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Statistical guarantees of performance for MIMO
designs

Abstract—Sources of noise such as quantization, introduce 
randomness into Register Transfer Level (RTL) designs of 
Multiple Input Multiple Output (MEMO) systems. Performance 
of these MIMO RTL designs is typically quantified by metrics 
averaged over simulations. In this paper, we introduce a formal 
approach to compute these metrics with high confidence. We 
define best, bounded and average case performance metrics 
as properties in a probabilistic temporal logic. We then use 
probabilistic model checking to verify these properties for MIMO 
RTL and thereby guarantee the statistical performance. However, 
probabilistic model checking is known to encounter the problem 
of state space explosion. With respect to the properties of interest, 
we show sound and efficient reductions that significantly improve 
the scalability of our approach. We illustrate our approach on 
different non-trivial components of MIMO system designs.

I . I n t r o d u c t i o n

There is an ever growing demand to design communication 
and digital signal processing (DSP) systems that are area 
and power efficient while operating at high data-rates. Bit 
Error Rate (BER) is a commonly used performance metric for 
these systems. BER is an average measure of the probability 
with which a transmitted data bit is decoded in error. In 
wireless communication systems, BER requirements can be as 
low as 10-7 . MIMO systems [ 1) are designed to meet these 
requirements.

MIMO systems are complex and comprise a large number of 
digital components implemented at the RT Level. The process 
of making MIMO RTL designs meet the BER requirements is 
both time and resource-intensive. This is due to other criteria, 
such as area and power, that also need to be met. Therefore, 
it is desirable to have a methodology where performance 
estimation of MIMO RTL can be performed quickly and with 
a high degree of confidence.

Performance metrics are inherently probabilistic in nature 
due to the randomness introduced by signal corruption at the 
receiver and fixed-point quantization errors. Conventionally, 
performance estimation is done by performing Monte Carlo 
simulations [21 of MIMO RTL using random input vectors. Es
timates that are reasonably accurate can be obtained by simu
lating the MIMO systems [3]over many cycles. This technique 
is time consuming and incomplete. FPGA implementations 
[41 and ASIC prototypes [51 provide accelerated simulations, 
thereby speeding up performance estimation. However, both 
these methods involve significant overheads in terms of cost.

We propose a methodology that performs efficient perfor
mance estimation for MIMO RTL by employing probabilistic 
model checking. Model checking exhaustively explores all

possible paths of a given length and therefore, the analysis 
of the design is complete and high in confidence.

MIMO RTL designs can be modeled as finite-state proba
bilistic systems with discrete-time transitions. Therefore, we 
represent them as Discrete-Time Markov Chains (DTMCs) [61.

We define BER-like performance metrics that can be ex
pressed as properties in Probabilistic Computational Tree 
Logic (pCTL) [71. In addition to average case, we also define 
best case and worst case performance metrics. This set of 
metrics can be used to rigorously analyze the error-related 
performance of the design, as compared to using only an 
average case metric.

We then use PRISM [81, a probabilistic model checking 
engine, to verify the pCTL properties on the DTMC models. 
This formally guarantees the statistical performance of MIMO 
RTL designs.

However, probabilistic model checking tools are known to 
encounter the problem of state space explosion. We address 
this by identifying reductions that preserve the probabilistic 
behaviour of the system with respect to the properties of 
interest. We show that these property-preserving reductions 
are sound by using a probabilistic bisimulation [91 argument. 
Although these reductions are specific to the domain of 
communication systems, they are not restrictive since they can 
be generically applied to a broad class of designs within this 
domain.

Markov chains have frequently been used to compute high 
level system performance and power [101 [1 H- They have also 
been used at a circuit level, to design circuits with high error 
tolerance [121 and to analyze stability [131. To the best of our 
knowledge, ours is the first work that deals with probabilistic 
model checking of communication systems at an RTL level 
for error-related performance estimation.

Therefore, our contributions in this work are as follows.
• We describe a framework in which MIMO RTL designs, 

including channel noise and quantization errors, are rep
resented as DTMC models.

• We make the performance estimation quick, rigorous and 
high-confidence, by using probabilistic model checking 
over state-of-the-art simulation techniques.

• We use a more comprehensive set of performance metrics 
than BER.

• We introduce sound and effective property-preserving 
reductions and identify classes of MIMO components to 
which they can be generically applied.

We illustrate our technique on seminal components of a 
MIMO system, using a Viterbi decoder [141 and MIMO



detector [31 as case studies.

II. B a c k g r o u n d  c o n c e p t s

In a communication system with digital blocks in the 
receiver, an Analog to Digital Converter (ADC) first translates 
the received analog signals into bits by discretizing it in 
time (sampling) as well as value (quantization). In this work, 
we confine our analysis to the digital blocks by assuming 
knowledge of the statistical performance of analog blocks 1.

However, imperfections such as thermal fluctuations in 
current and voltage and timing errors of the ADC sampler, are 
present in the circuitry. A large number of such small error 
sources are lumped together by the Central Limit Theorem and 
modeled commonly as a single random variable, called noise, 
with a zero-mean Gaussian distribution [151. The presence of 
noise can lead to errors in quantization of the received sample.

Additionally, in some channels, the received sample at any 
time step contains components from signals transmitted in 
adjacent steps. This interference can be mitigated using digital 
blocks, such as Viterbi decoders, in the receiver. Signal-to- 
Noise Ratio (SNR) represents the level of the uncorrupted 
signal relative to that of the noise. For high values of SNR, 
the noise is insignificant compared to the signal, resulting in 
a low BER.

In this work, we assume that the analog blocks exhibit 
ideal behaviour. We also assume an Additive White Gaussian 
Noise (AWGN) model and a Binary Phase Shift Key (BPSK) 
signaling scheme [151. However, our methodology is not 
limited to these assumptions.

III. O u r  m e t h o d o l o g y

We employ probabilistic model checking to formally esti
mate statistical performance of MIMO RTL designs. The steps 
involved in our methodology are:

• DTMC modeling: We represent the target MIMO RTL 
design as a finite DTMC model. We assume that every 
transition of the DTMC model corresponds to a single 
time step (modeled by an explicit clock in RTL). For 
a given SNR, we obtain the variance of the Gaussian 
distribution of noise. We use this to calculate the proba
bility of a received sample being mapped to a particular 
quantization level which in turn can be used to label the 
transitions of the DTMC model.

• Property specification: We define a set of BER-like per
formance metrics to rigorously analyze the error-related 
performance of a system. We write pCTL properties 
corresponding to these metrics, as functions of the state 
variables in the DTMC model.

• Property-preserving reduction: We determine property
preserving reductions by analyzing certain components 
of a MIMO system. We show that our reductions are 
sound with respect to the pCTL properties. We identify 
that these reductions can be extended to a large class of 
designs for checking the same properties.

'Analog components are used mainly for blocks like mixers, amplifiers, 
Phase Lock Loops (PLLs), Clock-Data Recovery units (CDRs) and ADCs

• Probabilistic model checking: We use PRISM to ver
ify the specified properties by rigorously analyzing the 
DTMC model. PRISM is a symbolic model checking tool 
that uses efficient algorithms and data structures based on 
binary decision diagrams (BDDs).
We explore the transitions of the DTMC model until 
it reaches a steady state. A  DTMC model is said to 
have attained a steady state when the probability of 
reaching a state is independent of the time step. All finite, 
irreducible, aperiodic DTMC models are guaranteed to 
reach a steady state [6].

IV. C a s e  S t u d i e s : MIMO S y s t e m s

A MIMO system with N r  receiver antennas and N ?  
transmit antennas can be modeled as,

y = H x + n  (1)
where y =  [y\ , .., yNR]T is the vector of received signals and 
x  = [rci, ..,x n t ]t  is the vector of transmitted signals. [ ]T 
denotes the transpose of a vector. H represents the N rxNt  
channel matrix and n is an AWGN noise vector. We assume 
a commonly used flat fading Rayleigh channel model [11 and 
obtain the probability distribution of the elements of H.

We present the following case studies.
• Estimation of error properties of a Viterbi decoder
• Estimation of error properties of a MIMO detector
• Estimation of convergence properties of a Viterbi decoder

A. Estimation of error properties of a Viterbi decoder
We briefly describe the Viterbi algorithm [14]. In this case 

study, we consider a transmitter whose output at time step 
n is obtained by adding the data bit from the current time 
step, x[n], with the data bit from the previous time step (i.e 
x[n — 1]). This system is defined to have a memory (m) equal 
to 1.

q[n] is the quantized sample at the receiver in time step 
n. By itself, q[n\ is insufficient to determine the value of the 
actual data bit with a low probability of error. Therefore, the 
Viterbi decoder waits for the samples received in the next 
L-l time steps before decoding the value of the data bit. 
Heuristically, selecting L greater than 5m  is assumed to be 
sufficient for decoding the data bit with high confidence. In 
this example, we consider L=6.

The Viterbi decoder maintains two internal states (0 and 1) 
corresponding to the possible data bits (0 and 1, respectively) 
in each time step. We associate the variables prev0 and prev 1 
with the internal states 0 and 1, respectively. Since the data bit 
in each time step can be a 0 or a 1, a transition can occur from 
any one of the two internal states to another. Each transition 
is associated with a probability that is a function of q[n\. 
By comparing the transition probabilities, the decoder assigns 
values to prev0 and prevl that point to the corresponding 
most-probable previous internal state. For example, if internal 
state 0 is reached with a higher probability by a transition 
from internal state 1 than from internal state 0, the decoder 
assigns a value of 1 to prev0.



A trellis stage comprises the variables prev0 and prev 1 cor
responding to a single time step. In each time step, the Viterbi 
decoder stores the variables corresponding to the previous L -1 
trellis stages as well. Starting at one of the internal states, the 
decoder can traverse a path of length L through a sequence 
of previous internal states using the variables in the L trellis 
stages. This operation is called traceback. A path metric is the 
cost associated with a traceback path. We use pmO and pm l 
to store the path metrics associated with internal states 0 and 
1, respectively.

In each time step, the Viterbi decoder uses q[n] to compute 
the internal state transition probabilities and then assign values 
to p re v0 and prev  1 of the corresponding trellis stage. The 
decoder then increments pmO and p m  1 as a function of the 
the computed transition probabilities. The decoder chooses the 
internal state with the least corresponding path metric, as the 
starting point for traceback.

At the end of the traceback operation, the Viterbi decoder 
decodes the data bit. However, there is a decoding latency 
of L -1 time steps. Therefore, to verify the correctness of the 
decoded bit in each time step, we need to keep track of the 
actual data bits corresponding to the previous L - 1 time steps.

We now describe, in detail, all the steps involved in our 
methodology.

1) DTMC modeling: A DTMC model M  can be defined 
by a tuple (S, Tp ). S  is a set of state variables of the model. 
Tp\ S  x S  —> [0,1] is the probabilistic state transition relation. 
A state p  of the model M  is defined as a unique assignment 
of values to the state variables in S.

We represent the Viterbi decoder as a DTMC model M  with 
the following state variables:

• prnO and pm l
• prevOi and prev  1*: Variables used to store values of 

p re v0 and prev  1 in the i th  trellis stage, where 0 < i  < 
L — 1. i - 0 corresponds to the trellis stage in the current 
time step.

• xp  Data bit in the i th trellis stage.
• flag: Boolean variable that is set to 1 if the decoded bit 

is in error.
In each time step (i.e., each clock cycle in RTL), the state 

variables of M  are assigned new values. For each variable, the 
set of possible values is finite. Therefore, M  is a finite DTMC 
model. The assignment of new values denote a transition 
from state p to another state p '. The following assignments 
collectively define Tp.

• Data bit and path metrics: xo is assigned a value of 0 or 
1. q[n] is assigned probabilistically and is used to obtain 
values of pmO and pm l, given by,

(pmO', p m l', x_0') =  r p(pm0,pml, x_0) (2)
where Tp is a probabilistic function with the combined proba
bilities of xq and q[n]. The remaining state variables are then 
assigned with non-probabilistic functions.

• Transmitter: Fs computes the new values of prev0 and 
prev 1 in the current trellis stage, as functions of the new

path metrics pmO' and pm l'. This is given by,
(prevO'0, prevl'0) — Fs{pm0' ,p m l')  (3)

• Writeback: Values of variables denoting stage i of the 
trellis are written to those in stage ¿-1-1- This action 
represents the entire trellis structure being advanced by 
one time step.

(prevO'i+1,prevl'i+1,x'i+1) = (prevOi, prevli, x {) (4)
• Traceback: Fp determines the decoded bit as a function 

of the values of prev0 and prev 1 across L trellis stages. 
Fp sets flag  to 1, if the decoded bit is not equal to the 
corresponding actual data bit x l - i -

flag ' = FE(prevO'i ,prev\'i , x L- i )  (5)
States where the decoded bit is in error are of interest to us. 

To tag the states of interest, we use flag  to define a reward 
model on the DTMC. A reward is defined as a cost associated 
with being in various states of the DTMC. For each state, we 
assign a reward equal to the value of flag  in that state.

2) Property specification: We define the following BER- 
like metrics for T  time steps and write the corresponding 
pCTL properties that we use in PRISM.

• PI (Best case error): P=? [G < T (¡flag)]: Probability that 
no error occurs in any of the T  steps.

• P2 (Average case error): R=? [I = T]: Probability that an 
error occurs at exactly the T th step.

• P3 (Worst case error): P=? [F < T (flag> 1)]: Probability 
that number of errors occurring in T  steps is greater than 
a pre-determined value (value equal to 1, in this case).

BER is not a time-bounded metric. However, in steady 
state, BER can be interpreted as the probability of a bit 
error occurring at any time step. P2 is a reward property 
that computes the expected instantaneous value of flag  after 
exactly T  transitions (time steps) of the DTMC model. We 
demonstrate that our systems do attain a steady state and 
therefore, P2 corresponds to the BER of the system. Since 
we use a simple reward model that assigns rewards of 0 or 1, 
we do not need to express P2 using the reward-based extension 
of pCTL [161.

In addition to P2, we analyze best and worst case error 
scenarios. This enables us to make stronger claims regarding 
the error-related performance of MIMO RTL. The properties 
are checked by performing an exhaustive exploration of all the 
possible paths of length T.

3) Property-preserving reduction: For error properties, it 
is sufficient to determine whether a bit is in error or not. 
Reductions can be defined for checking error properties, that 
compute bit errors without actually determining the values of 
the decoded bits. In such cases there is no comparison of 
values with the transmitted bits. Therefore, in designs with 
decoding latency, variables storing past values of transmitted 
bits can be discarded from the model.

We obtain the reduced Viterbi decoder model M r by 
replacing the variables prevOi, p re v l t and Xi (excluding xq) 
with the variables Cj and to, (Figure 1). We need the variables 
Cj and Wi to indicate whether prevOi and p re v li  point to 
the previous internal state corresponding to the actual data bit
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Fig. 1. Reduction front M  to M r .

Xi. This information is sufficient to check the correctness of 
the traceback operation and thereby, check the correctness of 
the decoded bit. We construct an abstraction function Fabs to 
assign values to c* and Wi, given by,

(4 , w'i) =  FahsiprevO'^prevl'i, x'f) (6)
Multiple states in M  (p\, p2,..) are mapped to the same 

state p,R in M r , by the function Fabs- This illustrates how 
we achieve a reduction in the state-space. Variables pmO, 
pm l and xq from model M, are retained in the reduced 
model M r . The values of these variables are same in states 
Pu p2 and p r . Therefore, the probabilistic function Tp is 
also preserved by our reduction. The non-probabilistic state 
transition assignments for M r  are given by,

(c'0,w'0) = Fcw(pm 0',pm lf,x'o) (7)
(c'i+i,w'i+i) =  (ci,Wi) (8)

fla g ' =  FeM ,  w'i, x'0) (9)

where Fr r is a slightly modified version of Fr from model
M.

M r does not have information to obtain the values of the 
decoded bits. However, f lag  in M r indicates the correctness 
of the decoded bit, as in M.  Through this reduction, the 
variables xi to x l - i can be discarded. Therefore, the size 
of M r is smaller than that of M.

4) Proof of correctness: We need to show that M r is a 
probabilistic bisimulation of M.  We prove this in two parts. In 
Part A, we establish that the variable based on which the error 
property is defined (i.e., flag), is preserved by the reduction. 
In Part B, we show that M r also preserves the probabilistic 
behavior of M.  We then employ the Strong Lumping Theorem 
[17] to complete the proof.

All the states in M  that are mapped to the same state 
in M r through the function Fabs, constitute an equivalence 
class [18], Two states are in the same equivalence class if and 
only if they are equivalent under a given equivalence relation. 
Fabs is the equivalence relation that establishes a one-to-one 
correspondence between such an equivalence class in M  and 
the corresponding state in M r (Figure 1). We use p r  to refer 
to both a state in M r and the corresponding equivalence class 
in M.

Part A: We need to prove that the value of flag  assigned to 
a state in M r is the same as in the corresponding equivalence

class in M. We do this by verifying that Equations 5 and 9 
are equivalent2.

Part B: We need to prove that the equivalence classes pre
serve the probabilistic behaviour of the states of M . Consider a 
transition in M, from p to a destination state p'. p' is mapped 
by Fabs to the corresponding state p'R in M r  according to,

(c'q, w 'q) = Fabs(prevO'0,prevlQ,XQ) (10)
Combining Equations 4 and 6,

(c'i+1,w'i+1) =  Fabs(prevO'i+1,prevl'i+1,x'i+1)
= Fabs(prevOi,prevli,Xi)
=  (C i , W i ) (11)

We verify that Equation 7 and 10 are logically equivalent. 
This implies that if two states (p i,p2) belong to the same 
equivalence class in M, their respective destination states 
(p[,p'2) are also equivalent under Fabs-

Any state transition (p —► p') in M  corresponds to a tran
sition between the respective equivalence classes (p r  —> p'R). 
In our example, for each equivalence class p'R, p' e p'R is 
a unique destination state that p G p r  can transition to. We 
write the transition probability as,

P (pR p 'r ) =  P(p  ->• p')

= p ^ r  (12)

States in equivalent classes related by Fabs transition to 
the same set of equivalence classes related by Fabs and with 
the same probability distribution. According to the Strong 
Lumping Theorem, any quotient DTMC that comprises these 
equivalence classes as its states, is a probabilistic bisimulation 
of M. In fact, M r is such a DTMC. Since is preserved 
by our abstraction, the associated probabilities in Equation 12 
also hold true for state transitions in M r . Therefore, M r is a 
probabilistic bisimulation of M  for checking error properties.

5) Probabilistic model checking: We use PRISM to verify 
the properties PI, P2 and P3 on the reduced DTMC model 
M r .

B. Estimation of error properties of a MIMO detector

For the MIMO system in Equation 1, detectors estimate 
the most likely x, given the received vector y. This Maximum 
Likelihood (ML) MIMO detection algorithm can be expressed 
as,

x — argrain \y — tls \ (13)

where x  is the detected vector and s is a possible value of x.
We consider a 2x2 MIMO sytem with BPSK signals. 

Therefore, each vector element Xi  can be a 0 or a 1. The 
ML algorithm can be implemented as in [3],

x  =  argmin(\yi — h u s  i — hi2s2\
+  \y2 -  h2lsi -  h22s2\) (14)

where both Si and s2 are elements of s and can have values of 
0 and 1. We split Equation 14 further into real and imaginary

2Since our functions are Boolean, we use an equivalence checker [191



parts,
= argmin(\yiiR ~  h l l , R S l  ~  h\ 2 , RS2 \

+ \ y i , i  — h n p s i — h \ 2 g S 2 \

+ I2/2 ,r — h21,R S l  — h 2 2 tR S 2 \

+ I2 /2 , /  — ^21,/ « I —  h 2 2 g S 2 \)

= argmin(Mi'R 4- 4- M 2jr +  M 2j ) (15)
where the metrics M itR..M2j  are computed for each of the 
four possible values of the vector s. The argmin function 
determines that the most likely transmitted vector, x, is the 
vector s that corresponds to the least sum of metrics as in 
Equation 15.

We construct the DTMC model for the MIMO detector, as 
in Section IV A. We use the transmitted bit vector x  and the 
real and imaginary parts of the elements of both y and H, 
as DTMC state variables. We determine x  using Equation 15 
and compare it with x  to assign the value of flag. We use the 
probability distribution of the elements of H  and n  (based on 
SNR) to assign probabilities to the DTMC transitions. We use 
the state variable flag  to define the DTMC reward model.

Consider a state p\ of the DTMC model of the MIMO 
detector. The variables y\,R, h u iR and h i2,R constitute the 
block that computes M \,r . Let us interchange the values 
of these variables with those of the corresponding variables 
from the block that computes M \j  (i.e., y i j ,  and hi2ti 
respectively). This new assignment of values corresponds to 
another state p2 of the DTMC.

From Equation 15, we observe that the computation of x  
(and fla g ) is unaffected by the interchange operation between 
states p\ and p2. We also observe that the probabilistic 
assignments to the corresponding variables in the two blocks, 
are symmetrical. Therefore, the states /i\ and p2 exhibit sym
metrical probabilistic transitions. This proves that the blocks 
for the metrics M\ r and M\ i are symmetric with respect to 
error properties that are defined based on flag. In fact, this 
is true across all the four blocks in the detector. In general, 
for any N rxN t MIMO detector, there are 2xN r symmetric 
blocks.

We employ symmetry reduction [T8] to reduce the size of 
the DTMC model, as seen in Table II. MIMO designs that 
exhibit such symmetries, constitute a large class of systems 
where symmetry reduction can be applied. In this case study, 
we check only the average case property P2.

C. Estimation of convergence properties o f a Viterbi decoder
The Viterbi decoder performs the traceback operation start

ing from the internal state corresponding to the lowest path 
metric. In some cases, selecting the other internal state for 
traceback yields a conflicting decision of the decoded bit. 
When traceback paths converge, the decoded bit is independent 
of the internal state selected as the starting point.

A convergent trellis stage is defined to be a stage where both 
prevO and prev 1 are assigned the same value. All traceback 
paths that pass through this stage are forced to proceed through 
the same previous internal state. Thereafter, there is only trace- 
back path resulting in one possible decision for the decoded

bit. If atleast one convergent stage is encountered during a 
traceback of length L, the traceback paths are guaranteed to 
converge. Heuristically, a traceback length of around L=4m 
to L=5m is chosen. However, these numbers appear to come 
more from empirical observations, rather than theory.

To check for convergence of traceback paths, we use the 
DTMC model obtained in Section IV A and introduce a new 
variable count. In each state, the assignment of values to 
prev0 and prevl correspond to the formation of a new trellis 
stage. If this trellis stage is non-converging, we increment 
count by 1. We reset count to 0 for a convergent stage. When 
count exceeds L in a state, it implies that the previous L trellis 
stages are non-convergent. Therefore, the traceback paths do 
not converge and we set flag  to 1. We use flag  to define the 
DTMC reward model.

Similar to P2, we define the average case convergence 
property Cl. In steady state, C l computes the probability that 
a bit decoded in any time step has non-converging traceback 
paths. We write C l as R=? [I = T].

Reduction techniques are not just dependent on the type of 
the system, but also on the property to be checked. For the 
convergence property, we determine if a stage is convergent 
based on the values of prevOo and prevlo. We also require 
r p to define the probabilistic transitions of these variables. 
Therefore, we need only the variables pmO, pm l and xq from 
the original model M . We discard the variables corresponding 
to the other L -1 trellis stages, obtaining a smaller DTMC for 
model checking.

The proof of correctness for this reduction can be explained 
in a manner similar to that in Section IV A 4). Instead of 
Fabs, we now consider a refining function Fref  that map all 
states with the same values assigned to pmO, pm l and #0 , to a 
unique equivalence class. Since Tp is retained, the probabilistic 
behaviour of the system is preserved by the reduction. The rest 
of the proof follows, defining Frej  as the equivalence relation.

TABLE I
Error properties for a  V iterbi decoder.

States
(Original model)

States
(Reduced model)

Time
(seconds)

Result

P I 53,558, 744 8 ,5 0 5 ,3 6 3 90.80 3 x l0 -15
P2 53 ,558 ,744 8 ,5 0 5 ,3 6 3 184.13 0.2394
P3 107,504, 890 16 ,435 ,490 365.68 «  1

V. E x p e r i m e n t a l  R e s u l t s

We perform our experiments on a 3 GHz, 3.25 GB machine. 
For an SNR of 5dB, we check the error properties for the 
Viterbi model over T=300 time steps (Table I). The times 
listed account for both model construction and model check
ing. We use PI, P2 and P3 to confirm the poor error-related 
performance of the system for the given SNR.

Table II shows the reduction factors achieved in the MIMO 
detector. We consider 1x2 (SNR=8dB) and 1x4 (SNR=12dB) 
MIMO ML detectors. In the 1x4 detector, PRISM discards 
states that are reached with a probability less than 10-15.



TABLE Tl
vSYMMETRY REDUCTION OF MIMO DETECTOR.

MIMO States
(Original model M )

States
(Reduced model M r )

Reduction
factor

1x2 569480 32088 18
1x4 524288 1320 400

For checking convergence {L -8, SNR=8dB) of the Viterbi 
decoder, the reduced DTMC has only about 61,000 states. 
Compared to the original model, the number of states is 
reduced by several orders of magnitude. We are able to 
check C l within 120 seconds. We verify from Figure 2 that 
the probability of non-convergence decreases with traceback 
length and stabilizes past L=5m.

Fig. 2. C l as a function of L.

PRISM performs a reachability analysis first and a fixpoint 
is achieved. The fixpoint is referred to as Reachability Iter
ations (RI). After this fixpoint, no new states are reached in 
further iterations. Tables III, IV and V show the computations 
of P2 and C l for different values of T. We observe that for 
values of T  much greater than RI, the computed values do not 
change significantly. Once steady state is attained, we consider 
P2 as the BER of the system.

TABLE ITT
P 2 f o r  t h e  V it e r b i  d e c o d e r  ( R I - 263).

Viterbi T=100 T=300 T=600 T=1000
P2 0.2373 0.2394 0.2397 0.2398

The DTMC model for the Viterbi decoder is finite, irre
ducible and aperiodic. Therefore, the model is guaranteed 
to converge to a steady-state probability distribution (Section 
III). Although at a slower rate than for the MIMO detector, 
the computations for the Viterbi decoder converge reasonably 
quickly. To check error properties, all MIMO RTL designs 
will be represented as DTMC models of a similar structure. 
Therefore, a steady-state solution is guaranteed, although the 
exact time steps required to attain this may vary.

TABLE TV
C o n v e r g e n c e  o f  t h e  V it e r b i d e c o d e r  (R I= 77).

T=100 T=400 T=1000
Cl 1.034xl0-3 I M P ” 1.044X10“ 3

The values computed in our approach closely match those 
obtained by performing simulations over a large number of

time steps. We simulate 107 time steps to estimate a BER of 
1.07xl0-5 for the 1x4 MIMO system in Table V. We observe 
zero bit errors in 105 time steps. This clearly illustrates the 
efficiency of our approach as compared to simulation-based 
techniques, particularly for very low BER requirements.

TABLE V
BER FOR MIMO DETECTORS (R I= 3).

MIMO T=5 T=10 T=20
1x2 0.277 0.291 0.296
1x4 1.08xl0_i> 1.08xl0-ä " L 08xl0“ s

In conclusion, we have introduced a formal methodology 
to guarantee statistical performance of MIMO RTL designs. 
For larger MIMO systems, we plan to explore a compositional 
approach.
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