of all subsets of 

V of cardinality 771 and all subsets of of cardinality 771 . After that, a trial exchange 

of each pair of subsets must be done to check if any reduction in the cost of the bisection
fn / 2 ' ’

is possible. This requires computation time that is at least proportional to . There-

fore, to check for optimality, the brute force algorithm requires computation time that is 

at least proportional to X |  ̂ | is about — ^  ]• This quantity grows exponen­
m *1

tially with tx . Therefore, sufficient conditions for optimality that are easier to check are 

desirable. We will now establish two such conditions.

Theorem 22 : Let C be a connection matrix of a graph G {V £ )  and let (V {tV 2) be a 

given bisection. If

cti + c w >c* + c ,z Vi,;  €Vj , i * j  andVkJLZVl t k * l  (2.1)

then (V vV ,) is an optimal bisection. Furthermore, if the inequality in (2.1) is always 

strict, then wiil ^  tiie oniy °Ptimai bisection.

Proof : Let (PvP n) be an arbitrary bisection distinct from (V vV 2). By Lemma 2.1, there 

is a subset I c V 1 and a subset Y CV 2 with \ X \ -  \Y\ = m < |n /41 such that if we 

exchange X  and Y in we can get the bisection (PVP 2). Let X — X and let

Y — VT, — Y . The cost of the bisection (V1(V'2) can be written as
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cost(v1,v2)= Z Z ctj = Z Z ca + Z Ic* + I  Zĉ  + Z Z cm
¿ e V j y e V j  r €X L GY i €X * gy J € X l * Y  y € X * € y  

and the cost of the bisection (PVP 2) can be written as

COST ^ 2̂  ”  Z  Z  Cy Z  Z<* + I + Z  Z  Cfcy + Z  Z cw
i tPxjZPl itXlZY * ex y ex kSY j ZX k€YlSY

Hence,

COST (P J ,P 2)-cost (V Vv  2) =  £  Z  Ciy + Z  Z  c& -  Z  Z c * -  Z  Z ' j i
t €X y gX *€yz«y i ex * gy a x i e r

But note that we can write

Therefore,

Z Z Cry------------ Z Z Z Z Ciy
< ex j ex j * * l *Y k * i

2

Z  Z c*z = — -— Z  Z  Z  Z c w
*€y*ey ( l - m l m ^ X j * * 1*7 ***

2

Z Z c*  ---- ----- Z Z Z L  c ik
i ex it gy ^  i  ex ̂  ey k gy

2

Z  Z Cyi = ------ ---- z Z  Z  Z  cn
jSXliY (— - m ) m l *x J ZXISYkSY

2

cost (P VP 2) — cost (V vV 2) = -------------  Z  Z  Z  L (ci; + Ckl Cik Cjl ^
(!L — m ) m  ¿ex y gx z eyk $ Y  

2
But from Equation (2.1) we have ci} + ckl >  cA +cJt for all i , j € V vi ^ j  and all 

k ,1 € V 2,k Ttl. Therefore we must have ctJ + ckL > c* + c;Z V i $X ,/ €X ,k €T , and

l € K which means that
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cost (P VP 2) ^  cost (V v V 2).

Since the choice of the bisection (PVP 2) was arbitrary, the bisection <Vv V 2) is optimal. If 

strict inequality always holds in Equation (2.1) then we have

and so(VlfV2)ls the unique optimal bisection. □

Figure 3 shows an edge-weighted graph on 4 vertices for which the bisection 

({1,2},{3,4}) satisfies the hypothesis of Theorem 2.2. Therefore, it is an optimal bisection 

for this graph. However, theorem 2.2 does not guarantee the uniqueness of this bisection 

since strict inequality in (2.1) is violated ( c 12 + c 34 = c 14 + c 22 =  8). It is easy to see 

that the bisection ({1,4},{3,2}) has the same cost as ({1,2},(3,4}), and hence is also optimal.

We will now discuss an alternate sufficient condition for optimality. Given an arbi­

trary bisection (V v V 2) of a graph G (V £  ), let us define for each vertex f € V the follow-

cost (PVP 2) > COST (V vV 2)

© ®

Figure 3 : A graph that satisfies the hypothesis of Theorem 2.2
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ing:

1 * 0 if i * V 2

=
I « « / if i €V'1

(2.2a)

V " ,

I  c<7 if z €Vj

J
(2.2b)

*i I if z€V\
7

A h  ~Di- (2.2c)

It is clear from the above dehnitions that I t measures how strongly vertex i is connected 

to its subset, and Et measures how strongly vertex i is connected to the complement of its 

subset. One can think of l t and Et as the internal and external attraction of vertex z, 

respectively. Also, if i €V x and j  €V2, then Dt + Dj + 2cu is the net increase in cost 

due to the exchange of i and j . Hence, if Di ^  0 Vz €V\ then clearly *s

1-opfz'maZt. The next theorem gives us a lower bound on Dt that guarantees the 

m —optimd.itv of the bisection (V for ^  between 1 and some positive integer 

k <  |n /41.

Theorem 23 : Given an edge-weighted graph G(VJE)  with connection matrix C such 

that ctj >0 Vz,; €V andca «0Vf€V.  Let ( Vv V 2) be a given bisection of the graph G . 

Let M = max denote the maximum edge-weight. Compute Dt for each vertex
1^ i < j

t  Provided ct] ^0 .
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i € V from (2.2) and let d = min Di. If d > (* -  for some positive < |n /4 J,
i ev%

then (Vv V 2) is an m —optimal bisection for all m such that 1 < m < k .

Proof : Let X G V l and Y C V2 be any two nonempty subsets of equal cardinality m < k . 

Set P j = V^+T-X and P 2 = V2+ X -V \ and let X  -  Vx -  X and T = V2 -  y . Now as 

in the proof of Theorem 2.2 we have

COSt (P VP 2) — COSl (V vV 2) — £  Z ci; + Z  I Ci/ Z  Z  Cty Z  Z  Ciy
t €X y 6X i€yy€y t 6X y €y :€X7 63"

Since A' = V x — X we can write

Z  Z  Cij = Z  Z  Cty "  Z  Z  Cij
t€Xy€X : 6X y €Vj t €X y 6X

. = z * ,
i €X

-  Z  ZCy
i €X y ex

where we have used the definition of I\ from (2.2b). Similarly

Z Z ct/ = ZA “ Z Z c ij
terygy *e yyey

Z Zcy = Z^i -  Z Z c ij
i €X; gy « €X t€Xy€y

Z Z Ciy = Z^i “ Z Z Ciy
x€y; €X i€y i€X/gy 

Combining the above equations we get

C05T ( P r P 2) — COST ( V l t Vr 2)  = Z î ” Z Z Ciy + Ẑ i “ Z Z Cij
:€X :€Xy€X i 6y i €Y / i Y

“ Z Z Z Ciy “ Z£t + Z Z C:y
¿ex ¿exyey i€y texyey

= 2Z Zev -  Z Z«« “ Z Zc, + Z D i +  ZA
¿exyey texyex i ey y ey i ex * ey 

Since ct; >0 we have 2 £  £  > 0. Also> we are 8iven that ca ' m = I = \Y I*
i €X j  €y
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and cu =0 for each z € V . Therefore

and

Hence,

- Z  Z ^  1)M
i €X j  €X

-  Z Z C;; >
i £ Y  j  €Y

cost (PVP 2̂  — cost (V v V 2) >  — 2m (m— 1)M + Z  A  + Z  A
t ex i er

as £  — m(m —l)M + 21A  ~~ m (m
t ex » ey

t ex t ey

which implies that if Di ^  (m— l)M Vz'€V then cost (PVP 2) > cost ( Vv V 2). But 

m < k ; hence if

Dt >  (k — 1)M Vz €V  = £ >  cost(PVP 2) >  cost ( V j . VD

for each m such that 1 ^  m < £ . But «T C V L and Y C.V2 'vere arbitrary nonempty sub­

sets of cardinality m ^  k . Therefore, (V v V2) is m —optimal for each 1 ^  m ^  k . □

An immediate consequence of Theorem 2.1 and Theorem 2.3 is

Corollary 2.1 : If d > —----—M then (VlfV 2) 15 an optimal bisection. Moreover, if
4

d > Î2---—M then (VvV 2) will be the unique optimal bisection.
4

Figure 4 shows a graph on six vertices. Consider the bisection ({1,2,3},{4,5,6}). The 

following table lists / L, Et , and Dt for each z € V computed using (2.2).
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Figure 4 : A graph in which a bisection satisfies Corollary 2.1

i /, i Dt
1 4 i 3 ! 1

1 2 2 1 1 1
i ”2I J 2 1 ! 1
1 4 4 3 i 1
! 5 3 2 ; 1
: 6 1 3 0 3

For this example, M=2, d = l ,  and ——— M = 1. Therefore, the bisection
4

({1,2,3},{4,5,6},) satisfies the conditions of Corollary 2.1, and is therefore optimal.

n /2
Given a bisection (Vv V 2) of a graph on an even number of vertices n , there are 0

I
n /2 possible choices of k ,1 €V2k . Therefore,

4
checking the validity of the condition (2.1) in Theorem 2.2 would require 0(n ) time.
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However, obtaining d = min Dt from (2.2) would take O (n~) time, and therefore check-
1 ̂ i

ing the validity of the condition of Corollary 2.1 would require only 0 ( n 2) time. There­

fore, Corollary 2.1 gives us a sufficient condition that is computationally easier to check. 

However, this condition is too strong in the sense that very few graphs satisfy it.

We wish to emphasize, once again, that the conditions of both Theorem 2.2 and 

Corollary 2.1 are only sufficient conditions for optimality. Therefore, there may exist 

(and indeed there are) optimal bisections that do not satisfy either or both conditions. To 

illustrate this point, we considered several (around 100) examples of graphs generated 

randomly of size ranging, bet ween 50 and 200 vertices. For each of these graphs, we gen­

erated a "near optimal" bisection (V vV J  using one of the heuristics in [20]. We then 

tested these bisections in each case to determine to what extent the conditions of Theorem 

2.2 and Theorem 2.3 were satisfied. Our experimental results showed the following:

( lj  For dense graphs (more than 80% of the edges present), the condition of Theorem 2.2 

was satisfied by almost all bisections. Therefore, we were able to conclude that most 

of these bisections are in fact optimal. This strengthened our intuition that it is rela­

tively easy to obtain good bisections for dense graphs. Theorem 5.1 in Section 5 of 

this paper will make our intuition precise.

(2) For sparse graphs (less than 10% of the edges present), the condition (2.1) of 

Theorem 2.2 was satisfied by more than 80% of all quadruples (i , j ,k,L)  with 

i j  € V v i?£j and k i  € V 2,k?±l in almost all the cases considered.

(3) In very few cases of sparse graphs and in all cases of dense graphs, we were only able 

to show 1-optimality of the bisections using the condition of Theorem 2.3. For few
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cases of dense graphs, we were able to guarantee 2“0ptimality of the bisection using 

this condition.

The above results show that the condition of Corollary 2.1, though easy to check, is 

almost never satisfied even by optimal bisections in practice for large graphs. However, 

the condition of Theorem 2.2, which is computationally more difficult to check, guarantees 

the optimality of a bisection generated by a heuristic in [20] in almost all dense graphs 

and a few sparse graphs considered.

3. Lower Bounds

Throughout this section we will use the following notation. Let

••• > \ n (M) (3.1a)

denote the eigenvalues of an n xn real symmetric matrix M arranged in descending order 

and let

n

Tr {M ) = Z mu (3.1b)
¿«1

denote the trace of M , which is the sum of all the diagonal entries. We now derive a 

lower bound on the cost of any bisection of a graph.

Theorem 3.1 : Let G(V £ )  be a graph on n vertices with connection matrix C . Let
. n n

(VvV z) be any bisection of G. Let W = denote the sum of all the edge-
t =i/ =i

weights in the graph G . Then
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(3.2)

where D is any n xn real diagonal matrix, i.e.,

Proof : Let P be the n xn indicator matrix for the bisection (V v V 2) defined by

1 if vertices i and j  are in the same subset 

^ lJ 0 otherwise

The columns of P corresponding to vertices in the same subset of the bisection are identi­

cal. Thus, P has exactly two distinct columns. Furthermore, these two columns are 

orthogonal due to the fact that V x and V 2 are disjoint. Therefore, P has rank 2 and, 

hence, 0 is an eigenvalue of P of multiplicity (n -  2). In addition, the two distinct 

columns of P are orthogonal 0—1 vectors which are the eigenvectors of P, corresponding

to the eigenvalue —. Therefore the eigenvalues of P are

Let We =cost (V’j.Vj) denote the cost of the bisection ^ v V 2) and Wnc =  W -  We 

denote the sum of the edge-weights not cut by the bisection. We first note that

2

(3.3)
2 2

n n

=2W  - 2 W C = £  Z  c,, />,, (3.4)

by using the definitions of W , Wc, and . We also note that

n n

L  ZduPi , (3.5)

since D is a diagonal matrix and pu = 1 V z by definition. Now consider
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Tr((C + D ) P T)= Z
¿ *  1

Z  ^ij P̂lJ
7=1

n n

= I  Z cc/^7 + I  (3.6)i/
i ~ l / = l i*i/=i

Combining (3.4), (3.5), and (3.6) we get

Tr ((C + D ) P T ') = Tr(D) + 2Wnc = Tr(D)  + 2(W -  Wc ) (3.7)
Now by applying the main theorem of Hoffman and Wielandt [10] to real symmetric

matrices (C + D ) and P we get

Tr ((C + D ) P T ) < I V C  + D ) \ t (P)
i *  i

which together with (3.7) gives

(3.8)

Tr(D) + 2(W -  Wc) < l X t (C + £)X<(P)
t=i

But from (3.3) we have Xx( P ) = X2(P ) = n 12 while \  (P )=0 V i =3,4........n . Hence we

conclude that

J r  (D ) + 2(W -  We) < —(X,(C + £> ) + X2(C + Z) )>
2

which implies (3.2) by rearranging the above inequality and replacing We by 

costiVv V 2l  □

The above theorem provides us with a lower bound for the cost of any bisection of a 

graph and this lower bound given by (3.2) is a function of the choice of the diagonal 

matrix D . If we take D to be the n xn zero matrix we get

cost (V v V 2) W  -  —(XjiC ) + X2(C )) (3.9)
4

while if we take D to be any real n xn diagonal matrix with 7V(Z) )=—2VV we get the 

bound derived by Donath and Hoff man [ 11 ]
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cost (Vv V 2) >  — O^iC + D ) + k2(C +D))  
4

(3.10)

In most practical situations, the edges of a graph have non-negative edge weights, i.e, 

c.. )  0 V i ,; € V . Therefore, the cost of any bisection of the graph is always non­

negative. Hence, 0 is a trivial lower bound for the optimal cost in this case. However, 

there are graphs with non-negative edge weights for which the lower bound of (3.9) (zero 

diagonals) is strictly negative. For example, consider a graph which is a simple path on n 

vertices with unit edge weights. Hence, W = n — 1. In this case, it can be shown that

k2(C ) = 2cos
7T

n +1
, and kJC ) =  2cos

2 7T
n +1

[12]. Therefore, the lower bound of (3.9)

becomes

n
n -  1 -----cos

2

TT

n +1
n-----cos
2

27T
n +1

(3.11)

which can be shown to be strictly negative for n > 10. Furthermore as n —oo the lower 

bound of (3.11) approaches —1, while the optimal cost in this case is 1 for any n .

The above discussion motivates the need to seek a lower bound which is at least 

guaranteed to be non-negative for graphs with non-negative edge weights. The next 

theorem provides such a bound. Ŵe say that a real matrix is norz-negoizve if each of its 

entries is non-negative.

Theorem 3.2 : Given a graph G ( V £ ) o n n  vertices with non-negative edge weights and
n

connection matrix C . Let pt = £  ctJ denote the sum of the entries in the i - th  row of
7=1

C . Let p = max (p ) be the maximum row sum. Let R be the n xn diagonal matrix• max t1 < i
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with entries defined as

n.

Then for any bisection (V v V 2) of G , we have

cost (Vj.Kj ) > -(Pmu-  k2(C
4

(3.12)

and the second inequality above is strict if G is a connected graph. 

Proof: Since R is a diagonal matrix, we have from Theorem 3.1

(3.13)-
n

where W is the sum of all the edge-weights in the graph G . We first note that W =V2 £  Pt

By definition, C and R are non-negative matrices and hence C +£ is also non-negative.
T

Furthermore, pmax is an eigenvalue of the matrix C + R with eigenvector (1,1,..., 1) . In 

fact, it can be shown that pmax is the largest eigenvalue of C + R , i.e., pmax = \ X(C + R), 

by using the Gerschgorin circle theorem [13]. Hence k2(C +R ) ^  Pmax* Combining these 

facts with (3.13) and (3.14) we get (3.12).

If G is connected, then C +£ is an irreducible matrix. It therefore follows from the 

Perron-Frobenius theory for non-negative irreducible matrices [21] that 

pmax = XjIC +R ) > X2(C +/? ). Hence, the bound in (3.12) is strictly positive in this case

n

and Tr (R )= £  (pmax—Pj )* Therefore

2
(3.14)
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and truly reflects the fact that for a connected graph G with non-negative edge weights 

the cost of any bisection is strictly positive. □

We now go back to the lower bound as given by Theorem 3.1 and consider the prob­

lem of finding the diagonal matrix D that maximizes the lower bound. This would then 

result in the best possible lower bound of this kind. To this end we introduce the follow­

ing definitions and notation.
n n

Given a n x n  real symmetric matrix C let W = V2 £  £  cu denote sum
t=i/ =1

all entries of C . Let Rn denote the n -dimensional Euclidean space. A vector x€Rn is an 

n -tuple of.real numbers with xi denoting the i-th  component of the vector. Given any 

vector x€Rn , let Dx denote the n xn diagonal matrix with the ii -th diagonal entry = .

Also define

ytLj(x) = \j(C  +DX ) = largest eigenvalue of C +DX ' (3.15a)

yu2(x) = \,(C  +DX ) = second largest eigenvalue of C +DX (3.15b)

For a fixed matrix C let us define an objective function /  : Rn -+ R as

n

/ ( x )  =  w  +% £*; - -OijbO+MjCx)) (3.16)
¡ - 1  4

Notice that /  (x) defined above is precisely the right hand side of inequality (3.2) and is 

therefore a lower bound for the cost of any bisection of a graph with connection matrix 

C . This suggests an interesting duality between the original graph bisectioning problem
9

(GB) which is a combinatorial optimization problem and a nonlinear programming prob­

lem (NPP) in the following sense. Define T to be the set of all possible bisections of a
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graph on n vertices with n even. Then for any bisection (V 1,V'2) ^ r  and any vector 

x € Rn we have

cost(Vv V 2) >  /  (x) (3.17)

where cost is defined by (1.1) and /  defined by (3.16). Therefore,

min cost (V^V,) >  max/ (x) (3.18)
(Vj.V^r “ X6R'’

which exhibits the duality between the two optimization problems.

We now examine the behavior if the function /  defined in (3.16) in an attempt to 

numerically solve the the nonlinear programming problem of maximizing /  (x) over 

x€Rn . To this end we need some intermediate results.

Lemma 3.1 : If M is any n xn real symmetric matrix with eigenvalues

Xj >  X2 >  • • • >  K  then

max xr Mx + yr M y  (3.19)
(x,y)€ O

where Q =  Kx,y):x€Rn,y€Rn^ Tx= l,yTy= l,xTy=Ol denotes the set of all pairs of 

orthonormal vectors in Rn.

Proof : Let ur u2, . . .  , un denote the orthonormal set of eigenvectors of the matrix M 

such that M ui for each ¿=1.2, . . . , n .  Let (x.y) denote an arbitrary pair of
n n

orthonormal vectors in O. Write x = £ a iui and y = £ & ut* where. ai =x u. and
t*l i *i

n n n

0. =yTUj. Clearly, £ a 2 = 1, £ 3 ,2 = 1, and £  ai =  0. Also, since x and y are ortho-
t*l t *1 ¿=1
2 2 Tnormal, we have +j3f ^  Uj = 1. Hence,
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xr A/x + y r M y =
t *  i

n

< X 1(a 2+/32) + XJZ ( a 2+ 0 2)
t*2

= X^af+flf) + X,(2 -  a 2- 0 2)

= Xj(a2+/32) + X2C1 — ai~ & i) "*■ ^2 

^  Xj+X,.

We have thus shown that Xx+X2 > xr Aix + y TM y  for any pair of orthonormal vectors. 

But equality holds by setting x = ux and y = u2. This establishes (3.19). □

Lemma 3.2 : Given any two n xn real symmetric matrices A and B . Then

X2(A +B )+X2(A +£ ) ^  Xj(A )+X2(A )+Xj(5 )+X2(i? )• (3.20)

Proof : Follows from a more general result II.4.4.14 on page 120 in [15] presented without 

proof. We will present here a simple proof of (3.20) having established Lemma 3.1 above. 

Note that

X,(A +B ) + X2(A +£ ) = max (x7 (A +5 )x + y7 (A +B )y)
(x,y)€ Q

= max (x7 A x + y7 A y + xr B x  + y7 B y)
(x,y)€ Q

7* 7* T T< max (x Ax + y A y ) +  max (x 5 x + y  By)
Cx,y)€Q (x.y)€Q

= Xj(A ) + X2(A ) + Xj(5 ) + X2(S )
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thus establishing (3.20). □

Theorem 3.3 : The function /  : Rn -♦ R defined in (3.16) is a concave function.

Proof : It clearly suffices to show that /i1(x)+/i2(x) defined in.(3.15) is a convex function. 

To prove this, we observe that given any 0 < a < l  and any two vectors x€Rn and y€Rn , 

we have

ytt1(ax+( 1—a)y) + ¿c2(ax + (l-a )y )

=  Xl(a(C +DZ ) + (1 -aX C  +Dy )) + \ 2(<*(C + £ x ) + ( 1-«XC +Dy ))

<  Xx(a(C +DX )) + XjCCl-aXC +£>y )) + X2(«(C + £ x )) + X2(( 1 -<*)(C + £ y ))

= oKahCx) + â Cx)) + ( l—aXyUi(y) + A^Cy))

where the inequality above follows from applying Lemma 3.2 to the matrices a(C +DX) 

and (1—a)(C +Dy ). □

Since we have shown that /  defined in (3.16) is concave and is bounded above by 

(3.17), there is an x* that maximizes /  , and furthermore, if /  is differentiable at x then 

V / (jc*)=0. The following results pertaining to the continuity and differentiability of f  

are derived using the theory of symmetric perturbations of symmetric operators [22]. We 

will simply state the relevant results here without proof.

Lemma 33  : For any x€Rn , (x) defined in (3.15a) is a simple eigenvalue of the matrix

C+Dx. Furthermore the function â Cx) is differentiable at each x€Rn and its partial 

derivative with respect to xt is given by



25

0A4

3*:
(3.20)

where ut 3 is the i -th component of the normalized eigenvector corresponding to the larg­

est eigenvalue +DX).

Lemma 3.4 : The function ^ (x )  defined in (3.15b) is a continuous function. At a given 

x€Rn , if k2iC +DX) is a simple eigenvalue with normalized eigenvector u2, then /i2(x) is 

differentiable with partial derivative

bfJ-i 2
-----= ut\  (3.21a)

where 2 is the i -th component of u2. If however, X2(C +DX) is a repeated eigenvalue 

with multiplicity p > 1 and the corresponding orthonormal set c3f eigenvectors are 

u2,u3, . . .  ,up+1, then the right hand partial derivative of /^(x) with respect to xt is

3/^2+ ' +1 2
----- = Z ua  (3.21b)
a j »2

while the left hand partial derivative is

(3.21c)

The above lemmas allow us to define partial derivatives of the function /  defined in 

(3.16) as follows.

If ¿l,(x) is a simple eigenvalue of the matrix C +DX then /  is differentiable at x and
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A f 1 n 6Mi 0^2
- £ i -  =  1  -  _ ( _ + — ) ( 3.22a)
dxt 2 4 ^

where the partial derivatives of fix and /i2 are computed from (3.20) and (3.21a) respec­

tively.

If, however, jul,(x ) is a repeated eigenvalue of the matrix C -b.£)z then /  has both right 

and left hand partial derivatives with respect to each xt given by

and

*JL+ » i  _ ! ( — +— )
dxt 2 4 &ct ô*i

(3.22b)

0/ n 0^1 

4  0*<

(3.22c)

* Using the above derivative information we have implemented a computer program 

that attempts to seek the vector x that maximizes the function /  by using the gradient

search nonlinear programming technique. This maximum value of /  is then the best pos­

sible lower bound for the cost of an optimal bisection to the original graph bisectioning 

problem that is possible from Theorem 3.1. We will not present the details of our algo­

rithm here. We will, however, present some experimental results.

Table 3.1, below, contains a list of 11 graphs. In this table, n denotes the number of 

vertices in each graph, LB l is the lower bound computed from (3.9) (i.e., zero diagonal), 

LB 2 is the lower bound computed from (3.12) as given by Theorem 3.2 (i.e., choose diago­

nals to make row-sums equal). The hfth column lists the best lower bound L B ^  

obtained by maximizing the function /  defined in (3.16) using a numerical non-linear 

programming algorithm. The optimum cost Cop[ computed by a brute force method is
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shown in the last column for comparison.

The results of this table indicate that, first, there is a so-called duality gap between 

minimizing cost of a bisection and maximizing the function /  . Except for graph Gl, the 

best lower bound was always strictly less than the optimum cost. Also, for graphs with a 

small number of vertices, the lower bound LB j is greater (and hence better) than LB2. 

However, for larger graphs, the situation is reversed, i.e., LB 2 is better than LB y In fact, 

for the two graphs G10 and G il on 20 vertices, the lower bound LB x was negative, while 

LB 2 was fairly close to the best bound LB^ . There is no definitive statement that can 

be made about which among L B X or LB 2 is better. We have some examples of graphs on 

100 vertices for which L B X>LB2, and others for which the opposite is true, i.e., 

LB ,> L B V Furthermore, computing L B ^  is computationally very expensive for large

Table 3.1 : A Comparison of Lower Bounds.

Graph n LB, L B , LBhest.
—p.-----1

Ç-OBt---J
Gl 4 ! 22.24 20.00 24.00 24.00
G2 4 ! 9.17 : 8.38 9.17 10.00
G3 6 8.90 : 4.76 10.12 12.00

! G4 6 7.33 ; 6.88 9.64 13.30
G5 6 12.11 1 8.61 13.68 20.86
G6 6 23.04 ! 17.08 24.49 i 26.54
G7 8 11.22 i 9.65 11.24 13.00
G8 ! 10 15.73 ! 18.21 22.33 30.11
G9 I 16 17.23 ! 22.22 24.66 28.00

! G10 ! 20 -7.26 5.22 7.75 14.00
G il ! 20 -4.00 Î 1.10 1.56 ! 9.00
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graphs since it involves repeated eigen value/eigen vector decompositions of large matrices. 

Hence, from a practical standpoint, it is best to compute both LB x and LB 2 (each involves 

computing only the two largest eigenvalues of a n xn matrix) and report the larger of the 

two as a lower bound.

4. An Upper Bound

In this section we will derive an upper bound on the cost of a optimal bisection for 

the case of graph bisectioning. This will clearly be an upper bound on the cost of an 

optimal bisection. We will then see that this bound is in fact achieved for a completet 

graphs with unit edge-weights.

Lemma 4.1 : Let (V v V be any bisection of a graph with a n x n  connection matrix C . 

For any i € V l and for any j  € V 2, define

Sii = A  + D, + 2cy (4.1)

where Dt is defined in (2.2). Then

cost(V: + j  - z  , V2 + i -  j  ) - c o s t ( V l , V 2) = gij

Proof : Let i be any vertex in V v and let j  be any vertex in V y  Let P l = V 1 + j  -  z, 

and P 2 = V 2 + i -  Also let X  = V x -  z and Y = V 2-  j  . Then the cost of the bisec­

tion (VX,V2) can be written as

t  A graph with unit edge-weights is complete if it has an edge between every pair of vertices
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COST ( V l t V 2) =  £ Z CW =C:y + ( £ : + £ Z CW
JkCVj/eVj I Z X k S Y

and the cost of the bisection (PVP2) can be written as

c o s t { P lfP 2) -  £ Z cw sz c ij + I i + I j + Z Z cki
k eP xl S P2 IZXk lY

where ££ and are defined in (2.2). From the above two equations we get

c o i r c o s t ( V , . V 2)=Cy — E l +Cy - E ,  + / ,  + / ,  = A  + A  + 2cy = A

which establishes the proof. □

One can think of gtJ as the increase in cost that results from exchanging vertex i 

with vertex j . It follows immediately from Lemma 4.1 that if a bisection ( V p V j  is 

l—optimal then

> 0  Vi SVj.Vy €Vj. (4.2)

This inequality will be used in the next theorem.

Theorem 4.1: Let C = (c^) be the n x n  connection matrix of a graph G(V £ ) .  Let

n n

W = ^ Z Z ci; denote the sum of weights of all edges in £ . If bisection is

l—optimal, then

c o s t iV .y J  < -— . (4.3)
2(n — 1)

Proof: Since (V v V 2) is l—optimal we must have, from (4.2),

Z Z > 0
i e v xj  6 V 2

where is defined in (4.1). But by definition, and using (2.2), we have

( 4 .4 )
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8t, -  A  + d j +2cu ~ Ei +  / y “ £ y + 2 c ij

Substituting the above equation in (4.3) we get

I I  (A -£< + A -£ /{ + 2C; ; ^  0 (4.5)
i€Vxy €V2

Let y = cost (VpV2) = 2  Z  ca denote the cost of the bisection (V vV 2) for notational
i*vxj *v2

convenience. Using (2.2) we have

I  z s - 7  1 5 - f  I
t €Vxy 6V2 i € V , i€Vj/ 6V2

2 y € V 2 i € V j y € V 2

I  I A = f L A •
i€Vi;€V2 ¿6V,

I  Z  A = t  I  A
i 6V2y €V2 -y€V2

Substituting these in (4.5), and simplifying, we get

(2 -  n )v +  — I  A + LA
SV,  / € V ,

But using the definitions of W and 11 we can write

> 0 (4.6)

2W =  Z  L  Cy + 2 L  L  Cy + L  L  Cy
i € V 1y € V 1 t € V xy € V 2 t € V 2y 6 V 2

which on re-arranging gives

= Z  It + 2y + z  /y
¿6V, y € V ;

Z  A + Z  h  =  2W -  2y
¿€V, y € V ;

(4.7)

Using (4.7) in (4.6) we get
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(2 — n )y + n (W — y ) ^  0
which can be re-written as

nW
2(n -  1)

thus establishing (4.3). □

nWTo see th a t----------- is a tight upper bound, consider a complete graph on n vertices
2(n -  1)

with unit edge weights. Clearly, W = ---- —, and consequently the upper bound that
2

n i
we get is — , which is indeed the cost of any possible bisection.

4

5. Approximation Algorithms for GB

A goal in the design of heuristics for NP-Complete problems is to guarantee that the 

solutions obtained by such algorithms are fairly close optimal solutions. This leads us to 

the following notion:

^approximation : Let v be the cost of an optimal solution to some instance of a com­

binatorial problem. Let y be the cost of a solution obtained by an approximation algo­

rithm (i.e., a heuristic) for that instance. For a given e>0, we say that y is an 

6 — approximation , if

■
y

Furthermore, if the above inequality is true for every problem instance, then we say that
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the heuristic is an € -approximation algorithm.

In this section we will show that any algorithm that always finds l—optimal bisec­

tion for the graph bisectioning problem is an € -approximation algorithm if the graph is 

dense enough. To this end, we need to introduce the notion of the density of an edge- 

weighted graph.

Definition 5.1 : Let G (V £ )  be an edge-weigh ted graph on n >2 Vertices with connection 

matrix C . Suppose that all the edge-weights in the graph are non-negative (i.e., ctj >0)
« n

and that the graph has no self-loops (i.e., c^=0). Let W  =  — £  51 c ij denote iLe sum of

all the edge-weights, and let M = max (ctJ) denote the maximum edge-weight in the

grapht. The density of the graph G is then defined to be

2 W
v  =

n (n — l)Af
(5.1)

It must be noted that 0 < y < l for any non-empty graph. If y=l, then we say that the 

graph is complete or full.

Theorem 5.1 : Let (PVP 2) be an optimal bisection of a graph G(V £ )  on n vertices with 

connection matrix C. Let-y * =cosr (P ^P j) denote the minimum cost. If n > 2 and if

there exists some € > 0 such that the density of the graph y  >
1 + € 
1 + 2 c

•, then

t  Note that M > 0 unless the graph is empty.
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J^<e
y

where y is the cost of any 1-optimal bisection.

Proof: We first note that n ^2 , €>0, and (5.1) allow ns to write

l+€  ̂ rc(n—2)

( 5 .2 )

1+2 €
2W = n ( n - l ) M y > / i ( / i  —2)M y  > n (n -2)M- 

and hence

4W -  7i (n -2 )M  >  0 

We also observe that by definition

2W  = Z  Z Cy + 2 £  I  ci; + Z z  Cy
t € ? l; 6 i >l i Z P xj * P 2 i t P 2j e P 2

But

Z Z c„ < ^  -  1>M
i€i»ly€i»l 2 2

I  I  Ct; ■ /  
i * P xj  * P 2

and

M,

(5.3)

Z Z Cy < ^  -  1>A#
i SP2j i P 2 2 2

Therefore, 2W < n Af + 2y which together with (5.3) gives
2

0 <
4 W - n f n  -  2)A/

But, y ^  y by definition, and y ^

4
nW

(5.4)

2(n -  1)
by Theorem 4.1, since y is the cost of some
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1-optimal bisection. Therefore, we have

0 <
4W - n ( n  -  2)M ^ .

which leads to

\L z £ 1 <

< y <

2 nW

nW
2(n -  1)

(n -  1X4W - n ( n  - 2 )M )
-  1 (5.5)

We would now like to bound the right hand side of (5.5) by €. To this end we use 

(5.1) and the hypothesis of the theorem to get

1+6
2W = n (n —1 y ^  n (n —1 )M-

1+2 €

But n >2 and e>0 implies

( n - 1 ) (n —2)
l+2g ( n - 2 )

(n —1)
+26

which on substituting in (5.6) yields 

n (n —2)(1+€)M
2W >

26+
(n - 2 )

2W (2e +

(n -1 )  
(n -2 ) ) > n (n -2 ) ( l  + e)M
(n —1)

2W (2(n-l)6  + (n -2 )) > n (n - l) (n -2 )(1  + e)M 

2W (2(n — 1 )( 1+e) — n ) ^  n (n -l)(n -2 )(l+ e )M  

(l+6)(n — 1)(4W — n (n —2)M ) > 2nVV

(5.6)

(5.7)

Using (5.3), this last inequality implies
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_________2nW________ _
U -1 X 4 W  — n (n —2)Ai )

- 1  <  € (5.8)

| y  - y  I
From (5.5) and (5.8) we get----—----^  €. □

y

Theorem 5.1 essentially states that any algorithm that always hnds \-optimaL bisec­

tions is a good algorithm if the input graph is dense enough. The approximation gets 

better as the density increases.

We now discuss a special case of graphs with unit edge-weights. Consider a graph

G (V £ )  on n vertices that has unit edge weights. In this case M = 1 and the total edge-

n ( n —1) , . .
weight W =s|2T |, the number of edges in the graph. Also,-----------is the number of edges

in a complete graph on n vertices, and the density y—---------- is simply the ratio of the
n ( n —1)

number of edges in the graph to the number of edges in a complete graph. The following

corollary is a direct consequence of Theorem 5.1 for graphs with unit edge-weights.

Corollary 5.1 : Consider a graph G (V £ )  on n vertices with unit edge weights. If

n ( n —1) l+€
£1

1+2 €

for some €>0, then

m
y

„ m

where y is the cost of any 1-optimal bisection and y is the optimal cost.

For example, if a graph has more than 90% of the edges of a complete graph, then 

according to the above corollary, the cost of any 1-optimal bisection will be within 12.5%
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of the optimal cost. Similarly, in order to guarantee that the cost of any 1-optimal bisec­

tion be within 20% of the optimal cost, the graph should contain at least 86% of the max­

imum possible edges. However, for the cost of any 1-optimal bisection to be guaranteed to 

be at most twice the optimal cost, the graph should contain at least 66.6% of the max­

imum possible edges. The Kernighan-Lin algorithm [3] is an example of an algorithm that 

' guarantees the 1—optimality of the bisection it finds.

We will now define a class of graphs with unit edge weights for which the ratio of

the upper bound UB = —— —■ and the lower bound LB x = W — -(X ^C ) + X2(C )) for
2 (n - l)  4

GB approaches 1 as the number of vertices approaches co. Therefore, for an instance of GB 

belonging to this class, an algorithm that guarantees 1 -optimality will find bisections 

whose costs get closer to an optimal cost as the number of vertices in the graph gets larger.

Definition 5.2 : Given undirected graphs G X(V lrE x) and G2(V 2£ 2), the join of G L and G2 

is the graph whose vertex set is V = V l UV2 and whose edge set is E = £ l U£2U £ 3, 

w here£3 = { {/ ,; } : i v j  €V2}. We denote the join of Gx and G2 by G x + G2.

Informally, G x + G2 is the graph obtained by joining every vertex of G l to every 

vertex of G2 by an edge. In the remainder of this section, it is assumed that the graphs 

under consideration have unit edge weights. In this case the connection matrix is simply 

the adjacency matrix of the graph. A k —regular graph is a graph in which every vertex 

has exactly k edges incident on it. Let <b(G ,X) denote the characteristic polynomial of the 

connection (adjacency) matrix C of G , i.e., <2>(G ,X) = det(AJ —C ).

Lemma 5.1 : Let G be an undirected graph having unit edge-weights with connection



37

(adjacency) matrix C .
N

(1) If G is connected, then the largest eigenvalue of C has multiplicity 1.

(2) If G is k -regular, then the largest eigenvalue of C is k .

Lemma 5.2: If G l and G 2 are two undirected and k -regular graphs on n vertices each,

<b(Gvk) <b(G2,k)
then (biG t + G 2 *k) = -(X — k — n XX — + n ).

Oc-A)  ( X - A )

Lemmas 5.1 and 5.2 are easy consequences of theorems proved in [15] and [12], 

respectively.

Lemma 53  : If G t and G2 are two connected, undirected, A'-regular graphs on n > 2 

vertices each, then the largest eigenvalue of the connection matrix of G j + G 2 is £ + n 

and the second largest eigenvalue is strictly less than k .

Proof: By Lemma 5.2, the eigenvalues of the connection matrix of G x + G2 are the roots

<b(Gv\ )  <b(G2X) (UGxX) <b(G2\ )
o f --------------------- (X — k —n X k —k + n ). But the roots o f ---------- an d ----------- are

(X — k ) (X -  k ) (k -  k ) (k -  k )

strictly less than k by Lemma 5.1, and the other roots are k + n and k —n . □

Theorem 5.2 : Let G l and G 2 be any two connected, undirected, and k —regular graphs on 

n > 2 vertices each and G = G L + G 2 be the join of G l and G 2f. Then

UB
lim

n —*oo L B
= 1.

where UB is the upper bound on the cost of an optimal bisection given by (4.3) and L B :

t  Note that 2n is the number of vertices in G j + G 2
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is the lower bound given by (3.9).

Proof: Note that G is (k + n )—regular graph on 2n vertices having unit edge-weights. 

Therefore, W = n(n + k ), and consequently

n 2(n + k ) 
UB ---------------

(2n -  1)
(5.9)

To compute the lower bound, by Lemma 5.3, we have Xj(C) = k + n and X2(C ) < k .  It

follows from (3.9) that

L B . =5 n (n + k ) — — (n + k — X2(C )) > —  > 0 
1 2 2

Hence, we have

^  UB n +k1 ^  —  < —--------
LB j n —0.5

from which it is clear that

UB
lim -----
n —“«c LB j

(5.10)

which establishes the required result. □

6. Conclusions

In this paper we presented several conditions for optimality of a given bisection of an 

edge-weighted undirected graph. Based on empirical results we concluded that one of the 

sufficient conditions developed was satisfied by almost all dense graphs and a few sparse 

graphs. Another sufficient condition that is computationally easier to check was, however, 

never satisfied for large graphs. In Section 3, we derived lower bounds for the cost of any 

bisection of a graph. This lower bound was shown to be a concave function of a diagonal
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matrix, thus establishing a duality between the graph bisectioning problem and a non­

linear programming problem. Furthermore, we were able to construct a diagonal matrix 

that always produces a non-negative lower bound for graphs with non-negative edge- 

weights. In Section 4, we derived an upper bound on the cost of any 1-optimal bisection. 

In Section 5, we introduced the notion of an «-approximation algorithm and showed that 

for dense graphs, a bisection that approximates an optimal one can be easily found by 

using any heuristic, such as the well-known Kernighan-Lin, that guarantees the 1- 

optimality of its bisections. Finally, we exhibited a class of graphs for which the ratio of 

the upper and lower bounds approaches 1 as the number of vertices in the graph increases.
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