
July 1998 UILU-ENG-98-2218
CRHC-98-09

University o f Illinois at Urbana-Champaign

Fast Distributed Simulation for Dependability Analysis of
a Cache-based RAID System

Yiqing Huang, Zbigniew Kalbarczyk, and Ravi K. Iyer

IL 61801Coordinated Science Laboratory
1308 West Main Street, Urbana,

R EPO R T DOCUM ENTATION PAGE Form Approved
OMB NO. 0704-0188

PWBJcnioortng buraan lot thisicottaction of «form ation is astiniaiad to average 1 hour per response, including the lime lor review «? instructions, searching existing data sources,
y d w M ttM w tg b iadata needed, and completing and reviewing the coUection of '«formation. Send comment regarding this burden estimates or any other aspect o< this

•iJ£uan? thl* b“ 2?n* 5 yyM hinflton Headquarters Services. Directorate lo r «form ation Operations and Reports. 1215 Jefferson
Davis Highway. Suae 1204. Arlington. VA 22202-4302. ano to the Office of Management andB udget Paperwork Reduction Project (07044)188). Washington, 0 C 20503.

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED
July 1998

4. Ill Lb AND SUB MILE
Fast Distributed Simulation for Dependability Analysis of a

Cache-based RAID System

5. FUNDING NUMBERS

DABT63-94-C-0045
NASA NAG 1-613
TANDEM6. AUTHOR(S)

Y. Huang, Z. Kalbarczyk, and R. K. Iyer

7. PERFORMING ORGANIZATION NAMES(S) AND ADDRESS(ES)
Coordinated Science Lab
University of Illinois
1308 W. Main St.
Urbana, IL 61801

8. PERFORMING ORGANIZATION
REPORT NUMBER

UILU-ENG-98-2218

(CRHC-98-09)

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADORESS(ES)
NASA Langley Research Center Tandem Computers
Hampton, VA 23681 I9 3 3 3 vallco Parkway
DARPA/IT0 Cupertino, CA 95014
3701 N. Fairfax Dr., Arlington, VA 22203-1714

10. SPONSORING / MONITORING
AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES

T h e v ie w s , o p in io n s and/or fin d in g s contained in this re
an o ffic ia l D epartm ent o f the A rm y position , p o licy or dport are th o se o f the au th or(s) and sh ou ld n ot b e construed as

e c is io n , u n le ss so d esig n a ted by other d ocu m en ta tion .
12a. DISTRIBUTION / AVAILABILITY STATEMENT

A p p roved for p u b lic release; distribution u n lim ited .

12 b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 words)

In this paper, we propose a new speculation-based, distributed simulation method
tion-based dependability analysis of complex systems in which a detailed functior
ponent is essential to obtain an accurate overall result. Our target example is a ne
nodes and one I/O node. Accurate system dependability characterization is achie\
simulation of I/O subsystem behavior in the presence of faults and more abstract s
and the switching network. Dependability measures such as error coverage and en
mance measures such as delivery time in the presence of faults are obtained. The
network of workstations, and experimental results show significant improvements the same model.

for fast, yet accurate, simula-
lal simulation of a system corn-
worked cluster with compute
red via a combination of detailed
imulation of the compute nodes
"or detection latency and perfor-
approach is implemented on a
over a Time Warp simulator for

14. SUBJECT TERMS

detailed simulation, speculation, error correction and recovery
15. NUMBER IF PAGES

25
16. PRICE CODE

17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION
OR REPORT OF THIS PAGE

U N C L A S S IF IE D U N C L A S S IF IE D
19. SECURITY CLASSIFICATION

OF ABSTRACT
U N C L A S S IF IE D

20. LIMITATION OF ABSTRACT

U L
NSN 7540-01 -280-5500 Standard Form 298 (Rav. 2-89)

Prescribed by ANSI SM. 239-18

Fast Distributed Simulation for Dependability Analysis of
a Cache-based RAID System

Yiqing Huang, Zbigniew Kalbarczyk, and Ravi K. Iyer
Center for Reliable and High Performance Computing

Coordinated Science Laboratory
University of Illinois at Urbana-Champaign

1308 W. Main, Urbana, IL 61801 USA
Phone: 217-244-8288 Fax: 217-244-5686

yhuang|kalbarIiyer@ crhc.u iu c .edu
July 24, 1998

Abstract

Often detailed simulation of a subsystem is important to understand overall system/network re­
liability. However, detailed simulation is time-consuming, e.g., simulation of the overlapping error
recovery mechanisms of the cluster system presented in this paper. We propose a new speculation-
based, distributed simulation method which is applicable to situations where a detailed functional
simulation of a system component is essential to obtain an accurate overall result. The proposed
method is characterized by the following features: 1) The traffic to the subsystem with detailed simu­
lation is infrequent. 2) The speculation can most often successfully predict the outcome of the detailed
simulation. Hence, the detailed simulation can be postponed until an idle time slot is found during
which the detailed simulation can be scheduled. The dependability analysis presents an ideal appli­
cation for this approach. Our target example is a networked cluster with compute nodes and one
I/O node. Accurate system dependability characterization is realized via a combination of detailed
simulation of the I/O subsystem behavior in the presence of faults and more abstract simulation of the
compute nodes and the switching network. The speculation, in this case, is based on the observation
that errors are most likely detected and corrected in the I/O subsystem. Therefore, if traffic to the
detailed error recovery simulation process is relatively infrequent, the detailed simulation can take
place during the process idle time slots. In case the detailed simulation indicates a failure, a rollback
is necessary. Dependability measures like error coverage, error detection latency and performance
measures such as delivery time in the presence of faults are obtained. The approach is implemented
on a network of workstations, and experimental results show significant improvements over a Time
Warp simulator for the same model.
Keywords: detailed simulation, speculation, error correction and recovery

mailto:kalbarIiyer@crhc.uiuc.edu

1 Introduction
As the complexity and size of computer design increases, dependability analysis becomes increasingly
difficult and important. Often detailed simulation of a subsystem is important to understand overall sys­
tem/network reliability, since it captures the changing system dynamics due to variability of the workload
or variety of failure scenarios (including single and bursty faults). In addition, application dependent
measures like error detection latency can often be obtained accurately via detailed simulation. However,
detailed simulation is time-consuming, e.g., simulation of the overlapping error recovery mechanisms of
the cluster system presented in this paper. We propose a new speculation-based, distributed simulation
method which is applicable to situations where a detailed functional simulation of a system component
is essential to obtain an accurate overall result. The proposed method is characterized by the following
features:

• The traffic to the subsystem with detailed simulation is infrequent.
• The speculation can most often successfully predict the outcome of the detailed simulation. Hence,

the detailed simulation is postponed until an idle time slot is found during which the detailed
simulation can be scheduled.

The dependability analysis presents an ideal application for this approach. In our target example of
a networked cluster with an I/O node, the traffic to the I/O node is infrequent, the disk error detec­
tion/ correction must be simulated in detail to obtain accurate dependability measures, and the chance
of recovery from errors is high. Accurate system dependability characterization is realized via a combi­
nation of detailed simulation of the 1/O subsystem behavior in the presence of faults and more abstract
simulation of the compute nodes and the switching network. The speculation, in this case, is based on
the observation that errors are most likely detected and corrected in the I/O subsystem, [3, 15, 21]. In
other words, we can most often assume that the system recovers from errors. Therefore, if traffic to
the detailed simulation process is relatively infrequent, the detailed simulation can take place during the
process idle time slots. In case the detailed simulation indicates a failure, a rollback is necessary.

The simulated system is a reliable high-performance cluster of compute nodes and an I/O node con­
nected via ServerNet[13], a system area network by Tandem. The I/O node supports a new generation,
cache-based RAID storage system which is critical to the availability and performance of the cluster.
The RAID system is controlled and managed by the array controller which includes a cache subsystem.
The cache subsystem employs several layers of overlapping error detection and recovery mechanisms to
provide high coverage against operational errors occurring in the cache and in the disk. To analyze the
impact of the storage subsystem on the cluster dependability, we developed a detailed model of the RAID
controller cache subsystem to capture interrelationships and interactions among different error detection
and recovery mechanisms, including Cyclic Redundancy Checking (CRC), parity checking and Error De­
tection and Correction (EDAC). This detailed model is incorporated into the overall cluster model and
is simulated while faults are injected into the cache subsystem. The compute node model focuses on a
high level simulation of its local disk server and packet transmission interfacing the switch.

The primary dependability measures obtained from the cluster system simulation include error cover­
age of ED AC code and error detection latency distribution of errors introduced to the cache components.
The error coverage is high, and consequently it indicates the validity of the speculation. The latency of
errors injected into different parts of the cache system varies by as much as 106 ms. Efficiency of the
overlapping detection/correction mechanisms is demonstrated as well. Fault injection impact on the per­
formance is studied via the performance measures. Performance measures derived include a distribution
of 2-way delivery time and the mean of 2-way delivery time (2-way delivery time is the time between a
request is generated by a compute node and the corresponding response is received) in the presence of
faults injected into the cache subsystem.

The proposed approach is implemented on top of Time Warp [14]. Time-consuming detailed simulation
of dependability analysis is “hidden” efficiently via speculation. For our study of the cluster system, we
observed as much as 200% performance improvement over Time Warp. In addition, 4.6 times speedup
over sequential simulation on six workstations was demonstrated.

The rest of the paper is organized as follows. Related work axe briefly reviewed in Section 2. Section 3
describes the architecture of the cluster system. Section 4 presents the simulation model design. Section 5
illustrates the benefits of speculation in the simulation. The speculation-based approach is explained in
Section 6 in the context of the simulated architecture. Performance results axe shown in Section 7.
Section 8 concludes the paper.

2 Related Work
To achieve fast and accurate simulation for dependability analysis of complex systems, several important
issues need to be addressed: 1) accurate characterization of hardware and software faults, 2) adequate
representation of error detection and recovery, 3) simulation time acceleration. Addressing the first two
issues, system behavior in the presence of faults can be evaluated. The third issue reflects the fact that a
detailed simulation can easily exceed the execution time tolerable by computing resources. As a result,
it is necessary to develop approaches to achieve a significant speedup in simulation time while providing
high accuracy results.

Many methodologies have been proposed to support fast simulation for dependability analysis. Hierar­
chical simulation and hybrid simulation are two ways to speed up simulation. In hierarchical simulation,
a system is decomposed into several abstraction levels, and a corresponding simulation model is asso­
ciated with each level. Submodels axe analyzed individually and results from a lower level are used
to feed the higher-level simulator. Therefore, the overall system behavior can be analyzed with great
details and within a reasonable amount of time. A good example using this technique is a hierarchical
approach for dependability analysis of a commercial cached RAID storage architecture presented in [16].
Three levels have been developed to model the RAID cache subsystem, cache operations and error de­
tect ion/correction mechanisms. For each level of the hieraxchy, the impact of faults and errors occurring
in the cache and in the disks are modeled.

With hybrid simulation, a combination of techniques axe used to simulate systems. In DEPEND

[8], functional simulation can be combined with Monte Carlo simulation [10, 17] or with a Markov or
Semi-Markov model to provide simulation speedup. The most prominent example of the use of hybrid
techniques in reliability analysis is the HARP tool[2j. HARP decomposes a model into a fault occur-
rence/repair model (FORM) and one or more fault/error-handling models (FEHM). The FEHMs are
simulated with an extended stochastic Petri Net (ESPN) to obtain instantaneous coverage probabili­
ties. These probabilities are then automatically incorporated into the FORM model, represented by a
continuous-time markov chain, and solved to obtain system reliability measures.

To speed up simulation involving rare events, techniques such as importance sampling axe developed.
Importance sampling is a variance reduction technique which has been used successfully to deal with the
problems of rare events. A good survey of fast simulation results using importance sampling techniques
for dependability models is reported in [12]. The applicability of importance sampling is extended to
non-Markovian models with general failure and repair time distributions in [19]. A significant speedup
can be achieved using importance sampling. However, identification of a sampling distribution to ensure
small variance is difficult and must be resolved for different applications.

In recent years, distributed simulation is used widely for simulating complex systems. With distributed
event-driven simulation, a simulated application is modeled by a group of logical processes(LPs) and the
LPs are mapped to multiple physical processes to conduct the simulation in parallel. Fujimoto surveyed
existing distributed simulation approaches and analyzed the advantages and drawbacks of various tech­
niques [6]. Distributed simulators developed based on conventional protocol such as Time Warp are
mostly for performance studies [9, 11, 18, 22]. For example, a distributed simulator wrote in Maisie,
a parallel discrete-event simulation language, is developed to simulate a two-level metropolitan area
network using wormhole routing [1]. Discrete-byte rather than discrete-packet simulation is performed
with acceptable performance provided by the distributed simulator. Many research has been focusing on
developing new protocols to improve distributed simulation performance [4, 5, 7].

The simulation technique proposed in this paper employs dynamic speculation-based rescheduling of
events at run-time. The method is applicable to distributed simulation, and works when the traffic
goes to the logical processes with detailed simulation is relatively infrequent (e.g. simulation of highly
dependable systems.). The efficiency in detailed complex system simulation is achieved by overlapping
detailed critical subsystem simulation with more abstract simulation of noncritical components.

3 System Architecture
The architecture analyzed in this paper is a reliable high-performance cluster system, as shown in Fig. 1.
The system consists of five compute nodes and one I/O node connected via a six-port ServerNet switch.
A compute node can access data from its local disk and remote data stored on the I/O node. The
I/O node operates as a data server for files shared among the compute nodes in the cluster. As the
data on the I/O node is shared among all the compute nodes, the availability of the I/O node is crucial
to the overall cluster dependability and performance. In order to provide high performance and high
availability, the I/O node supports RAID architecture, which consists of a collection of disks drives

Compute Node

Figure 1: System architecture

storing data, parity and adequate coding information for use in reconstructing the corrupted data. The
RAID system is controlled and managed by the array controller (see Fig. 2), which is responsible for data
transfer between hosts and disks. The array controller is composed of a set of control units which process
user requests received from the channel interfaces and direct these requests to the cache subsystem.
The communication, control and data transfer inside the array controller are performed via reliable and
high-speed control and data buses.

Each 1/O request received by the array controller is processed by the cache subsystem. To illustrate
the array controller operation, we will describe the read operation scenario. The cache controller first
checks the contents of the cache memory. If the track is already in the cache (“cache hit”), the track is
read from the cache memory and the corresponding data is delivered to the channel interfaces. If the
track is not stored in the cache (“cache miss”), a request is directed to the disk array and the data is
brought to the cache memory. Then, the track is read from the cache memory and the data is sent back
to the channel interfaces. More details about the array controller operations can be found in [16].

As shown in Fig. 2, the array controller is composed of a cache subsystem (see the dotted line box
in Fig. 2), a channel interface (Cl) to the local host and a disk interface to the disk array. Among
these components, the cache subsystem is of a particular importance to the correct operation of RAID,
because all data transfer operations between channels and the disk array are performed by the cache
subsystem. Our study, therefore, focuses on the detailed analysis of the cache subsystem. The cache
subsystem is decomposed into two separate parts, the cache memory (CM) and the cache controller.
The cache controller provides interfaces to the cache memory and to the channels and the disks. The
communication links between the cache controller interfaces and the cache memory, channel/disk are
provided by multi-directional buses depicted as Bus 1 and Bus 2.

The cache subsystem employs a combination of parity code, error detection and correction (ED AC)
code and Cyclic Redundancy Checking (CRC) code to detect and/or correct data errors, which occur
during the cache operation. In the following, we briefly present how these different coding techniques are
applied to cope with errors in the data path.

I/O Request Host
Interface

Control Bus Data Bus

.Channel
Interface

Cache Subsystem..
Cache Controller Interface U i
with Channel/Disk_______ p"

6051 1 -------------- !
Cache Controller Interface Q
with Cache Memorv

f ' ;
Bus 2 --------------------------- :

Pache Memory ~~h------ f

Disk
Interface

Array Controller

Disk
Array

Figure 2: Array controller architecture and external interfaces

Parity is used to cover data transfer, over Bus 1, between the cache controller interfaces. Parity bits
are appended for each data word transmitted over the bus. When a parity error is detected, automatic
retries are attempted by the cache controller to recover from the error.

EDAC is used to protect data transmitted from the cache controller interfaces to the cache memory
and data stored in the cache memory. The EDAC is appended to each data word transfer over Bus 2
and then stored in the cache.

Two CRC are used by the cache subsystem the ffontend CRC and the physical sector CRC. The
frontend CRC is used to protect the data transfer to the cache subsystem during the write operation.
The physical sector CRC protects the data stored on the disk. Detailed information on the employed
coding techniques can be found in [16].

4 Simulation Model
This section presents a simulation model of the system described in Section 3. This model is used in
our case study to demonstrate capabilities of the speculation-based simulation approach. The simulation
focuses on the cluster behavior in the presence of transient faults introduced to the cache subsystem. The
behavior of the cache subsystem is modeled in detail to precisely capture and analyze its ability to cope
with faults injected into the cache memory, cache controller interfaces and buses. In our simulation study
we do not inject faults into the compute nodes and to the network. To account for the network latency in
a data transmission through the network, we have conducted a separate cycle-by-cycle of the ServerNet
switch. The obtained network latency distribution is used to derive the latency in data transfer from a
compute node to the I/O node in the simulated cluster system. The remainder of this section presents
a compute node, a network switch model and an I/O node model used in our simulation study.

4.1 Compute Node Model
Each computer node generates I/O requests to its local disk system or to the I/O node. An arbitrary
decision (based on the fixed probability) is taken to determine the percentage of requests to the I/O
node. The interarrival time of the read/write requests to the local disk or to the I/O node is based on
a real access trace which captures the track skew phenomenon [20], i.e., the distribution of the number
of accesses per track is not uniform, rather a few tracks are generally more frequently accessed than the
rest of the tracks. Each request entry specifies the request type (read/write), the track accessed and the
interarrival time. The operations simulated target at the track level.

The I/O requests are buffered in the compute node before being sent out to its local disk or onto
the network. The local disk is modeled using a single server. A request sent to the I/O node and its
response axe delivered through the switch port connected to the compute node. The compute node has
two separate incoming and outgoing queues that receive responses and send out requests separately.
A request-response pair is modeled for each read/write operation. Each successful write operation is
acknowledged by a response returned to the source compute node. At any time, there are at most nine
outstanding requests (as specified in the ServerNet design) from a compute node to the I/O node. That
is, the compute node waits for a response until it can generate more I/O node requests.

4.2 Switch Model
The switch consists of six independent bidirectional ports and a routing table. Logically, each port can
be subdivided into an input port and an output port. Each input port has a FIFO queue that buffers
incoming packets before being forwarded to the appropriate target ports. As ServerNet employs worm-
hole routing, as soon as the packet arrives at the switch, the switch begins the process of determining the
target output port. If two input ports request the output port at the same time, one of them is chosen
randomly.

The packet transmitted over the network is simulated at the network physical link level going through
the ServerNet switch. The ServerNet operates using worm-hole routing and a packet is transmitted byte
by byte for each cycle. We developed a cycle-by-cycle based simulator to obtain the network latency
per packet. The average network latency obtained from the cycle-based simulation is 2.29ms and Fig. 3
shows the distribution. The network latency in data transmission from a compute node to the I/O node
for our cluster system simulation is sampled from this distribution.

4.3 I/O Node Model
A detailed model is built to characterize the RAID cache architecture, cache operations and error detec-
tion/correction mechanisms, as described in Section 3. Requests generated from other compute nodes
form the workload to the RAID system. The impact of faults/errors occurring in the cache subsys­
tem is analyzed to assess the overlapping error detection and recovery mechanisms. In the following, a
fault/error model as well as an error detection/correction model axe described.

Network Latency (msec)

Figure 3: Network latency distribution

4.3.1 Fault/Error Model
In the simulation of the cluster system, we inject transient faults leading to single or multiple bit-errors
in the track while the track is stored in the cache memory or during the transfer in the cache subsystem.
Faults are injected using a load dependent fault injection strategy. The load dependent fault injection
aims to simulate occurrence of faults due to the stress during system operation. The rate of load
dependent fault injection is based on the number of accesses to the memory or to the disk and is tuned
to allow a single fault injection or consecutive multiple near-coincident fault injections. This enables us
to analyze the impact of isolated and bursty fault patterns. For each error injection, the probability
leading to single or multiple bit errors is determined by a distribution obtained from a lower level model
of track data block transfer inside the cache subsystem [16].

4.3.2 Error Detection/Correction Model
As mentioned in Section 3, the cache subsystem uses a combination of coding techniques to detect/correct
errors, which occur in the cache memory or during the data transfer. The behavior of these mechanisms
and their interactions are incorporated into our simulation model of the cluster system.

The ability of detecting/correcting the track errors depends on the number of errors which affected the
track. To simulate this, the number of errors in each track is recorded and updated during the simulation.
Each time a new error is injected into the track, the number of errors is incremented. When a request is
sent to the cache controller to read a track, the number of errors affecting the track is checked and com­
pared with the error detection conditions to decide whether errors are detected/corrected. During a write
operation, the track errors that have been accumulated during the previous operations are overwritten
and the number of errors associated with the track is reset to zero. Several possible scenarios of error
behavior are possible as it is illustrated in Fig. 4. This figure shows the data flow of cache operations,
error detection boundaries, error propagation and the components targeted by fault injection. Note that
errors may escape from some error confinement boundaries and propagate inside the cache subsystem.

1) Data flow from user to cache memory: steps 1 to 7

2) Data flow from cache memory to disk: steps 8 to 14

3) Data flow from disk to cache memory: steps 15 to 21

4) Data flow from cache memory to user: steps 22 to 28

Fault injection propagation of nondetected errors

Figure 4: Cache operations, data flow, fault occurrence, error detection boundaries and error propagation

These errors may be finally detected by the frontend CRC or propagate outside the cache subsystem.
Fig. 4 illustrates how different coding techniques are utilized to detect and correct error in different

parts of the cache subsystem. The coding steps are labeled from 1 to 28 in Fig. 4, where each label
denotes an action of appending, checking or striping a code.

Frontend CRC (FE.CRC) is computed by the channel interface and appended to the data sent to the
cache subsystem during a write request. It is checked when the data is read from the cache subsystem.
This is shown as the steps 1 and 28. FE.CRC detects errors that may occur at any step of the data
transferring to or from the cache subsystem. FE-CRC can detect the case when less than 4 data bytes
contain errors.

Parity is used to cover errors occurred during the transfer over Bus 1. Data is appended with parity
code before it is sent onto Bus 1 and parity is checked right after the data is taken off Bus 1. This
corresponds to the steps 3, 4, 17 and 18 in Fig. 4.

The error detection and correction code (EDAC) protects the cache memory against errors. It is
capable of detecting triple bit error and correct double bit error. It is appended to the data before they
are sent to the cache memory, and checked and striped after it is read from the cache memory. It is
stored as part of the cache memory. This corresponds to the steps 6, 7, 8, 9, 20, 21, 22 and 23 in Fig. 4.

Physical sector CRC(PS-CRC) is appended before the data is written to the disk array, and it is
checked and striped from the data after the data is brought from the disk array. The checking is invoked
by a read operation that accesses data from the disk array. It is used to protect disk errors. PS.CRC is
stored as part of the disk data. The detection capability of PS.CRC is the same as FE.CRC.

5 Speculation in Simulation
Two primary reasons contribute to the performance gain of the proposed speculation-based method:

• Reduction of processor idle time, i.e., the time when the processor is waiting for incoming messages.
This provides better overlap of computation on different processes, better overlap of communication
and computation.

• Reduction of the rollback number.
We use simple example scenarios based on the model in Section 4 to explain the above points. A

compute node and the I/O node are pictured in Fig. 5 for the example scenarios. The compute node
sends I/O requests to the I/O node and the I/O node responses the requests. The simulation without
speculation is shown in Fig. 5(a), (c) and with speculation is shown in Fig. 5(b) and (d). Only the I/O
nodes employ speculation.

A typical scenario shown in Fig. 5(a) explains the reason why the method reduces processor idle time.
To simplify the explanation, four instead of nine outstanding requests are used. Nine outstanding request
of a compute node is based on the ServerNet design as mentioned in Section 4.1. In Fig. 5(a), bursty
requests are sent to the I/O node during the simulation. As shown in Fig. 5(a), if four bursty requests
axe sent out to the I/O node, due to slow responses arriving at the compute node, the compute node
is idle before it can generate more requests for the simulation. If speculation is employed as shown in
Fig. 5(b), the. responses can be sent back earlier, thereby, simulation on the compute node can proceed
without delay.

In Fig. 5(c), without speculation, the response “response 1” of the “remote 1” request is sent back
not early enough, and it rolls back the simulation of requests “local 4”, “local 5” and “local 6” since its
timestamp is 150 and timestamp of request “local 4” is 200. These can be avoided if the response is sent
back earlier as shown in Fig. 5(d) using speculation. Therefore, the rollback number is reduced for the
simulation.

6 Methodology
In this section, we first describe the speculation-based simulation methodology in general, then the
method is illustrated using examples based on the cluster system presented in Section 3, and later we

without Speculation with Speculation

Physical time Compute Node I/O Node

(a)
Compute Node I/O Node

(c)

Compute Node I/O Node

begin I/O 1
end I/O 1 without error simulation

I/O 1 error simulation

Compute Node I/O Node

begin I/O 1
end I/O 1 without error simulation

> 1 /0 1 error simulation

'e n d I/O 1

(d)

Figure 5: Two typical scenarios on one compute node, one I/O node that may cause performance loss
due to slow responses from the I/O node

present the algorithm developed to implement the method.

6.1 Concepts
A logical process (LP) is a distributed simulation unit which receives messages from other LPs, processes
incoming messages and events on the LPs, and sends out messages to other LPs. Local virtual time (LVT)
is the local simulation clock that indicates how far the LP has progressed. Global virtual time (GVT)
is the global simulation clock that indicates how far the system has progressed for the simulation. An
event routine consists of an event and constituent actions invoked by the event. Timestamp of an event
routine denotes the time the event routine takes on in the simulated model. A sequential event list of a
LP maintains the event routines to be processed. Each event routine is scheduled to execute based on
its timestamp.

6.2 Approach
The proposed method is implemented as an algorithm for dynamic rescheduling of event routines at run­
time on the LPs performing detailed simulation, e.g., I/O node cache subsystem detailed simulation. The
rescheduling allows the simulation to move forward as quickly as possible. For example, in the cluster
system simulation, the LP simulating the I/O node uses the dynamic rescheduling which allows the I/O
response messages to be sent out as early as possible. The algorithm ensures that the speculation-based
simulation preserves correct simulation semantics, i.e., the event sequencing is based on a non-decreasing
timestamp associated with each event. Techniques used to implement the algorithm are explained in the
remainder of this section.

Event Routine Design
To facilitate run-time rescheduling of event routines via speculation, each event routine includes three

sub-event routines: 1) Schedule new events or manage resource contention (routineI): This sub-event
routine schedules future event routines, simulates the advancement of LVT or simulates the resource
sharing, e.g., cache memory read/write ports contention. If the resource requested by an event routine
is occupied by another event routine, the event routine is deposited to the queue of the resource to sim­
ulate the resource waiting. This routine is scheduled to execute when the shared resource is released. 2)
Computation or manipulation of simulation data(routinell): This sub-event routine conducts computa­
tion and manipulates data associated with the computation. For example, there exists data which stores
the information of what tracks are in the cache memory. 3) Schedule an outgoing message (routmelll) :
This sub-event routine sends out an outgoing message.

Each event routine is composed of routine/, routinell and routinell!, and consequently these sub-event
routines share the same timestamp.

Dynamic Rescheduling of Events
For detailed simulation of complex system, routinell is usually computationally intensive. If the data

manipulated by routinell doesn’t influence event scheduling, the routine can be rescheduled to execute

after routinel or routinelll of subsequent event routines. It is expected that the rescheduling of sub­
event routines can avoid the delay of generating messages to other LPs due to time-consuming routinell.
The execution of rescheduled sub-event routine routinell can take place while the LP waits on incoming
messages. Therefore, it is generally beneficial if the dynamic rescheduling is chosen for LPs that incoming
messages are infrequent.

Speculation facilitates the rescheduling since event scheduling may depend on the data. The specula­
tion for our dependability analysis is based on the observation that errors are most likely detected and
corrected in a reliable system. Therefore, before the detailed simulation of the error correction/detection
in routinell completes, routinel of the next event routine can be rescheduled to execute ahead of the
current routinell since we speculatively assume that potential errors are corrected.

Correction of Simulation Errors Introduced by Speculation
The simulation errors need to be corrected if the actual execution of routinell provides results different

than the speculation. In the simulation on the I/O node, if it turns out that errors in the track are not
corrected, simulation errors occur. The state of the simulation is rolled back right before the request
with the routinells that don’t match the speculation. In other words, the I/O responses sent out earlier
under speculation should be nullified and the I/O requests simulated after the request with simulation
errors need to be resimulated. These are implemented based on the rollback mechanism of the optimistic
protocol. As errors in the track are not corrected, the I/O request needs to be retried to retrieve correct
data after the rollback.

6.3 Examples
A sequence of event routines that simulate service of a cache hit read request is adopted to illustrate
the approach presented in the previous section. For the sake of brevity, the operations are explained
at disk track level. Three event routines are designed to simulate the steps of servicing the cache hit
read request. They are: 1) the track transmission from CM to CCICM. 2) the track transmission from
CCICM to CCICI. 3) the track transmission from CCICI to CL

Based on the design criteria for rescheduling via speculation, each event routine above is designed to
include three sub-event routines: 1) routinel: releases the data path to possible operations existing in
parallel which are waiting for resources like CCICM, schedules the next event routine associated with the
same request and advances the simulation time for the transmission, fault injection and error correction.
2) routinell: fault injection for this transmission, error detection/correction for data bytes in the track,
and update the error statistics for the track. 3) routinelll: sends out an I/O response if there is one.

6.3.1 A Read Cache Hit with No Other Parallel Requests
In Fig. 6, the scheduling of event routines for a read cache hit request with no occurrence of other requests
in between the start and end of this request is shown. Each rectangular box on the axis indicates an
event routine, and the shaded block inside indicates the sub-event routines. The axis indicates LVT. The
length of the box indicates the duration of event routine execution time.

Without speculation, the sub-event routines are not rescheduled, as shown in Fig. 6(a). In Fig. 6(b),
the event routines are rescheduled based on the speculation that errors are corrected, routinel of each
event routine is rescheduled as early as possible ahead of all the other sub-event routines for this request.
As the event routine at t3 schedules a message sent out to the requested node, the rescheduling makes
it possible to send out the response much earlier. Before the message is sent out, the errors in the track
are all cleaned based on the speculation that the errors are corrected. Note that timestamp associated
with the rescheduled sub-event routines routinell is the same as before the rescheduling to guarantee the
correctness of timing statistics collected during these sub-event routines.

6.3.2 A Read Cache Hit with Other Parallel Requests
Fig. 7 shows an example if two requests occur in parallel and the event routine execution of these requests
are interleaved. In Fig. 7, request(2) arrives before the transfer from CCICI to Cl of request(l). Note
that sub-event routines routinell of parallel requests preserve their scheduling order as the order before
rescheduling to guarantee the simulation correctness. Otherwise, if the requests share data and the order
is not preserved, statistics collected may not hold. For example, in Fig. 7, requests(l) and request(2)
occur in parallel and the disk tracks specified by the requests share data. During the sub-event routine
“transfer from CM to CCICM checking ED AC” of request (2) at time t3, faults are injected into the
shared disk data area. If sub-event routines of request(2) is not rescheduled, then after the rescheduling
of routinell of request (1), routinell of request (1) at t l is scheduled after routinell at t l of request (2).
Following this scheduling order, the error number in the state data for routinell of request(1) at time t l
is different than without rescheduling since routinell of request(2) at t3 introduced more errors to the
shared data area. Therefore, the error scenario simulated with and without speculation is different. If the
data is not shared between the two operations, no dependency exists. More aggressively, the routinel at
t5 and t6 and routinelll at t6 of request(2) in Fig. 7 can be rescheduled ahead of routinells of request(l).

6.4 Implementation
The outline of the algorithm implemented for the I/O node is shown in Fig. 8. The simulation on the
I/O node consists of three parts. First, processing an arriving message based on the message type. If
the timestamp of the message is smaller than the I/O node LP’s LVT, or it is an anti-message, rollback
is invoked. In case the message contains an I/O request, corresponding event routines are scheduled to
simulate the transmission in the cache subsystem and the disk.

Second, event routines maintained in the event list (E V L) are processed. Each event routine is
decomposed into the three sub-event routines, routinell are rescheduled and deposited into L J I . The
sorted list L J I is created to contain the rescheduled routinell. If routinell of the processed event routine
is rescheduled, routinel or routinelll are processed.

Third, the rescheduled routinell are processed. This takes place if the LP is idle waiting for the next
I/O request or st(EVL) is greater than s t(L J I) by a prespecified interval of time, tl. So in case the
smallest timestamp of event routines in E V L is greater than the smallest timestamp of event routines in

(a) Without Speculation:

transfer from CM to CCICM checking EDAC
transfer from CCICM to CCICI checking parity

transfer from CCICI to Cl checking FE_CRC

t1

(b) With Speculation:

t2 t3 LVT

send out the I/O response

transfer from CM to CCICM, checking EDAC
transfer from CCICM to CCICI checking parity

| transfer from CCICI to Cl checking FE_CRC

t1 t2 t3 t1 t2 t3 LVT

send out the I/O response

release data path, advance simulation time (routinel)

fault injection, error detection/correction (routine!!)

send out I/O responses (routinelll)

Figure 6: A read cache hit with, no other parallel requests&

(a) Without Speculation:

transfer from CM to CCICM checking EDAC (2)

transfer from CM to CCICM checking EDAC (1)
transfer from CCICI / to CCICI checking parity (1)

transfer from CCICI tolCI checking FE_CRC (1)

transfer from CCICM to CCICI checking parity (2)

! (1)
transfer from CCICI to Cl checking FE_CRC (2)

send out I/O the response (1) send out the I/O response (2)

(b) With Speculation:

transferf
tran<

trans

om
ferfr

fer from CM to CCICM, checking EDAC (2)

3M to CCICM. checking EDAC (1)
3m CCICM to CCICI checking parity (1)

transfer from CCICI to Cl checking FE_CRC (1)

transfer from CCICM to CCICI checking parity (2)

j transfer from CCICI to Cl checking FE_CRC (2)

IE I E ML T F B Ej$f . • i | • : Irftrtffi*«*',! inn M l
t1 t2 t3 t4 tl t2 t3 t4 IS 6 t s (6 LV T

send out the I/O response (1)

release data path, advance simulation time (routinel)

fault injection, error detection/correction (routinell)

send out I/O responses (routine 111)

send out the I/O response (2)

Figure 7: A read cache hit with other parallel requests

s t(L J I) by some predefined value, tl, routinell are processed. This prevents infinite delay for processing
routinell. If the execution of routinell at time td turns out that errors injected into the disk track are
not corrected, retry of the request is necessary. As a result, the LP is rolled back to the state just before
td. After the processing of routinell, the LV T is updated for this LP.

7 Experimental Results
In this section, we present experimental results obtained from the distributed speculation-based simula­
tion of the reliable cluster system described in Section 3 and Section 4. The cluster system is characterized
by two types of measures:

• dependability measures: error detection coverage and error detection latency.
• performance measures: distribution and mean of 2-way deliver time of a track in the presence of

faults injected into the I/O node cache subsystem.
The performance of the speculation-based approach is evaluated by comparing with the performance
of sequential simulation and distributed simulation based on Time Warp. Simulation experiments are
conducted on Sun Ultral-170 workstations interconnected by lOOMb/sec fast Ethernet. Message Passing
Interface (MPI) is used as the communication layer for supporting communication between workstations
running the simulation.

7.1 Experiment Set-up
The input I/O request stream generated from the compute node to the I/O node is based on a real trace
under a real workload. The real trace demonstrates track skew which is common for I/O traffic pattern.
Each I/O request in the trace specifies the track accessed, the type of request and the interarrival time.
Two types of requests are simulated, read and write though, and the distribution is 85% reads, 15% write
through operations. For a write through operation, if it is a cache hit, the data is written to the CM
and disk array at the same time. After the data is written to the disk, the channel interface is signaled
of the completion of the operation.

The accessible tracks are around 200,000 and the cache memory size is around 10,000 tracks. Transient
faults leading to track errors are injected into the cache subsystem using load-based injection strategy.
The rate of faults injected into the components other than the buses is assumed to be one error per 107
bits accessed. Faults injected into the buses of the cache subsystem is 100 times the rate of that injected
into the other components. The length of the error burst occurring in the cache memory is sampled from
a normal distribution with a mean of 100 and a standard deviation of 10, and the length of the error
burst during the transfer in the cache controller is sampled from distribution presented in [16]. The mean
length of the error burst measured from the simulation is around 100 bits during transfer over the buses,
800 bits when the track is temporarily stored in the cache controller interface to the cache memory and
1,000 bits when the track is temporarily stored in the cache controller interfaces to the disks.

TS:
LVT:
EVL:
er:
L J I :
tl:
td:
st(LVT):
s t(L J I):

Time Stamp
Local Virtual Time
Event List
Event Routine
The list of sub-event routines routinell that are rescheduled, the order is preserved as in
the original event routines,
time interval to execute L J I .
timestamp of a routinell in which errors are not corrected,
timestamp of the first event on EVL.
timestamp of the first event on L J I .

simulate_IO_Node() {

while (1) {
/* receive message from another LP */
if event e is received

/* Roll back */
if TS(e) < L V T or e is an anti-message

restore to the immediate checkpoint before T S(e) for both E V L and L J I
if e is an anti-message

cancel the message in the input queue of this LP associated with e
else if e is an I/O request

schedule event routines of this I/O request
else if (LV T <= T S(e) < st(EVL))

restore to the immediate checkpoint before T S(e) in E V L
/* Schedule a new I/O request */
else

schedule the start event routine of this I/O request
/* Process E V L */
Obtain the next er from E V L ;
Decompose er into routinely routinell, routinelll
Deposit routinell of er to L J I
Annotate routinell of er with TS(er)
Execute routinel of er
If routinelll of er exists

Send out an I/O response message to other LPs
Send out anti-messages if any
/* Process L J I */
If ((no next er from EVL) || ((st(EVL) - s t(L J I)) > tl))

Execute routinell in L J I
If errors of a track not corrected in routinell at td

Rollback before td
Schedule retry of the er

Update L V T
}}

Figure 8: The outline of the implementation of the speculation-based algorithm on the I/O node

7.2 Dependability Measures
Dependability measures obtained from the simulation include: 1) error coverage of the EDAC code, 2)
error detection latency of errors injected into various cache components. The measures are used to assess
the error detection/correction mechanisms of the cache subsystem. In addition, to validate the detailed
I/O node model, the results are also compared with that presented in [16] where a detailed model of the
cache subsystem is developed.

The EDAC detection and correction coverage are reported in Fig. 9. It is observed that coverage factor
is very high and tends to stabilize as the simulation time advances.

Fig. 10 shows the error detection latency probability density function for errors injected into bus 1
(Bl), errors into bus 2 (B2), errors into cache controller interface to cache memory/disk (CCI), errors
into cache memory (CM). Error detection latency is defined to be the time between when an error is
first injected to a track and the time when the error is detected, corrected or overwritten. For errors
injected into a track at a component, we record the latency associated with the first error injected into
the track. In other words, the measured latency corresponds to the maximum latency for errors present
in the tracks. The latency allows us to analyze the potential of errors that remain undetected, or to
cross the boundaries of detection mechanisms before being detected and efficiency of the overlapping
detection/ correction mechanisms.

Results shown in Fig. 10 indicate several points. Type Bl errors are mostly covered by parity. This
latency is very short due to the immediate parity checking for the tracks transferred over bus 1. Those
that escape parity tend to be latent for a long time. Type B2, CCI and CM errors have much longer
latency. The reason is that their detection/correction by EDAC or CRC are triggered by read/write
operations to the tracks containing these errors. As a result, these latency depends on the distribution
of I/O requests to the I/O node. If a track is not frequently accessed, then errors preserved in the track
might remain latent for a long period of time.

The obtained results are consistent with those presented in [16]. They also validate the correctness of
the detailed model of the I/O node for the simulated cluster system.

7.3 Performance Measures
Measures used to characterize the cluster system performance in the presence of faults include: 1) the
2-way delivery time distribution. 2) the mean time of 2-way delivery as a function of a fault injection
rate to the cache memory. 2-way delivery time of a track, is the difference between the time a request is
created and the corresponding response is received.

2-way delivery time distribution under faults is measured, as shown in Fig. 11. The distribution is
bi-modal. The first mode corresponds to the delivery time of a track if no faults corrupt its data and
retry to access the track is not necessary. The second mode corresponds to higher delivery time when
retry of track transfer in the cache controller is necessary due to errors detected during the transfer of
the track.

To assess the impact of the I/O node errors on the system performance, the mean time of 2-way

1

B1, B2, CCI and CM Error Detection Latency (unit time: 0.1ms)

Figure 9: EDAC coverage Figure 10: Error detection latency distribution

delivery of a track is measured under various fault injection rate into the cache memory, as shown in
Fig. 12. Fault injection rate into the cache memory is specified in the amount of data bits accessed for
the occurrence of one error. From Fig. 12, we observe that if more faults are injected into the cache
memory, the mean time of 2-way delivery of a track increases. This is due to the retry of the requests.

Fault injection Rate into Cache Memory(# of bits accessed per error injected)

Figure 11: 2-way delivery time distribution Figure 12: Mean time of 2-way delivery

7.4 Simulation Performance
In this section, we evaluate the speculation-based methodology using the cluster system model and
compare its performance with sequential simulation and a traditional optimistic protocol, Time Warp of
distributed simulation.

7.4.1 Performance Comparison of Sequential vs. Distributed Simulation
We obtain the sequential simulation performance numbers from our distributed simulator via mapping
all the LPs onto the same workstation. For distributed simulation, speculation-based and Time Warp,
the cluster system model with 6 nodes is partitioned and mapped to 2, 4 and 6 workstations.

Performance numbers of the speculation-based approach vs. sequential are recorded in Table 1, and
performance numbers of the Time Warp approach vs. sequential are reported in Table 2. The two tables
present:

• Simulation time: the real execution time to complete the simulation of the simulated system.
• Global Virtual Time (GVT): the simulated time for the model in the distributed simulation envi­

ronment.
• Speedup: the ratio between the sequential simulation time and the simulation time obtained for a

distributed simulation.
The results from Table 1 demonstrate significant speedup of the speculation-based approach over

sequential simulation. Our method yields as much as 77% (4.60/6) of ideal speedup (If a model is
distributed onto n workstations, the ideal speedup is n) for the 6 workstation case. The variation of
the global virtual time is due to the global virtual time computation algorithm. GVT is periodically
computed and for each simulation run, the timing for GVT calculation is not exactly the same due to
synchronization among the network of workstations.

Number of Workstations
Sequential Speculation-based Approach

1 2 4 6
Simulation Time (sec) 21,652 17,748 7,415 4,707
GVT (unit: 0.1 msec) 199,454,001 199,606,290 199,921,715 199,492,367

Speedup 1 1.22 2.92 4.60

Table 1: Performance of sequential vs. the speculation-based approach
In Table 2, we observe that, compared with the speculation-based approach, Time Warp offers less

performance gain over sequential simulation. On 6 workstations, 39% ideal speedup is observed com­
pared with sequential simulation. Two major factors limit Time Warp’s performance. One is that the
computation intensive events due to detailed simulation of error behavior on the I/O node causes poor
overlap of computation and communication. In other words, the progress of local virtual time on the I/O
node is slower than that on the compute nodes. Another is due to the large number of rollbacks, which
is demonstrated in later sections. With speculation, rollback number is greatly reduced and parallelism
in the simulation model is fully exploited.

Number of Workstations
Sequential Time Warp

1 2 4 6
Simulation Time (sec) 21,652 20,621 12,516 9,373
GVT (unit: 0.1 msec) 199,454,001 199,731,324 199,864,005 199,970,300

Speedup 1 1.05 1.73 2.31

Table 2: Performance of sequential vs. Time Warp

7.4.2 Performance Comparison of Speculation vs. Time Warp
In this section, simulation time and cumulative rollback number of the speculation-based approach and
Time Warp are compared by varying the simulation parameters of the cluster model. The numbers
reported are obtained from experiments mapping the model on a network of six workstations.

Three simulation parameters are varied to examine the performance numbers between the two ap­
proaches:

• Request frequency to the I/O node: the probability of generating a request to the I/O node.
• Cache memory size: the number of disk tracks in the cache memory of the I/O node.
• Injection rate to cache memory: the rate is specified in the amount of data bits accessed for the

occurrence of one error injected into CM. For example, the rate of le+7 means for every 107 bits
accessed, one error is injected into the cache memory.

Fig. 13 and Fig. 14 shows the simulation time and rollback number varying the request frequency to
the I/O node. With speculation, simulation time is reduced by as much as 50% and the speculative
simulation performs consistently better than Time Warp. As the request frequency to the I/O node
increases, simulation time increases. For Time Warp, detailed simulation of error behavior on the I/O
node delays the responses to compute nodes and causes a significant number of rollbacks, as shown in
Fig. 14. Using the speculative approach, the rollback number is reduced by as much as 50%. However,
when frequency to the 1/O node increases, the simulation time of the speculation-based approach increases
at a higher rate than Time Warp. The reason is that the rollback cost per I/O request for the speculation-
based approach increases as the frequency to the I/O node increases. Also more rescheduled routinell
axe delayed to be processed.

Fig. 15 and Fig. 16 shows the simulation time and rollback number varying the cache memory size
on the I/O node. The results shown here exhibit less regularity than those obtained by varying request
frequency to the I/O node. This is due to the fact that varying the cache memory size, cache hit
ratio is affected. This in turn may lead to variation in patterns of simulation message generation and
transmission. The computationally intensive error characterization affects our approach and Time Warp
in a different way, and the speculative approach delivers better performance for different cache memory
size than the Time Warp algorithm.

Fig. 17 and Fig. 18 shows the simulation time and rollback number varying the injection rate for cache
memory. If less faults are injected into the cache memory, the detailed simulation takes less time and
the overall simulation takes less time. It can be observed that the speculation-based approach performs
consistently better than Time Warp in terms of simulation time and rollback numbers.

8 Discussion and Conclusions
We proposed a speculation-based distributed simulation approach to detailed evaluation of system be­
havior in the presence of faults. Thé simulation method is demonstrated and validated in the case study
that analyzes dependability and performance of a reliable cluster system. The cluster consists of five com­
pute nodes and one I/O node connected via a ServerNet switch. The I/O node supports a cache-based
RAID storage architecture to provide high performance and availability. The RAID system operates
under control of the array controller, which employs a number of overlapping error detection/correction
mechanisms to improve availability. In order to capture the cluster system behavior and to evaluate the
efficiency of the error detection/correction mechanisms, we used detailed modeling of I/O operations in
the cache subsystem in the presence of faults.

The speculation-based distributed simulation for system dependability analysis is based on the obser­
vation that in a reliable system most of potential errors are detected and corrected. Consequently, the
simulation can progress without waiting until the detailed simulation of error behavior completes. Our
method introduces speculation into the distributed simulation and proposes a simulation algorithm for
speculation-based, dynamic event rescheduling. This method provides:

• an efficient overlapping between simulation of the computation intensive detailed error character­
ization and the rest of computation conducted at a more abstract level, and the communication
among logic processes.

• a reduction of rollback number (a major drawback of an optimistic, distributed simulation).
Our experimental results demonstrate that using speculation-based simulation, valid and accurate de­

pendability and performance measures can be obtained, including error detection coverage, error latency,
and performance degradation. Moreover, real input traces can be used to drive the simulation and this
offers accuracy, which cannot be achieved using analytical models with simplified distributions of access
pattern.

Furthermore, run-time performance results show that the speculation-based simulation contributes to
a significant reduction in the simulation time. For example, in the speculation-based simulation of the
cluster system, 4.6 times speedup over sequential simulation and 2.0 times speedup over the Time Warp
simulation algorithm is achieved in an environment of six workstations. This indicates the strength of
the speculation in the distributed simulation.

Efficiency of the speculation-based approach depends on characteristics of the simulated system. The
approach will work when the traffic going to the logical processes participated in speculation is relatively

Si
m

ul
at

io
n

tim
e(

se
co

nd
s)

Si

m
ul

at
io

n
tim

e(
se

co
nd

s)

Si
m

ul
at

io
n

tim
e(

se
co

nd
s)

Request Frequency to the I/O Node Request Frequency to the I/O Node

Figure 13: Execution Time Figure 14: Rollback Number

Cache Memory Size Cache Memory Size

Figure 15: Execution Time Figure 16: Rollback Number

1e+07 2e+07 3e+07 4e+07 5e+07 6e+07 7e+07 8e+07 9e+07 1e+08 1e+07 2e+07 3e+07 4e+07 5e+07 6e+07 7e+07 8e+07 9e+07 1e+08
Fault Injection Rate Fault Injection Rate

Figure 17: Execution Time Figure 18: Rollback Number

infrequent. For example, in our detailed simulation of the I/O node, the error simulation is time-
consuming, because the error detection/correction is simulated at low-level (i.e., data symbol level). With
speculation, the time-consuming simulation for errors does not delay sending back the I/O responses,
thereby, does not slow down the simulation progress.

Finally, the speculation-based method can introduce extra rollback if the correct simulation takes a
different path than one predicted by the speculation. These instances of rollback are different than roll­
back due to causality violations intrinsic to the optimistic protocol, such as Time Warp. The percentage
of rollbacks introduced by speculation is low in simulation of reliable systems, i.e., usually the error
detection/correction coverage is high. Consequently, utilizing speculation to optimize event scheduling
is definitely beneficial as speculation most likely matches the correct simulation path. In addition, the
proposed speculation algorithm can be selectively implemented on logical processes that are most ben­
eficial to the overall simulation. Despite the implementation overhead introduced, the method brings
significant performance improvement to the simulation.

The paper concentrates on the simulation of a cluster system, however, the speculation-based method is
by no means limited to a specific application. Therefore, our future work will concentrate on generalizing
the approach to incorporate more applications and in improving its efficiency, for instance, developing a
more efficient state saving mechanism which handles larger size simulation model.

References
[1] Rajive Bagrodia, Yu an Chen, Mario Gerla, and Bruce Kwan. Parallel simulation of a high-speed

wormhole routing network. Proceeding of the 1996 Workshop on Parallel and Distributed Simulation,
pages 47-56, 1996.

[2] S.J. Bavuso, J.B. Dugan, K.S. Trivedi, Rothman E.M., and Smith W.E. Analysis of typical fault-
tolerant architectures using HARP. IEEE Trans, on Reliability, pages 176-185, 1987.

[3] Ram Chillarege. Fault and error latency under real workload - an experimental study. Ph.D Thesis,
Electrical and Computer Engineering Department, University of Illinois at Urbana-Champaign,
1986. •

[4] Alessandro Fabbri and Lorenzo Donatiello. SQTW: a mechanism for state-dependent parallel sim­
ulation. description and experimental study. Proceeding of the 1997 Workshop on Parallel and
Distributed Simulation, pages 82-89, 1997.

[5] A. Ferscha and G. Chiola. Self-adaptive logical processes: the probabilistic distributed simulation
protocol. The 27th Annual Simulation Symposium, pages 78-88, 1995.

[6] R. Fujimoto. Parallel discrete event simulation. Communications of the ACM, 33(10):30—53, 1990.
[7] R. Fujimoto and David Nicol. State of the art in parallel simulation. Proceedings of the 1992 Winter

Simulation Conference, pages 246-254, 1992.

[8] K.K. Goswami. Design for dependability: A simulation-based approach. Ph.D Thesis, Computer
Science Department, University of Illinois at Urbana-Champaign, 1993.

[9] B. Groselfj and C. Tropper. The distributed simulation of clustered processes. Distributed Comput­
ing, pages 111-121, 1991.

[10] J.M. Hammersley and C.C. Handscomb. Monte Carlo methods. Methuen and Co.LTD., 1964.
[11] D.O. Hamnes and Anand Tripathi. A comparative study of adaptive risk vs. adaptive aggressiveness

control in parallel and distributed simulation. Proceedings of the 29th Annual Simulation Symposium,
pages 90-96, 1996.

[12] P. Heidelberger. Fast simulation of rare events in queuing and reliability models. ACM Transactions
on Modeling and Computer Simulation, pages 43-85, 1995.

[13] Robert W. Horst. Tnet: A reliable system area network. IEEE MICRO, pages 37-45, 1995.
[14] D.R. Jefferson. Virtual time. ACM Transaction on Programming Language and System, 7(3):404-

425, 1985.
[15] Barry W. Johnson. Design and Analysis of Fault Tolerant Digital Systems. Addison Wesley, 1989.
[16] M. Kaaniche, L. L.Romano, Z. Kalbarczyk, R.K. Iyer, and R. Karcich. A hierarchical approach for

dependability analysis of a commercial cached raid storage architecture. The 28th Annual Interna­
tional Symposium on Fault-Tolerant Computing, 1998.

[17] A.M. Law and W.D. Kelton. Simulation Modeling and Analysis. McGraw-Hill, New York, 1991.
[18] David M. Nicol. High performance parallelized discrete event simulation of stochastic queuing

networks. Proceedings of the 1988 Winter Simulation Conference, pages 306-314, 1988.
[19] Victor F. Nicola, Nakayama M.K., and P. Heidelberger. Fast simulation of highly dependable systems

with general failure and repair processes. IEEE Transactions on Computers, pages 1440-1452, 1993.
[20] David L. Peterson. New perspectives in DASD subsystem cache performance. 23rd International

Conference for the Resource Management and Performance Evaluation of Enterprise Computing
Systems, 1997.

[21] D.P. Siewiorek and R.S. Swarz. Reliable Computer Systems Design and Evaluation. Digital Press,
1992.

[22] Simon J.E. Taylor and Thierry Delaitre. Estimating the benefit of the parallelism of discrete event
simulation. Proceedings of the 1995 Winter Simulation Conference, pages 674-681, 1995.

