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Abstract

Partially occluded faces are common in many applica
tions o f face recognition. While algorithms based on sparse 
representation have demonstrated promising results, they 
achieve their best performance on occlusions that are not 
spatially correlated (i.e. random pixel corruption). We show 
that such sparsity-based algorithms can be significantly im
proved by harnessing prior knowledge about the pixel error 
distribution. We show how a Markov Random Field model 
for spatial continuity o f the occlusion can be integrated into 
the computation o f a sparse representation o f the test im
age with respect to the training images. Our algorithm ef
ficiently and reliably identifies the corrupted regions and 
excludes them from the sparse representation. Extensive ex
periments on both laboratory• and real-world datasets show 
that our algorithm tolerates much larger fractions and vari
eties o f occlusion than current state-of-the-art algorithms.

1. Introduction

Occlusion is a common difficulty encountered in appli
cations of automatic face recognition. Sources of occlu
sion include apparel such as eyeglasses, sunglasses, hats, 
or scarves, as well as objects such as cell phones placed 
m front of the face. Moreover, even in the absence of 
an occluding object, violations of an assumed model for 
lace appearance may act like occlusions: e.g., shadows due 
to extreme illumination violate the assumption of a low
dimensional linear illumination model [2]. Robustness to 
exclusion is therefore essential to practical face recognition.

If the face image is partially occluded, popular recog
nition algorithms based on holistic features such as Eigen- 
faces and Fisherfaces [22, 5] are no longer applicable, since 
all of the extracted features will be corrupted. If the spatial 
support of the occlusion can be reliably determined (e.g., 
using features such as color [JO, i 1]), the occluded region 
can be discarded and recognition can proceed on the re
maining part of the image. However, if the spatial sup
port of the occlusion is initially unknown, one traditional

approach is to rely on spatially localized features such as 
local image patches [18,20, 1], or randomly sampled pixels 
[15, 21]. Data-dependent spatially localized bases can also 
be computed using techniques such as independent compo
nent analysis (ICA) or localized nonnegative matrix factor
ization (LNMF) [12, 16]. Clearly, such local features are 
less likely to be corrupted by partial occlusion than holistic 
features. However, as observed in [25], operating on a small 
set of local features could discard useful redundant informa
tion in the test image, which is essential for detecting and 
correcting gross errors.

To avoid losing useful information with local feature ex
traction, [25] casts face recognition as the problem of find
ing a sparse representation of the entire test image in terms 
of the training images, except for a sparse portion of the 
image that might be corrupted due to occlusion. The n t 
frontal1 training images of each subject i under varying illu
minations are stacked as columns of a matrix A* € R mxni. 
Concatenating the training images of all K  subjects gives 
a large matrix A =  [Ai, A2, . . . ,  A k ] € R mxn, (n — 
' f f  i rii). [25] then represents the given test image y  e  R m 
as a sparse linear combination A x  of all images in the data 
set, plus a sparse error e due to occlusion: y  = A x  +  e. 
The sparse coefficients x  and sparse error e are recovered 
by solving the U-norm minimization problem

min ||x ||i +  ||e ||i s.t. y  — A x  +  e. (1)

This approach has demonstrated good potential in handling 
occlusion, especially when the dimension of the image sig
nal is high [24]. Experiments in [25] showed that the al
gorithm can tolerate up to 70% random pixel corruption or 
40% random block occlusion while still maintaining recog
nition rates higher than 90% on the Yale B database.

However, in experiments on face images the f 1- 
minimization algorithm is not nearly as robust to contiguous 
occlusion as it is to random pixel corruption. On the AR 
database sunglasses and scarf occlusions it achieves only

1 In [25], both the training and test data are assumed to be well- 
registered frontal images. We also make this assumption, in order to isolate 
the effect of occlusion.
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87% and 59.5% respectively. This algorithm does not ex
ploit any prior information about the corruption or occlu
sion (it is invariant to pixel ordering). To try to improve 
performance for these cases, [25] proposed to partition the 
hnage into blocks and compute an independent sparse rep
resentation for each block. This significantly improves the 
recognition rates (up to 97.5% and 93.5% respectively). 
However, such fixed partition schemes only work for lim
ited types of occlusion, and are less likely to scale well 
to large databases, since they essentially treat small image 
blocks independently.

In this paper, we propose a more principled and general 
method for face recognition with contiguous occlusion. We 
do not assume any explicit prior knowledge about the loca
tion, size, shape, color, or number of the occluded regions; 
the only prior information we have about the occlusion is 
that the corrupted pixels are likely to be adjacent to each 
other in the image plane. The goal of this paper is to show 
how to effectively incorporate this prior information into 
the sparse representation framework, significantly improv
ing its robustness to all types of realistic occlusions.

2. Motivation for imposing local spatial conti
nuity for sparse error correction

Before introducing a model for the contiguous occlusion 
and incorporating it into a solution for face recognition, let 
us first justify why imposing spatial continuity could poten
tially help with finding the sparse errors (in our case, the oc
cluded pixels). As discussed above, face recogntion can be 
cast as a problem of recovering an input signal x  e  R n from 
corrupted measurements y — A x  +  e, where A e  Rmxn 
with m  > n. Let F  be a matrix whoose rows span the left 
nullspace of A 2. Applying F  to both sides of the measure
ment equation gives

y  = F y  =  F (A x  +  e) =  Fe.
So the recovery problem is reduced to the problem of re
constructing a sparse error vector e from the observation 
Fe. While this problem is very hard in general, in many 
situations solving the convex relaxation

min || v || i s.t. F v — y  — F e  
exactly recovers e.

Candes et. al. [6] have characterized the recoverability 
of the sparse solution to the above problem in terms of the 
restricted isometry property (RIP) of the matrix F. The k- 
restricted isometry constant Sk € R is defined as the small
est quantity such that for any A-sparse x,

( l - i * ) W 2 <||F*||2 < ( l + 5*)N|2- (2)
A typical result states C1-minimization is guaranteed to re
cover any A-sparse x  whenever the matrix F  satisfies <52k <

-rank(F) =  m  — rank(A) and FA =  0

1. Notice that this argument treats every possible A -sparse 
supports equally. However, in many applications, we have 
prior infonnation about the distribution of the supports. To 
extend the theory to such stmctured sparsity, [8] introduced 
the (A:, e)-probabilistic RIP (PRIP). A matrix F  is said to 
satisfy the PRIP if there exists a constant Sk > 0 such that 
for a A>sparse signal x  whose support is a considered as a 
random variable, (2 )  holds with probability > 1 — e.

Based on results from Compressed Sensing theory, for 
a randomly chosen matrix to have RIP of order k requires 
at least m  =  0(k \og(n /k ) )  measurements [{>]. However, 
it has been shown that a matrix can have PRIP of order A- 
with only m  — 0 { k  +  log(F)) measurements, where D  
is the cardinality of the smallest set of supports of size k 
for which the probability that the support of a A>sparse sig
nal x  does not belong to the set is less than e [8]. Then 
for distributions that allow a small D, the required number 
of measurements essentially grows linearly in k, much less 
than the general case. The distribution of contiguous sup
ports precisely falls into this categoryL Thus, we should ex
pect to recover sparse errors with such supports from much 
fewer measurements. Or equivalently, from a fixed number 
measurements, we should expect to correct a larger fraction 
of errors from F-minimization //'we know how to properly 
harness infonnation about the distribution.

3. Using a Markov random field assumption to 
impose local spatial continuity of the error 
support

Consider the error vector e € R m incurred by some con
tiguous occlusion. Its nonzero entries should be both sparse 
and spatially continuous. Given an error vector e e  R m, 
we let s e  {—1, l}m denote its support vector. That is, 
s[i] =  —1 when e [i\ — 0 and s[z] — 1 when e[ i \  ^  0. The 
image domain can be considered as a graph G — (V, F), 
where V  — ( 1 , . . . ,  m} denotes the set of m pixels and E  
denotes the edges connecting neighboring pixels.

The spatial continuity among the corrupted pixels (and 
also the uncorrupted pixels as well) can then be modeled by 
a Markov random field (MRF). We adopt the classical I sing 
model for the probability mass function of error supports s:

p ( s ) oc exp { E Ays[/]s[j] +  ^ 2  A<s[t] J . (3)
(i , j ) E E  i £ Y

Here, \ j  controls the interaction between support values 
s[i] and s\j] on neighboring pixels and A* indicates any 
prior information about the supports. In this paper, we fix 
A > 0 and let

Aij =  A V (i, j )  e  F , and A* =  0 V i.
3Simple counting arguments similar to that in [S] indicate that D  can 

be upper-bounded by a polynomial o f the dimension m .



p(e[t]\s[i\=-l)
1

p(e[j]s[/]=l)

________ i_ L̂*J *

Figure 1. Approximation to the likelihood of e  given the error sup
port. Left: p (e |s  =  —1) (unoccluded pixels). Right: p (e |s  =  1) 
(occluded pixels).

The first condition means that each pair of neighboring pix
els exert the same influence on each other, while the second 
condition indicates that we do not make any additional prior 
assumptions about the locations of the erroneous pixels.

The Ising model makes the fundamental assumption that 
the pixel values are independent of each other given the sup
port. Hence we can write down the joint probability density 
function of the error vector e in exponential form as:

p(e ,s )  =  p(a)p(e |s) =  p(s) JJp(e[*]|s[*])
i

oc exp { £  A.[«1»W + £  logp(e[i] | «[*])}.
{ i , j ) £ E  i e v

optimization problem:

s =  arg max p(s , e) s.t. y  =  A kx k +  e. (4)
x * .,e ,s

This is a difficult nonconvex optimization problem in many 
variables s :e , x k. We will locally optimize this objective 
function by iterating between estimating the support s and 
estimating the regressor x k, with the other fixed.

1. Estimating Linear Regressor x k with Sparsity.
Given an initial estimate of the error support s,4 we sim
ply exclude that part, and use the rest of the image to esti
mate the linear regressor x k. Let A*k and y* denote A k and 
yk with the rows marked as occlusion (s =  -1 )  removed. 
If estimate of s  was exactly correct, then we would have 
y * — A*kx k for some x k, and could simply estimate x k 
by linear regression. However, it is more reasonable to as
sume that the intermediate estimate of the support s could 
be wrong in a subset of its entries, and some pixels in y* 
might be still corrupted. If 5 is a reasonable guess, however, 
these violations will be relatively few and we can estimate 
x k via the following convex program:

We normalize the range of error values to [0,1], and ap
proximate the log-likelihood function logp(e[i] \ s [*]) as 
follows:

logp(e[i] | s[i\ = - 1 )  =  

logp(e[i] | s[i] =  1) =

f  - l o g T i f |e [ i ] |< r ,  
\  log r  if |e[*]| > r,

f 0 if |e[*]| > r ,
[ lo g r if |e[4| <  r.

This corresponds to the piecewise-constant likelihood func
tion p(e  | s) pictured in Figure 1. While the precise form 
of the approximation is not essential to the success of the 
method, in this model r  effectively acts as a threshold for 
considering pixels as errors, subject to the spatial continu
ity prior. The constant r  should be set so that it is larger 
than the noise level and within-class variability of the non- 
occluded pixels, but smaller than the magnitude of the er
rors due to occlusion. In Section 3.2 we will see how this 
threshold can be chosen adaptively without prior knowledge 
of the statistics of the training and test images.

3.1. Error correction with both MRF and sparsity
Now consider an image y  of subject-A:. Without occlu

sion, it can be well-approximated as a linear combination of 
training images of the same subject: y  = A kx k. If, how
ever, a portion of the image is occluded, we need to discard 
that portion in order for the same linear equation to hold. 
Thus, a natural goal is to identify the most likely portion on 
which y  = A kx k holds for some x k. In terms of the er
ror model introduced above, we want to solve the following

( x k, e*) =  argm in ||e*||i s.t. y* =  A*kx  +  e*, x  > 0.
(5)

That is, we look for a regressor x k such that the G-norm 
of the error e* is minimized. The complete error vector 
e € Mm can then be estimated as e =  y  — A x k.

2. Estimating Error Support s  with MRF. Given an ini
tial estimate of the regressor x k and corresponding estimate 
of the error vector e =  y  — A x k, we may re-estimate the 
support vector s  as the one that maximizes the log likeli
hood logp(e, s ):

s  =  arg max V  As[-<)s|j] +  V  logp(e[>:]|s[!]). (6)
iev

This is an integer programming problem, but due to the spe
cial structure of the Ising model, it can be solved exactly in 
linear time, using graph cuts [13].

Empirically, we observe that the above iteration between 
steps 1. and 2. converges in about five or six iterations. 
Once we have obtained final estimates of the error support 
s, error values e, and regressors x,  we still need to iden
tify the subject based on some measure of goodness-of-fit 
within the unoccluded region. Here, we choose to assign 
the test image to the class that minimizes the f 1-error in that 
region, divided by the square of the number of unoccluded 
pixels:

identi‘y(y) =  argmin

4 We initialize the algorithm with empty error support (s =  — 1).



Here, squaring encourages the algorithm to choose solu
tions with as few occluded pixels as possible.

We summarize the overall procedure as Algorithm 1 be
low. Since this algorithm operates on each subject’s images 
individually, the overall complexity is linear in the number 
of subjects. Moreover, with fast implementations of both 
C1 -minimization and graph cuts,- the computation time per 
subject is fairly small. On a Dual-Core Intel Xeon 2.66GHz 
computer, with 19 training images of resolution 96 x 84 per 
subject, our C++ implementation requires approximately 
0.3 seconds per subject.

Algorithm 1 (Sparse Error Correction with MRF) 
l: Input: A matrix of normalized training samples A  =

[A\, A 2, ■ . ■, A k \ € R mxn for K  classes, a test sample 
y  € R™.

2: for each subject k do
3: Initialize the error support s[°- =  — 1TO.
4: repeat
5: A t  = =  - 1 ,  :], y* =  w [4 '-1) =  -1 );
6: Solve the convex program

(xk,e*)  =  argmin ||e*||i
s.t. y* = A*kx  +  e*, x  > 0;

7: e k + - y - A kx k ;
8: Update error support via graph cuts:

4 °  = argmax ^ A s[i]s [j]- ( -^ lo g  (p(et [i]|s|i]));
♦€<- W>W £! W

9: until maximum iterations or convergence.
10: Compute the normalized error

r k{y] IIy* -A*kX k h

11: end for
12: Output: identity(y) — argm ink r k(y).

3.2. Choosing r
The parameter r  in the Ising model indicates the level 

of error we would accept before considering an entry of the 
image as occluded. We normalize the error value to be in 
the range |0 .1], so r  should also be chosen in [0,1], This is 
1101 an easy task for at least three reasons. First, it is sensi
tive to the choice of the other parameter of MRF, A. Figure 
2 shows the estimate of error supports for a face image with 
scarf occlusion versus different values of r. With A =  3, 
we can set r  =  0.05 and obtain almost perfect identifica
tion of occluded area, but this is not true if A =  1; in this 
case we obtain many false positives. Second, the choice of 
t  depends on the level of noise and within-class variation 
in the training and testing data. Third, the initial solution

5Our implementation of A -minimization is a custom interior point 
method, while the graph cuts are computed with package of [5, 13, 4], 
downloaded from h t t p : ' www. c s d . u v o . e a /  ' o l g a / c o d e  . htrnl.

Figure 3. Number of entries estimated as unoccluded versus r  for 
the sequence of images in the first row in figure 2. The o indicates 
the point at which the algorithm detects a sudden drop and stops 
decreasing r.

to the C1 -minimization problem may be somewhat unreli
able in the presence of large amounts of occlusion. In this 
case, starting with a small r  will result in many pixels being 
falsely labelled as occluded early in the iteration.

We therefore choose r  adptively, starting with a rela
tively large value, reducing it by a constant step size at each 
iteration. We base our stopping criterion on the observation 
that for many test images, there is a range of r  over which 
the estimate of s is stable. For example, in Figure 2, any 
r  between 0.2 and 0.05 is good; in the second row of Fig
ure 2, any r  between 0.17 and 0.11 is good. As shown in 
Figure 2(g) and Figure 3, this stable range is followed by a 
sudden drop in the number of pixels considered unoccluded 
when r  falls below a certain critical value. For our algo
rithm, we start with t\ = 0.17. At the ¿th iteration, we set 
Ti = r,:_i -0 .03 . Let JV* denote the number of good entries 
at 7th iteration. We stop decreasing r  when N t < k x Ap-i, 
i.e. when there is a sudden increase in occluded pixels, k is 
an empirically chosen constant, which we set to 0.4 in our 
experiments. After fixing r , we allow the algorithm to con
tinue iterating between estimating x  and estimating s  until 
convergence.

3.3. Effect of A

The parameter A in the Markov random field model con
trols the strength of mutual interaction between adjacent 
pixels. Hence, it should correspond to the smoothness level 
of error supports for each individual test image. Note that 
for A =  0, maximizing the probability of the Ising model re
duces to simply thresholding based on r , and our algorithm 
becomes similar in spirit to reweighted l 1 -minimization [7], 
but with a nonlinear reweighting step that more agressively 
discounts occluded pixels.

We will see that even simple thresholding works quite 
well in cases where the occlusion the is uncorrelated with 
the face and hence relatively easy to distinguish. This is 
especially true when the image resolution (i.e., the number 
of measurements) is high. With fewer measurements, how
ever, enforcing prior information about the spatial continu-



Figure 2. Effect of r . Left: test 
A =  3. Second row: A =  1. (a) r

image from AR database, occluded by scarf. Right: estimated error supports for varying r. First row: 
=  0.2, (b) t  =  0.17, (c) t  =  0.14. (d) r  =  0.11. (e) r  =  0.08. (f) r  =  0.05, (g) r  =  0.02.

(a) (b) (c) (d)
Figure 4. Recovering a face image in Yale database from synthetic 
occlusion with A =  3. Top: first iteration. Middle: second itera
tion. Bottom: final result, (a) Test image with 60% occlusion, (b) 
Estimated error e. (c) Error support estimated by graph cuts, (d) 
Reconstruction result.

ity of the error supports by properly choosing A is essential.

4. Simulations and Experiments

In this section, we conduct experiments using three 
publicly available databases. Using the Extended Yale B 
database [9, 14], we will investigate the breakdown point of 
our algorithm under varying levels of (synthetic) contigu
ous occlusion. In this setting, the algorithm maintains high 
recognition rates up to 80% occlusion. Then with AR Face 
database [19], we will show that this good performance car
ries over to more realistic occlusions such as sunglasses and 
scarves, and furthermore, that by exploiting knowledge of 
the spatial distribution of the occlusion, one can recover an 
occluded face from far fewer measurements (i.e., lower res
olution images). Finally, we test algorithm with a database 
obtained from the authors of [23], which contains multiple 
categories of occluded test images taken under realistic il
lumination conditions.

Recognition with synthetic occlusion. For this experi
ment, we use the Extend Yale B database to test the robust
ness of our algorithm to synthetic occlusion. Among 1238 
frontal face images of 38 subjects under varying laboratory 
lighting conditions in Subset 1, 2 and 3 of Extended Yale B 
database, we choose four illuminations from Subset 1 (mild

illuminations), two from Subset 2 (moderate illuminations) 
and two from Subset 3 (extreme illumiations) for testing and 
the rest for training. The total numbers of images in training 
and testing sets"are 935 and 303, respectively. The images 
are cropped to 96 x 84 pixels.

To compare our method with the algorithm in [25], we 
simulate various levels of contiguous occlusion from 10% 
to 90% by replacing a random located block of a face image 
with the image of a baboon. Figure 4(a) shows an example 
of a 60% occluded face image. Figure 4(c) illustrates the 
iterative estimates of the error supports with A =  3. For this 
test image, convergence occurs after six iterations.

We compare our result to the algorithm in [25] as well as 
other baseline linear projection based algorithms, such as 
Nearest Neighbor (NN), Nearest Subspace (NS) and Lin
ear Discriminant Analysis (LDA). Since these algorithms 
do not consider the special structure of the error supports, 
they are not expected to work well for high levels of occlu
sion. For this experiment, we choose A =  3 for our algo
rithm. The results for our algorithm are listed in Table 1. We 
compare the results of all five algorithms in Figure 5(a). Up 
to 70% occlusion, our algorithm performs almost perfectly, 
while the recognition rates for all the other algorithms fall 
below 50%. Even with 80% occlusion, only 11.5% of im
ages are misclassified. This is quite surprising because to 
the human eye, a face image is barely recognizable if the 
block occlusion is more than 60%.

Figure 5. Recognition with synthetic occlusion on the Yale dataset, 
(a) The recognition rate for various algorithms with 10% to 90% 
occlusion. Our algorithm remains perfect at 70% occlusion while 
all the other algorithms drop below 50%. (b) Results of our algo
rithm with different choices of A.



Percent occluded 10% 20% 30% 40% 50% 60% 70% 80% 90%
Recognition rate 100% 100% 100% 100% 100% 100% 99.7% 88.5% 40.3%

Table 1. Recognition rates on the Extended Yale B dataset with varying level of synthetic occlusion ( A =  3).

In Figure 5(b) we show the results of our algorithm for 
A =  0 ,1 ,2 ,3 ,5 . All the choices work upto 80% occlusion 
with above 80% recognition rates. However, compared to 
setting A =  0 and ignoring the spatial structure of the er
ror, enforcing continuity by setting A =  3 results in an 8% 
increase in recognition rate for the 80% occlusion case.

Finally, instead of using a single block as occlusion, we 
test our algorithm with occlusion by multiple small blocks. 
We consider three block sizes, 8 x 8,16 x 16, and 32 x 32. 
For each fixed block size, we add blocks to random selected 
locations of the original face images until the total amount 
of coverage achieves a desired occlusion level. Example 
test images for each block size are shown in Figure 6. Table 
2 reports the recognition rate as a function of block size and 
A. Notice that A =  2 provides uniformly good results (> 
92% recognition for all cases). As expected, for small A the 
recognition performance decreases with increasing spatial 
continuity (block size), while for large A the recognition 
performance improves as the block size increases.

(a) (b) (c)
Figure 6. Test images with multiple-block occlusion, (a) 32 x  32 
blocks, (b) 16 x  16 blocks, (c) 8 x 8  blocks. All images are 80% 
occluded.

Block Size A =  0 A =  1 A =  2 A =  3

inII«<

32 x  32 89.4 88.8 92.7 86.5 68.6
16 x 16 92.1 93.7 93.7 85.8 68.65

8 x 8 90.4 94.4 96.0 85.2 29.7
Table 2. Recognition rates with 80% occlusion by multiple blocks. 

Recognition with disguises. We next test our algorithm 
on real disguises using a subset of the AR Face Database. 
The training set consists 799 unoccluded face images of 
100 subjects (about 8 per subject) with varying facial ex
pression. We consider two test sets of 200 images each. 
The first test set contains images of subjects wearing sun
glasses, which cover about 30% of the images. The second 
set contains images of subjects wearing a scarf, which cov
ers roughly half of the image.

An example from the scarf set is shown in Figure 7(a). 
Figure 7(c) illustrates the iterative estimates of the error 
supports with A =  3. The algorithm converges after six 
iterations and the occluded part is correctly identified. Note 
that this is a harder case than the synthetic occlusion. At 
the first iteration, one can tell from the eye area that the re
construction result is biased by the occlusion. By gradually 
locating the scarf part with a smoothness constraint, the al
gorithm is able to give a much better reconstruction based 
on the unoccluded part after several iterations.

Figure 7. Recovering a face image with scarf occlusion. Top: first 
iteration. Middle: second iteration. Bottom: final result, (a) Test 
image, (b) Estimated error, (c) Estimated error support, (d) Re
construction result.

We consider the effect of varying A and image resolution: 
in addition to testing on the full size images (83 x 60), we 
reduce the image size to 50% (42 x 30), 25% (21 x 15) 
and 15% (13 x 9). Figure 8(a) plots the recognition rates 
for scarf images as a function of resolution, for each A € 
{0,1,2,3}. For the full size images, we achieve 95.0%, 
97.0%, 97.0% and 97.5% recognition rates6 with A =0, 1, 
2, and 3, respectively, about 4% higher than the result of 
[25] and on par with [ 10]. Notice that the recognition rate 
is relatively insensitive to the choice of A in the case.

In fact, for high-resolution images, the data still contains 
enough information to efficiently determine the identity of 
the subject without exploiting prior knowledge about the 
location of the occlusion. However, as the dimension de
creases, the use of prior knowledge of the error supports be
comes much more important. As shown in Figure 8(a), with 
13 x 9 images the best recognition rate, 88%, is achieved 
with A =  2. As expected, the performance degrades by 
34% when the A is too small (A =  0) or by 11.5% when the 
A is too large (A =  3).

Figure 8 (b) plots the results for images occluded by sun
glasses. With full 83 x 60 images, the recognition rates are 
99.5%, 100%, 99.0%, 99.0% with A =0, 1, 2, and 3 respec
tively, compared to 93.5% for [25]. With severely down- 
sampled (13 x 9) images, we again achieved the best results 
(89.5%) by setting A =  2 and exploiting spatial continuity 
of the error.
Comparison with morphological filtering. Figure 8(a) 
also compares our algorithm to a simple alternative based

6Because the dark scarf occludes as much as half of the image, for cer
tain subjects not pictured in the test image, there is a degenerate solution 
that considers the scarf as the correct signal (with very small magnitude, 
Xk ~  0 ) and the remainder of the face as error. For this dataset we penal
ize such solutions by dividing the normalized error by llcb J |  i .



Figure 8. Recognition with disguises, (a) Scarf occlusion, (b) Sun
glasses occlusion. In both cases. A =  2 outperforms other choices 
of A when the image resolution is low.

0 0 2 0 4 0 6 0 8 1
False- Positive Rate

(a) (b)
Figure 9. ROC curve for outlier rejection, (a) 60% occlusion, (b) 
80% occlusion. Our algorithm (red curve) is perfect for 60% oc
clusion. and is the only algorithm significantly better than chance 
with 80% occlusion.

on morphological filtering. The idea is to replace the MRF 
and graph cuts step of our algorithm with a step that thresh
olds the error and then applies open and close operations to 
the binary error support map [! 7]. These operations supress 
small, disconnected regions of error. Figure 8(a) contains 
variants of this morphological alternative: one based on a 
fixed threshold r  =  0.2 and one based on a similar adaptive 
thresholding strategy that starts at r  =  0.2 and linearly de
creases it by 0.03 at each iteration. We started with a disk of 
radius 6 as the structuring element at the original resolution 
and shrunk it in proportional to the resolution of the image. 
In both cases, the number of iterations is fixed at 4, and the 
algorithm parameters are chosen to achieve optimal test per
formance. Figure 8(a) plots the results of both variants as a 
function of image resolution. In all cases, the MRF-based 
approach achieves superior performance to the simple alter
native outlined here. However, the difference is much larger 
for low-resolution images (54% at 13 x 9, compared to only 
2% at 83 x 60), again highlighting the importance of spatial 
information when the number of measurements is small.

Subject validation. We next test our algorithm’s abil
ity to reject invalid test images (subjects not present in 
the database) despite significant occlusion. We declare 
an image to be invalid if the smallest nonnalized error
minfc ||y* -  A*kx k \\i/\{i | s fc[i] =  —1}|2 exceeds a thresh

old. We divide the Extended Yale B dataset into two parts. 
The training database contains the images of the first 19 
subjects, while the other 19 subjects are considered invalid 
and should be rejected. Figure 9 plots the receiver operat
ing characteristic (ROC) curve for each algorithm with 60% 
and 80% occlusion. Our algorithm performs perfectly up to 
60% occlusion. At 80% occlusion, our algorithm still sig
nificantly outperforms all the other algorithms and is the 
only algorithm that performs much better than chance.

Experiments with realistic test images. Finally, we 
compare our algorithm to [25] on a large face database 
with test images taken under more realistic conditions. The 
database, which we obtained from the authors of [23], con
tains images of 116 subjects. For each subject, 38 frontal- 
view training images under varying illumination are pro
vided. The test set consists of a total of 855 images taken 
under realistic illumination conditions (indoors, outdoors), 
with various occlusions and disguises. The test set has been 
divided into five categories: normal (354 images), occlu
sion by eyeglasses (118 images), occlusion by sunglasses 
(126 images), occlusion by hats (40 images), and occlusion 
by various disguises (217 images). Figure 10 shows a few 
representative examples from each of these categories.

The test images are unregistered, with mild pose vari
ations. Since both our algorithm and [25] assume well- 
aligned testing and training, we perform registration before 
comparing the two algorithms. We align each test image 
with the training images of the true subject using an itera
tive registration algorithm proposed in [23], initialized by 
manually selected feature points. Registering the test im
age to training images of the true subject (as opposed to 
separately registering to the training of each subject) may 
artificially inflate the absolute recognition rate, but does not 
introduce any obvious bias toward either of the algorithms. 
Our goal here is simply to demonstrate the improved oc
clusion handling over [25] that comes from incorporating 
spatial information about the error.

We apply both algorithms to the registered test images. 
Informed by results on public databases in the previous sec
tion, we fix A =  3 in Algorithm 1. Table 3 shows the recog
nition rates of both algorithms on each category. For oc
clusion by sunglasses, our algorithm outperforms [25] by 
15.4%, with similar improvements for hats and disguises. 
The overall recognition rates of both algorithms are lower 
for these categories, both due to the more challenging na
ture of the occlusion and due to failures at the registration 
step (see Figure 11). For images that are not occluded, or 
occluded only by eyeglasses, the recognition rate of our al-

7 We consider a more scalable variant o f [23] that first regresses against 
the training images of each subject separately, and then classifies based 
on a global sparse representation in terms of the training images of the 
10 subjects with the lowest representation error. For fairness, we enforce 
nonnegativity x  >  0 in both algorithms.



Normal Glasses Sunglasses Hats Disguises
Algm. 1 91.4 90.9 81.0 55.0 43.6

[?5] 99.4 98.3 65.6 40.0 37.8
Table 3. Recogntion rates on real data. Our algorithm outperforms 
[25] for all categories of significant occlusion.

Figure 11. Images from the sunglasses category where the align
ment method of [23] failed, resulting in misclassificaion.

gorithm exceeds 90%, but is lower than that of [25]. No
tice, however, that in these experiments we have reported 
results with a single, fixed value of A. In practice, different 
tradeoffs between robustness to contiguous occlusion and 
recognition rate on unoccluded images can be achieved by 
varying this parameter.

5. Future work
The most important issue for future work is how to per

form robust alignment in the presence of large occlusions, 
e.g., by integrating a deformation model into the regression 
step of our algorithm. It remains to be seen to what extent 
such deformations are compatible with the MRF prior.
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