
October 2011 UILU-ENG-11-2209
CRHC-11-07

EVALUATING CODE COVERAGE
OF ASSERTIONS BY STATIC
ANALYSIS OF RTL

Viraj Athavale, Sam Hertz, and Shobha Vasudevan

Coordinated Science Laboratory
1308 West Main Street, Urbana, IL 61801
University o f Illinois at Urbana-Champaign

REPORT DOCUMENTATION PAGE Form Approved
OMB NO. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources,
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comment regarding this burden estimate or any other aspect of this
collection of information, including suggestions for reducing this burden, to Washington Headquarters Services. Directorate for information Operations and Reports, 1215 Jefferson
Davis Highway Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE
October 2011

3. REPORT TYPE AND DATES COVERED

4. TITLE AND SUBTITLE
Evaluating Code Coverage of Assertions by Static Analysis of RTL
6. AUTHOR(S)
Viraj Athavale, Sam Hertz, and Shobha Vasudevan

5. FUNDING NUMBERS
C5505, Qualcomm 900038673

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Coordinated Science Laboratory, University of Illinois at Urbana-Champaign, 1308 W.
Main Street, Urbana, Illinois, 61801-2307

8. PERFORMING RGANIZATION
REPORT NUMBER

UILU-ENG-11-2209
CRHC-11-07

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)
Qualcomm Inc.
5775 Morehouse Drive
San Diego, CA 92120-1714

10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES

12a. DISTRIBUTION/AVAILABILITY STATEMENT

Approved for public release; distribution unlimited.

12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 words)

Assertions are critical in pre-silicon hardware verification to ensure expected design behavior. While Register Transfer Level
(RTL) code coverage can provide a metric for assertion quality, few methods to report it currently exist. We introduce two practical
and effective code coverage metrics for assertions - one inspired by test suite code coverage as reported by RTL simulators and the
other by assertion correctness in the context of formal verification. We present an algorithm to compute coverage with respect to
assertion correctness, by analyzing the Control Flow Graph (CFG) constructed from the RTL source code. Our technique reports
coverage in terms of lines of RTL source code which is easier to interpret and can help in efficiently enhancing an assertion suite. We
apply our technique to an open source USB 2.0 design and show that our coverage evaluation is efficient and scalable.

14. SUBJECT TERMS
1. Code coverage; 2. Assertion; 3. Coverage; 4. Verification; 5. Formal verification; 6.
Static analysis

15. NUMBER OF PAGES
6
16. PRICE CODE

17. SECURITY CLASSIFICATION
OF REPORT

UNCLASSIFIED

18. SECURITY CLASSIFICATION
OF THIS PAGE

UNCLASSIFIED

19. SECURITY CLASSIFICATION
OF ABSTRACT

UNCLASSIFIED

20. LIMITATION OF ABSTRACT

UL

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
Prescribed by ANSI Std. 239-18
298-102

Evaluating Code Coverage of Assertions by Static
Analysis of RTL

Viraj Athavale, Sam Hertz and Shobha Vasudevan
University o f Illinois at Urbana-Champaign

Abstract—Assertions are critical in pre-silicon hardware ver­
ification to ensure expected design behavior. While Register
Transfer Level (RTL) code coverage can provide a metric for
assertion quality, few methods to report it currently exist. We
introduce two practical and effective code coverage metrics for
assertions - one inspired by test suite code coverage as reported
by RTL simulators and the other by assertion correctness in
the context of formal verification. We present an algorithm
to compute coverage with respect to assertion correctness, by
analyzing the Control Flow Graph (CFG) constructed from the
RTL source code. Our technique reports coverage in terms of
lines of RTL source code which is easier to interpret and can
help in efficiently enhancing an assertion suite. We apply our
technique to an open source USB 2.0 design and show that our
coverage evaluation is efficient and scalable.

I . I n t r o d u c t i o n

Assertions represent desirable properties that a hardware
design should satisfy. Assertion based verification [1], which
involves the use of assertions in pre-Silicon formal verification
as well as simulation of Register Transfer Level (RTL) designs,
has steadily gained popularity in recent years [2]. Assertion
based verification checks if a design complies with a set of
properties.

Coverage achieved during verification is the single most
important parameter in determining the quality of verification
results. In conventional simulation based verification, coverage
of a set of tests1 or a test suite is measured using various
metrics such as code coverage, toggle coverage, FSM coverage
[3]. Code coverage measures the fraction of statements in the
RTL source code executed or covered while simulating the test
suite. Since code coverage can be easily related to the RTL
code and reporting it adds little overhead to simulation, it is
the most popular coverage metric.

In the context of formal verification, the fraction of design
states covered by an assertion is typically used as a coverage
metric [4]—[7]. Coverage computation is done through injec­
tion of mutations or faults in the RTL source code in [4],
[6]—[9], while [5] uses a tableau based method.

Although RTL code coverage is an important coverage
metric for verification, no such metric for assertions is widely
used by standard tools. In this work, we address this problem
by defining and computing code coverage metrics for an
assertion.

Assertions are primarily used in two fundamentally different
contexts viz. formal verification and simulation. Depending

'Here we refer to pre-silicon verification stimuli and not manufacturing
tests.

on the context, the definition of coverage of an assertion
needs to change. Since the simulation process is inherently
not exhaustive, we base the definition of coverage of an
assertion on the coverage of a test that triggers the assertion.
In formal verification context, we expand the definition to span
all possible paths in the design and consider all RTL statements
whose incorrect execution can cause an assertion to fail.

In [4]—[7], coverage of assertions is reported in terms of
design states covered. Coverage computation in this case
typically depend on the analysis of the state transition graph
of the design or its variants. However, in this work we do not
construct state transition graph from the RTL design, but in­
stead perform an analysis of the Verilog Hardware Description
Language (HDL) source code for the design considered as a
Verilog program as in [10], [11].

Coverage computation consists of an execution phase and
a coverage extraction phase. In the execution phase, assuming
the antecedent of the assertion holds, the CFG is used to
explore all possible executions of the RTL design over number
of cycles spanned by the assertion. During the CFG traver­
sal, important dependency information between statements is
stored in the form of triggers. These triggers are used in the
coverage extraction phase to find statements covered by the
assertion.

Our coverage definition and computation technique has
key merits over the state space based methods. Firstly, the
constructed CFG is linear in the size of RTL source code and
hence cost of building a CFG is far less than a state transition
graph. Therefore, any manipulations of the CFG are also more
scalable. Secondly, coverage reported in terms of lines of RTL
source code is closer to the designer and easier to interpret. On
the other hand, state space coverage is not easily translatable
to source code. Lastly, in practical verification environments,
bridging coverage holes in an assertion suite can be easier
when coverage information is available in the form of lines
of code. Since verification is a resource and time intensive
process, it is valuable to make coverage information easy to
understand and use. In addition, our technique can help in
quickly determining how modifications to an assertion suite
can affect coverage.

We evaluate our coverage computation technique using a
USB 2.0 protocol design from [12]. We inject mutations in the
covered lines and see if the assertion fails formal verification
in the mutated RTL design. These experiments help show that
the technique is scalable and efficient and correctly computes
coverage according to the proposed definition.

Recent approaches [13], [14] attempt to relate coverage
metrics from formal and simulation based verification. For
each of the simulation based coverage metrics, [13] presents
a corresponding metric suitable for assertions in formal verifi­
cation. To compute coverage of an assertion, statements in the
code are removed one at a time and the assertion is checked for
vacuity in the mutant design. Although a pioneering approach
to code coverage of assertions, it becomes intractable as size
of the RTL source code increases. In contrast, our technique
does not require mutating every line and since we analyze the
CFG, the technique naturally scales.

The main contributions of this paper are as follows.
• We propose two code coverage metrics, applicable in each

of the two use cases of assertions- simulation and formal
verification.

• We present an efficient technique to compute code cover­
age of assertions by statically analyzing the RTL source
code.

• Our technique presents coverage in terms of lines of
RTL code, which is easier to interpret for the designer
as compared to state space coverage.

• Our technique can also facilitate identification of cover­
age holes and consequently enhance the assertion suite.

II. V e r i l o g C o d e a s a C o n t r o l F l o w G r a p h

In order to facilitate analysis of the Verilog RTL source
code, we represent it as a Control Flow Graph (CFG). Each
statement in the code is mapped to a node in the CFG. A
Verilog RTL design consists of a set of concurrently running
a lw a y s processes and a s s i g n statements. The CFG for the
entire design consists of the union of CFGs for each of these
processes. The CFG thus completely captures the structure of
the RTL design. It is similar to a Process Dependence Graph
described in [10].

Each node in the CFG stores the number of the line in
the RTL code it corresponds to, as well as an expression for
the RTL statement at that line. For RTL statements spanning
multiple lines, the line number for each of them is recorded.

Nodes in the CFG are classified into assignment nodes and
decision nodes. An assignment node represents a blocking or
non-blocking assignment in the Verilog code. A decision node
represents conditional statements including i f and c a s e and
a lw a y s @ () statements.

Edges in the CFG represent the control flow between RTL
statements. Each assignment node has one outgoing edge
that points to the node corresponding to the next line in the
RTL code. Each decision node has two outgoing edges le f t
and right that point to the RTL statements executed if the
corresponding condition is true or false respectively.

CFG node n j is a successor of another node if there
exists a path from n 2 to n\ going through the le f t /r ig h t out­
going edges of intermediate nodes. We define two assignment
nodes n\ and 77,2 as coincident if there exists a path between n\
and n 2 only containing assignment nodes. Essentially during
execution, n \ must be executed given that n 2 is executed and
vice versa.

The CFG is a purely syntactic representation of the RTL
code. For effective coverage estimation of assertions, we need
to track dependencies between variables. The CFG is therefore
extended with additional data flow information. The resulting
extended CFG is similar to the System Dependence Graph
(SDG) for VHDL introduced in [10] where the additional
dependencies are represented as flow edges. However, the
data flow information we store is simpler and mainly targeted
towards the coverage estimation algorithm described later, in
Section IV.

We store a list of variables used in the RTL code, the
variables are classified into inputs, outputs, internals and
parameters. The dependence information for a variable v is
recorded in the form of initial assignment, decisions and
assignments. Initial assignment for v stores a pointer to the
CFG node where the variable is assigned its initial value
and is only valid when v is an internal or output variable.
Assignments for v are assignment nodes containing statements
that assign to v, while decisions for v are decision nodes
which use v in the corresponding condition in the RTL.

Example 1. Fig. 1 illustrates the terms defined above with
the help of an example Verilog RTL code. The CFG for
the module consists of the CFGs for the two processes viz.
the continuous assignment on line 1 and the always process
starting at line 2.

It can be seen that each statement in the RTL code is mapped
to a node in the CFG. Nodes corresponding to i f (r s t) ,
c a s e (s) and a lw a y s 0 (p o se d g e e l k) are decision
nodes. Each of these have corresponding en d nodes which
are not shown for clarity. The remaining statements map to
assignment nodes.

The data flow information in the form of variable depen­
dencies which augments the CFG is also shown in Fig. 1.
Again for clarity, only the information for internal variable
s is shown. The node corresponding to statement s <= 0
on line 4 forms initial assignment for variable s (dotted line).
Variable s is used in the decision corresponding to c a s e (s)
(dashed line) and assignments on lines 10 and 14 (solid lines).

III. D e f i n i n g C o d e C o v e r a g e o f a n A s s e r t i o n

In this section, we define the two code coverage metrics for
an assertion. We start by defining some relevant terms.

A proposition is a variable-value pair (v ,va l), where v is a
variable in the RTL source code. We consider assertions of the
form ant => con, where the antecedent ant is a conjunction of
propositions and con is a single proposition. We also consider
temporal assertions, which are assertions spanning multiple
clock cycles. Assertions are represented in Linear Temporal
Logic (LTL) [15] format.

An assertion is said to trigger when its antecedent becomes
true.

We call the set of lines reported as covered by a according
to our definition the result set of a.

Definition 1: (Simulation based coverage) A statement s in
the RTL source code is said to be covered by an assertion a if
(1) s must be executed for a to trigger, (2) s must be executed

1. assign z = z_r;
2. always @ (posedge elk)
3. if (rst) begin
4. s <= 0;
5. z_r <= 0;
6. end
7. else
8. case (s)
9. 0: begin
10. s <= 1;
11. z_r <= 0;
12. end
13. 1: begin
14. s <= 0;
15. z_r <= 1;
16. end
17. endcase

(a)

Fig. 1: (a) Example Verilog RTL code for a with inputs e lk , r s t , output z and internal variables s , z_r. (b) Control flow
graph for the example RTL design augmented with variable dependency information in the form of assignments (solid lines) and
decisions (dashed line) and initial assignment (dotted line) for variables. For clarity, nodes containing only keywords like b eg in ,
end etc. are not shown. Also dependency information is shown only for the internal variable s.

due to the triggering of a or (3) s corresponds to a CFG node
coincident with a node belonging to (1) or (2).

Note that we include only those statements which are always
executed, whenever a given assertion is triggered. As a result,
if a test triggers a, the result set of a is a subset of the set
of lines covered by the test. If multiple tests trigger the same
assertion a, the result set is an intersection of the sets of lines
covered by each of the tests.

For the RTL design from Example 1, consider the following
assertion:

a : ->rst A s => X (z) .

The assertion a triggers when the antecedent ->rstAs becomes
true.

It can be concluded from Fig. 1 that statements on lines 3,
8, 9 and 10 must be executed prior to variable s getting the
value 1. Apart from these, the statement 11: z _ r <= 0;
is also executed whenever line 10 is executed and therefore
included in the simulation based coverage.

Lines 3, 8, 13, 14, and 15 must be executed due to the
triggering of a.

Lastly, continuous assignments such as 1: a s s i g n z
= z _ r ; are always executed and therefore covered by a.
Fig. 2(a) shows the CFG nodes covered by a in this case.

In general, the RTL statements covered by a under this
definition can be classified into following categories, also
given by Definition 1:

1) Backward cone: This includes statements that must be
executed to make the antecedent of a true (Lines 3, 8,
9, 10 from Example 1).

2) Forward cone: This includes statements that get exe­
cuted due to the triggering of a (Lines 3, 8, 13, 14, 15
from Example 1).

3) Dependent cone: This includes statements that do not
belong to the above two categories; but get executed
whenever the statements belonging to the above cate­
gories are executed (Lines 1,11 from Example 1).

Definition 2: (Correctness based coverage) A statement s
in the RTL source code is said to be covered by assertion a
if an error in s can cause a to fail during formal verification.

In this context an error in an RTL statement is a logical
bug such as incorrect value assigned to a variable.

Since this definition depends on the correctness of the
assertion, the number of cycles spanned by the assertion as
well as the consequent are relevant to coverage.

In [13], a mutation based definition of code coverage of
an assertion is presented. However, the mutation considered
involves removing the RTL statement and coverage is com­
puted by checking if the assertion becomes vacuous in the
mutant RTL design. We consider logical bugs as mutations
and compute coverage through analysis of the CFG for the
RTL source code as described in Section IV.

Consider again the assertion a above for the RTL code in
Example 1. Lines 1, 3, 8, 13, and 15 are included in the result
set of a according to the correctness based definition.

Fig. 2(b) shows the CFG nodes covered by a according to
this definition.

Given that the antecedent -irst A s holds, an error in one of
these statements can make the consequent false and therefore
make the assertion fail. For example, if the antecedent holds
and either z _ r or z is not assigned to the correct value, it
will make the assertion fail.

A comparison between the result sets of a according to the
two definitions show that lines 9, 10 and 14 are included
in simulation based coverage but not in correctness based
coverage. Lines 9 and 10 fall in this category because they
are executed prior to the antecedent becoming true and hence
irrelevant to correctness of a. Line 14 which is included in
simulation based coverage also cannot affect the correctness
of a and therefore not included in correctness based coverage.

IV. C o r r e c t n e s s B a s e d C o v e r a g e C o m p u t a t i o n

This section describes our algorithm to extract the set of
RTL statements covered by a given assertion, according to the

Fig. 2: CFG nodes covered by a: (a) according to the simulation based coverage definition (b) according to the correctness based
coverage definition.

correctness based coverage definition. It consists of two phases
viz. the execution phase and coverage extraction phase.

Consider an assertion a : ant => con for RTL module M,
that spans k cycles. Let V be the set of variables in M. For a k
cycle assertion, con is of the form X X . . . X (k tim e s)(vout)
or X X . . . X (k tim es)(- 'V out), where vout & V. Our goal is
to find Ca, the result set of a according to the correctness
based coverage definition.

A. Execution phase

In this phase, we execute the RTL for k cycles starting with
the information in a (Procedure 1). In this process, we record
following information:

• We construct |jV'jl x k tables of values of variables in
k cycles. In particular the entry B[v,i] in a value table
B contains the value of variable v in cycle i. In other
words, a value table is a table of propositions (variable-
value pairs) in each of the k cycles. Multiple value tables
correspond to different possible values of conditions
corresponding to the decision nodes encountered during
execution that cannot be evaluated to true or false.

• Apart from value tables, we also record triggers for each
decision or assignment nodes that are visited. Triggers
for a decision node are assignment nodes that make the
decision true. Triggers for an assignment node include
other assignment nodes which affect it and decisions
nodes on which it depends.

When an assignment node n : (v < = rhs) is encountered
during execution, The value table B is updated with the value
rhs if it is a constant. If it is not a constant, assignments to
rhs encountered thus far are added to the set of triggers of
n. the decision nodes on which this assignment depends are
also added to the set of triggers of n. Essentially, these are
the decision nodes that lie on the path in the CFG from n to
a top level node.

When a decision node n is encountered, we attempt to
evaluate the condition in n using the values available in B.
If it evaluates to true, we update its triggers and take the

true branch in the CFG. If it evaluates to false, we take the
false branch without updating the triggers. If the decision is
unknown due to a lack of sufficient data in the value table,
we split B into and B right corresponding to the true
and false evaluations of n respectively. As a result, at the end
of execution phase, we obtain a tree of value tables rooted at
B t o p -

B. Coverage extraction phase

In the coverage extraction phase (Procedure 2), we look
at each leaf B of the tree of value tables in turn. If vout
is assigned in cycle k in B and its value agrees with con,
we have found a possible execution starting from ant that
makes con true. We then include RTL lines for all nodes
visited during this execution in Ca■ We use the triggers
recorded during the execution phase to traverse backwards
recursively and obtain such nodes. This is implemented by
the B ackw ar dT raver sal () procedure on line 7. Pseudocode
for that procedure is not shown due to space constraints.

V . C a s e S t u d y : A U S B 2 . 0 D e s i g n

We demonstrate our correctness based coverage computa­
tion technique on a USB 2.0 protocol design from [12]. We
consider the packet assembler (usbf_pa), the packet disas­
sembler (usbf_pd) and the protocol engine (usbf_pe) modules
which constitute the core of USB protocol. All experiments
were performed on a machine with 2.93 GHz Intel Core i3
with 4 GB RAM.

For each of the three modules considered from the USB
design, we manually wrote two assertions and formally ver­
ified them against the RTL design. For each assertion, we
extracted the set of lines covered according to the correctness
based definition. Covered lines containing assignments and i f
statements were mutated and the assertion was run through
the formal verifier again along with the mutated designs.
Mutations to assignments involved changing the right hand
side of the assignment to another valid value. Mutations in
the i f statements involved flipping bits in the condition.

Procedure 1 Construct a tree of value tables rooted at B top using
assertion a and record triggers
ConstructValueTable (G, a)
Input: Extended CFG for M (G), assertion a
Output: Tree of value tables rooted at B top, triggers recorded in G

1: In itia lize(B top, a) {Initialize root table of values (B top) using
a}

2: for cycle = 1 —>■ k do
3: for all Leaf tables B in tree rooted at B top do
4: for all Processes P in M do
5: n 4— top(P)
6: while n ^ N U LL do
7: if IsAssignm entN ode(n) then
8: Let n : (v < = rh s)
9: if I sC onstant{rhs) then

10: {Update the value table}
11: B[v, cycle] 4— rhs
12: end if
13: UpdateTriggers{n)
14: n 4— le ft{n)
15: else
16: {Decision node}
17: if EvaluateDecision(n, B) = true then
18: UpdateTriggers{n)
19: n 4— le ft(n)
20: else if EvaluateDecision(n, B) = fa lse then
21: n 4— right(n)

22: else
23: {Unknown decision}
24: (B i ef t , B r i g h t) 4 - split(B)
25: end if
26: end if
27: end while
28: end for
29: end for
30: end for

Table I summarizes the results for all assertions considered
in this experiment. We show the number of lines covered
and number of mutations injected and detected for each
assertion. Comments, blank lines and lines with variable/port
declarations etc are not included while counting covered as
well as total lines of code.

Firstly, it can be seen that only about 5% of total lines were
reported as covered by each assertion, which shows that our
technique can effectively find the lines truly relevant to the
correctness of an assertion. Secondly, mutations injected in
almost all the covered lines made the corresponding assertion
fail formal verification. The exceptions in case of a2 and a4
can be attributed to masking of the mutation as explained later
in detail for 02.

We now describe the results for assertion a2 for the USB
packet assembler module in further detail. Fig. 3 shows the
relevant lines in the RTL code for the module, where lines
covered by 0,2 are underlined. The lines shown constitute a
state machine with 5 states: IDLE, WAIT, DATA, CRC1,
CRC2.

1. always @(posedge elk)
2. if(!rst) state <= IDLE;
3. else______ state <= next state:

4. always l5)(state or send data or tx ready or
tx valid r or send zero length r)

5. begin
6. //assignments
7. case(state)
8. //other cases: IDLE,
9. CRC2:
10. begin
11. //assignments
12. ifttx ready)
13. begin
14. next
15. end
16. else
17. begin
18. last
19. end
20. end
21. endcase

Procedure 2 Extract correctness based coverage from value table
tree and triggers
ExtractCoverage (G , B top, a)
Input: Extended CFG for M (G), tree of value tables rooted at B top,

assertion a : ant con
Output: Set of lines Ca covered by a according to correctness based

coverage definition
1: Ca 4— </>

2: Let p : (vout,va l) 4- con
3: for all Leaf tables B in tree rooted at B top do
4: if B[vout,k] = val then
5: {Value of vout exists and matches the consequent of a}
6: for all Triggers t of p do
7: Ca 4— Ca U BackwardTraversalft)
8: end for
9: end if

10: end for

Fig. 3: Lines of RTL code from USB packet assembler module
relevant to assertion 02. Lines reported as covered by 02 by our
technique are underlined.

Each covered line containing an assignment or i f condition
was mutated one at a time, as shown in Table II.

We found that 0 2 failed formal verification in RTL de­
signs with mutations in lines 3, 12 and 14. For instance,
consider the mutation to the assignment in line 3 (state
<= next_state). In this case the value of next_state
variable was IDLE which should have been the value of
state in the next cycle. However, since the assignment in
line 3 was mutated, state did not get the its correct value
which made 02 fail formal verification in the mutated design.

Mutation in line 2 shown in Table II did not cause a 2 to
fail. In this case, next_state had the value IDLE which
is also the value of state on reset. Therefore state was
assigned value IDLE in both branches of the if statement.

Module Number
of lines

Assertions Covered
lines

Detected mutations/
mutated lines

Packet
assembler

182 a\ : rst A send_zero_length r A send data A (state = ID L E) =>• X X (s ta te —
D A T A)

14 5/5

a 2 : rs t A tx jready A (state = C R C 2) => X (state = ID L E) 11 3/4
Packet disas­
sembler

183 0 3 : rs t A ~^pid_ACK A —ipid_TO K E N A pid_D A TA A rx_valid A rx_active A
-irx je rr A state = A C T IV E => X (sta te = D A T A)

16 6/6

0 4 : rs t A - irx_active A (state = D A T A) => X (state = ID L E) 12 4/5
Protocol en­
gine

415 0 5 : rs t A - imatch A m atch jr A ->ep_disabled A - 1 pid_SO F A ~^ep_stall A -ibufOjna A
- ib u fl jn a A - 1 no_buf0 _dma A -*pid_PING A ~^IN_ep A - 1 C T R L jep A O U Tjep A
(state = ID L E) => X (sta te = OUT)

30 10/10

0 6 : rstA -im atchA -itx_data_toA -'crcl6 _err/\- 'abortA rx_data_doneA txfr iso A
(state = OUT) => X (state = U P D A T E W)

22 7/7

TABLE I: Summary of mutation based experiments to evaluate correctness based coverage technique. For each module, number
of lines of actual code and two assertions written are shown. Comments, blank lines and lines with variable/port declarations etc
are not included in actual code. For each assertion, number of lines covered and number of mutations detected/total mutations are
shown.

In other words, the mutation was masked by the logic in the
RTL design and hence had no effect on the correctness of a 2.

Line Original RTL line Mutated line
2 if (!rst) if(rst)
3 state <= next_state state <= WAIT
12 if(tx_ready) i f (!tx_ready)
14 next_state = IDLE next_state = CRC2

TABLE II: Mutations injected in lines covered by assertion a2
for the USB packet assembler module. Only assignments and i f
conditions are mutated.

We now show how runtime and memory cost of our
algorithm depend on the size of the RTL source code and the
number of cycles spanned by the assertion. Table III shows the
time and memory costs for the three USB modules considered.
The protocol engine module, being the largest one, requires
the most resources.

In Table IV, we show the variation of runtime and memory
requirements with length of the assertion under consideration.
It can be seen that although runtime of our technique does
not change considerably with number of cycles spanned by
an assertion, memory increase is significant. This can be
attributed to the increasing size of value tables as number of
cycles increase.

Module Size Time (ms) Memory (MB)
usbf_pa 182 16 1.31
usbf_pd 183 22 1.63
usbf_pe 415 46 2.79

TABLE III: Time and memory costs to compute coverage of an
assertion for the three USB modules. The values are averaged
over 5 assertions spanning 1-5 cycles.

Assertion
length
(cycles)

Time
(ms)

Memory
(MB)

1 44 1.22
2 45 1.74
3 47 2.62
4 46 3.59
5 48 4.75

TABLE IV: Increase in time and memory costs to compute
coverage of an assertion USB protocol engine module with
increasing number of cycles spanned by assertion.

VI. Conclusion

In this work, we propose code coverage metrics for asser­
tions, both in the context of formal verification and simulation.
Code coverage, being a widely used coverage metric for
test suite coverage, can evaluate the quality of assertions
in practical verification environments. We also present an
algorithm to compute correctness based coverage which is
entirely based on static analysis of RTL source code.

References

[1] H. D. Foster, A. C. Krolnik, and D. J. Lacey, Assertion-Based Design,
2010.

[2] A. Gupta, “Assertion-based verification turns the corner,” IEEE Des.
Test, vol. 19, July 2002.

[3] S. Tasiran and K. Keutzer, “Coverage metrics for functional validation of
hardware designs,” IEEE Design and Test o f Computers, vol. 18, 2001.

[4] Y. Hoskote, T. Kam, R-H. Ho, and X. Zhao, “Coverage estimation for
symbolic model checking,” in Proc. o f DAC ’99.

[5] S. Katz, O. Grumberg, and D. Geist, ““Have I written enough proper­
ties?” - a method of comparison between specification and implemen­
tation,” in Proc. o f CHARME ’99.

[6] H. Chockler, O. Kupferman, and M. Y. Vardi, “Coverage metrics for
temporal logic model checking,” Form. Methods Syst. Des., vol. 28,
May 2006.

[7] H. Chockler, O. Kupferman, R. P. Kurshan, and M. Y. Vardi, “A practical
approach to coverage in model checking,” in Proc. o f CAV ’01.

[8] G. Fey and R. Drechsler, “Sat-based calculation of source code coverage
for bmc,” in GI/ITG/GMM-Workshop, 2006.

[9] A. Fedeli, F. Fummi, and G. Pravadelli, “Properties incompleteness
evaluation by functional verification,” IEEE Trans. Comput., vol. 56,
April 2007.

[10] E. M. Clarke, M. Fujita, S. P. Rajan, T. W. Reps, S. Shankar, and
T. Teitelbaum, “Program slicing for vhdl,” Int. J. Softw. Tools Technol.
Transf, vol. 4, no. 1, 2002.

[11] S. Vasudevan, E. A. Emerson, and J. A. Abraham, “Improved verification
of hardware designs through antecedent conditioned slicing,” Int. J.
Softw. Tools Technol. Transf, vol. 9, February 2007.

[12] “Opencores,” http://www.opencores.org.
[13] H. Chockler, O. Kupferman, and M. Vardi, “Coverage metrics for formal

verification,” Int. J. Softw. Tools Technol. Transf, vol. 8, August 2006.
[14] A. Hazra, A. Banerjee, S. Mitra, P. Dasgupta, P. P. Chakrabarti, and C. R.

Mohan, “Cohesive coverage management for simulation and formal
property verification,” in Proc. o f ISVLSI ’08.

[15] A. Pnueli, “The temporal logic of programs,” Foundations o f Computer
Science, Annual IEEE Symposium on, vol. 0, 1977.

http://www.opencores.org

