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ABSTRACT

A new series expansion method is developed for a class of nonlinear 

singularly perturbed optimal regulator problems. The resulting feedback 

control is near-optimal and can stabilize essentially nonlinear systems 

when linearized models provide no stability information. The stability 

domain is shown to include large initial conditions of the fast variables.

The control law is implemented in two-time-scales, with the feedback from the 

fast state variables depending on slow state variables as parameters. The 

coefficients of the formal expansions of the optimal value function are 

obtained from equations involving only the slow variables.
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I. Introduction

Compared with the rich literature on linear regulator theory, 

publications dealing with feedback design of nonlinear systems are a small 

minority. Realistic approaches to the difficult nonlinear feedback control 

problem usually exploit properties of special classes of systems to develop 

approximate methods [1,2]. The approach in this paper exploits multiple 

time scale properties of a class of nonlinear singularly perturbed systems [3,4] to 

achieve stabilization and near-optimality. The stabilization results obtained are 

essentially nonlinear in the sense that they also apply to the critical case 

when linearized models provide no stability information. Due to a separation 

of time scales, the proposed design procedure is applicable to higher order 

systems.

The problem considered is to optimally control the nonlinear system 

x = a^(x) + A^(x)z + B^(x)u , x(0) = x q (la)

P-z = a2(x) + A2(x )z + B2(x )u , z (0) = zq (lb)

with respect to the performance index
I

00

J = J* [p(x) + s ' (x)z +z'Q(x)z +u'R(x)u]dt (2)
0

where P- > 0 is the small singular perturbation parameter, x, z are n-,m- 

dimensional states, respectively, u is an r-dimensional control and the 

prime denotes a transpose. It is assumed that there exists a domain 

D C  r q  containing the origin such that for all x€D and zeRm the problem 

satisfies the following assumptions:
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I. The functions a^, a2> A-̂ , A2» B^, B2, p, s, q and R are differentiable 

with respect to x a sufficient number of times and a a 2, P and s are 

all zero only at x = 0.
II. The matrices Q(x) and R(x) are positive definite, that is, Q(x)>0,

R(x)>0. Furthermore, the scalar function p+s'z+z'Qz of x and z is 
positive definite in both x and z.

III. For every fixed xeD

m*" 1
rank[B2, A‘2B2,***,A2 ^  = m

and hence A2(x) is assumed to be nonsingular. (If not, then using 

u = u + K(x)z such that A2 + B2K is nonsingular we redefine the problem.)

Assumptions I and II establish that the origin is the desired equili

brium of (1). Assumption III and Q(x)>0 simplify the derivations. 

Alternatively a less restrictive stabilizability-detectability condition 

can be used.

Finite time trajectory optimization problems for the same class 

of systems have been treated in [3,4] via singularly perturbed two point 

boundary value problems originating from necessary optimality conditions.

The resulting controls are open-loop and require boundary layer correction 

terms at both ends of the interval. For the infinite time regulator 

problem considered here the Hamilton-Jacobi-Beliman sufficiency condition 

is more suitable since it readily incorporates stability requirements and 

leads to feedback solutions. Using this condition we obtain near-optimal 

stabilizing controls in feedback form and avoid explicit treatment of

boundary layer phenomena.
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Our procedure is based on a nested power series expansion of the 

optimal value function in z and p . An advantage of this procedure is that 

it uses lower order equations involving only the slow variable x. In appli

cations truncated series are of interest. Stabilizing properties of various 

truncated designs are discussed and an explicit estimate of the stability 

domain is given. It is of practical importance that this domain encompasses

large initial disturbances of z(0). Furthermore, near-optimality of these
2truncated designs is established in terms of 0(p), 0(M* ), etc. A particularly 

useful result is that an 0(MO near-optimal feedback control can be implemented 

without knowing the value of the small parameter (J. .

The paper is organized as follows. In Section II a reduced order 

problem is formulated for the slow variable x. The crucial assumption is 

that the properties of its solution are known. Using a truncated expansion 

of the optimal value function the so called composite control is introduced 

in Section III. Since the leading term in the series is the optimal value 

function of the reduced problem, the original problem is well posed. In 

Section IV it is shown that the composite control guarantees a finite domain 

of stability for the resulting feedback system. In Section V, a formal 

expansion of the optimal value function is proposed and near-optimality results 

are discussed. An example is discussed in Section VI.

II. The Reduced Control

In singular perturbation techniques [5], a problem for the full 

order system (1) where > 0 is interpreted as a perturbation of a 
reduced problem

x = ax (x) + A1(x)z + B1(x)u, x(0) = x q

0 = a2 (x)  +  A2 (x ) z +  B2 (x ) u (4b)



4

in which H=0. Due to Assumption III, z can be solved from (4b) and eliminated 

from (4a) and (2). Then the reduced problem is to optimally control the system

x = a (x) + B (x)u , x(0) = xo o o

with respect to
00

J = J [p (x) + 2s * (x)u + u'R (x)u]dt 
° 0

where

R

al  A1A2 a2 

“ B1 A1A2 B2

= P - s'A’V ,  + a ’A ^ ^ Q A ' ^  

= B ^ - X(QA^a2 - i s)

= R + B ^ ’V ^  .

(5)

( 6 )

(7)

The origin x =0 is the desired equilibrium of the optimally controlled reduced 

system (5) for all xeD, since, in view of Assumption II, aQ (0)=0 and

Po (x)+2s^(x)u+u'Ro (x)u (8)

is positive definite in x and u.
t

The reduced problem (5), (6) is considerably simpler than the 

original problem (1), (2) because of the elimination of the fast variables 

and the reduction of the system order. One of the tasks of the singular 

perturbation analysis is to establish whether the full problem is well 

posed in the sense that its solution tends to the solution of the 

reduced problem as ^ -» 0. If so, then the next task is to deduce the 

properties of the original problem from the properties of the reduced problem.



5

Finally these properties are to serve as a basis for a simplified design 

procedure.

To formulate our basic assumption about the properties of the 

solution of the reduced problem we use the optimality principle

(9)

where L is the optimal value function and is its partial derivative with 

respect to x. This yields the minimizing control

u = -R"1(s + \ b 'l ')o o o 2 o x' ( 10)

whose elimination from (9) results in the Hamilton-Jacobi equation

° = (Po - sX lso> + LK<ao - V C V  - £ L <°) - 0.

( 11)

Note that,due to (8), p - s'R is positive definite in D. Ouro o o o
crucial assumption is then stated as follows.

IV. The unique positive definite solution L(x) of (11) exists in D and is 

differentiable with respect to x a sufficient number of times. 

Furthermore the level surface L = cq = constant is taken to be the 

boundary of the set D.

In the special case considered in [1], where the linearization of (5) at x =0 

is stabilizable and its states are observable in the quadratic approximation 

of Jq , our Assumption IV is automatically satisfied for all x near the origin 

It follows from Assumption IV that u^ is the unique optimal feedback control 

for the reduced problem and L is a Lyapunov function of the optimally 

controlled reduced system
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x = a -B R  ̂(s +-- B'l ') = a (x)o o o o  2 o x  o v ' (12)

establishing that the origin is asymptotically stable and the set D belongs 

to its domain of attraction.

III. The Composite Control

The optimal value function V(x,z,p-) of the full problem (1), 

(2) satisfies the equation

0 = min[p + s'z + z'Qz + u'Ru + Vx (a^ + A^z + B^u) +

¡r Va2 + v  + V )]
where V , V denote the partial derivatives of V with respect to thex z
variables x, z, respectively. The minimizing control of (13) is

» = - K V x  + irW
and its substitution into (13) yields the Hamilton-Jacobi equation 

0 = p +  s ’z + z'Qz+ Vx (a^ + Anz) + ~ V^(a0 + A0z)H z v 2

(13)

(14)

- |-(VXB1 + i VzB2)r '1(B̂ Vj; + i B¿v;> , V(0,0,mo = 0 . (15)

Since system (1) is linear in z and J in (2) is quadratic in z, 

and since z is multiplied by (j. , we seek a solution of (15) in the form

V(x,z,M0 - Vq (x)+M-(x)z+M<z ' V2 (x)z+p-q(x, z,M-) 
= V(x,z,H) +|a.q(x,z,M.) , VQ(0)=0 (16)

where
dq/dx = 0(1), dq/dz = 0 (p. ) . (17)
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We shall investigate the expansion of q in a later section. The partial 

derivatives of V with respect to x,z are

Vx = V0x + ° ^ )
v = tiv.' + a iz 'v .  +o<ji2) .z i z

(18)

Substituting (18) into (15) and neglecting the M- dependent terms, we obtain 

the equation

0 = p + v ai + v 2 -k

+ [ s '  + 2 3 ^ 2  + v0x (Ai ‘ B1R" 1b2V2) + vJ ( A2"B2R" I b2V2) ^ z 

+ z '(Q + V2A.; + A2^2 -"̂ 2B2R- ̂ 2^2)2 *

In order to satisfy (19) identically for all z, we require that

0 = p + V al +X?l a2 -  4 (^0xBl + v|b2) r ' 1 ( b; v ’„ -I B^V, ) ,  Vn (0) = 01 Ox 2 1

0 = s ' + 2 3 ^ 2 +V0x(Ai-B]R_1B2V2) + V n'(A0-B0R X V 0):;(a2-b2r -1b 'v2.

0 = Q + V2A2 + A^V - V ^ r "1̂ ^

(19)

(2 0 )

( 2 1 )

(22 )

At each fixed value of x, (22) is an algebraic Riccati equation for V2 . In 

view of (3) and Q(x)>0, the unique positive definite solution V2 exists such 

that for all xeD, the real parts of the eigenvalues of A2 =A2~B2R ^B2^2’ 

denoted by Re{\(A2)}, are less than a negative constant. Thus is non

singular and V-̂ can be expressed in terms of Vq^ and V2 as

V| = -[s' + 2a2V2 +V0x (A1-B1r “1B2V2)]A21.

It is of crucial importance that the elimination of 

an equation involving only Vqx

(23)

from (21) results in

For the well posedness of the full problem
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it is necessary that the leading term Vq of (16) be identical to the solution 

L of the reduced problem.

Lemma 1

definite solution Vq (x ) of (20)-(22) exists in D and is identical to the 

solution L(x) of the reduced problem (5), (6).

Proof: It is shown in the Appendix that eliminating from (20), we obtain

Vq (x ) - L(x) with properties as in Assumption IV.
By virtue of Lemma 1, Vq and are solved independently from (11) 

and (22). This is the separation of time scales in the design of nonlinear 

regulators, analogous to the linear time-invariant design in [7].

Using V, we derive the control

whose main part u^ is defined as the composite control. Eliminating V-, from c  " JL

(24) using (23) and following the derivation in [7], u£ can be written as

If Assumptions III and IV are satisfied, then the unique positive

the Hamilton-Jacobi equation (11) with Vqx in place of L , and hence

(24)

= u + 0(p.) c

where

uc

(26b)

(26a)

(25)
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Hence the composite control u consists of a slow control u which optimizes 

the reduced system (5) and a fast control - R ^ B ^  (z +A~1a'2) which optimizes 

the fast part (z+A a2) of z in the sense that V2 satisfies (22). Note that 

when z is not penalized in (2), that is when Q(x)=0, but ReU(A2)} < 0, then 

V2 i-s identically zero and u^ reduces to u^ of (10). Stabilizing properties 

of the composite control u^ are established in the next section.

IV. Stabilizing Properties

System (1) controlled by u isc

x = a1+ A 1z + B 1uc = ax(x) + A 1(x)z, x ( 0 ) = x q 

M-z = a2 + A 2 Z + B 2Uc ~ a2 (x)+A2 (x)z, z ( 0 ) = z q

where

*1 = al "2 BlR "1(BlV0 x +B2^1)s ai(°)=0 
Ax = A1-B1R"1B2V2 .

(27)

(28)

With the change of variables

T1 =

exhibiting T| as the fast part of z, system (27) becomes

X = a0 + A 1,n , x(0) =xo

M-71 = M< (A2 a2)xa0 +[A2 +p (A21a2)xA1]Tl

- M-f (x) + [A2 (x)+PF (x)]T| , Tj (0) = zq (xQ)a2 (xq) .

(29)

(30a)

(30b)

Since the right-hand side of (30b) is an 0(p) perturbation of A, (x)T] and 

Re{X (A2)} < 0 in D we expect that Tj will rapidly decay to an 0(|i) quantity.

This motivates the introduction of
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u(x,ti,e) = v0(x)+eTTv2(x)i) C3i)

as a tentative Lyapunov function for (30). Here £ is a small positive scalar 

to be determined. From Assumptions III and IV, Vg(x) is positive definite 

and V2(x)>0 in D. Hence U is positive definite for all xeD and T]eRm . 

Furthermore, since Vq (x ) = cq > 0  for all x on the boundary of D, the surface

S(x ,T|,£) = [x,T| : U(x,T),g.) = c } (32)o

is closed in the (n+m)-dimensional domain xeD, 71eRm . We define S. to be
m

the domain in the interior of S.

Let D1 be a set strictly in the interior of D, that is, the boundary 

of does not intersect the boundary of D, and let E be a bounded set in Rm . 

The presence of £ in U extends S to encompass (x,T]) for all xeD^ and for T] in

any prescribed set E. This crucial result is stated as follows.

Lemma 2

If Assumptions III and IV are satisfied, then there exists an £ > 0

such that the domain S. contains all xeD,, HeE.m  1* 1

Proof: At each point xeD^, the projection S onto the T| subspace is the

ellipsoid

TVV2 (x )T] = (c q -V0 (x ))/£ (33)

implying that T| extends to 0(l/\/£). Hence for every x, there exists an £(x) 

sufficiently small such that the ellipsoid (33) includes all T]eE. (Note that 

we must exclude the boundary of D because from (33) the projection of S at

any point on the boundary of D is a single point T[ = 0.) Hence choosing £* to

be the smallest of such £(x), the domain Sin contains all xeD^, T]eE for any

£ e ( 0 , £ * ]  .
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By virtue of Lemma 2, the initial condition T|(0) of (30b), and 

hence z(0) of (27), can be as far away from zero as 0(lAft) and still be 

enclosed by S. We now examine the relationship between £ and (i..

Using (11), (22) and rearranging, we obtain the time derivative of 

U with respect to (30) as

u = -g(x,e,n) §'q (x )§ TTm (x ,T1,£,|i )T1 (34)

where
g = g M. . - 1  - —  y Q y

1 2 1

g-, = P -s,R_1s + j - Vn B R_1B,v'1 o o o  o 4 O x o o  o O x
— i — »y = A1V0x +2£V2f 

5 = H Q_1y

(35)

M = | + V2B2R_1B2V2-tJ,(V2F+F'v2)-tJ,V2 .

Since V2F + f 'V2 and V2 are bounded for all x,T| in Si , and since Q(x)>0

in D, it follows that there exists a M*? > 0 such that M> 0 for all x,T] in S1 in
and for M>e(0,(J.^]. Thus the last two terms in U are positive definite. To 

ensure that g(x,S,M-) is positive definite, we assume that the reduced problem 

also satisfies

V. The limit
v 'n - 4

k(£)<” (36)nm  =
|x|-0 81

exists for all fixed £ > 0.

Note that k > 0  because y'Q ^y is positive semidefinite and g^ is positive 

definite. The limit (36) implies that there exists a domain D about x = 0 

such that
y'Q \  < ( l+k)gl (37)
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that is such that for M- < 2£/ (1-fk), g is positive definite in D, see (35). 

Let k(£)> 0 be the minimum value of on the boundary of D. Hence in the 

domain

D1(x) = {x:g1(x)<k} (38)

g is positive definite. On the other hand, since D is bounded, there exists 

a (£)> 0 such that y'Q 1y < for all xeD, that is such that g is positive 

definite when x is not in the domain

D(x) = {x : gx(x) <M-k1/2e} (39)

about the origin. But for M<<2£k/k1, D C D ^  implying that g is positive

definite in D. Thus U is negative definite for all x,71 contained in S. .in
We now conclude that U is a Lyapunov function for (30) guaranteeing that 

x = 0, T = 0 is asymptotically stable for all xeD^ T]eE and for fie(0,p*], where

„* _ . ,2fi 2£k
IX - -LLBCY^k

Returning from the T] variable to the z variable via

we obtain for all xeD-̂ , T]eE a corresponding bounded domain E^

summarize the above discussions on the asymptotic stabilizing

u in (24) as follows, c
Theorem 1

(40)

z =T1-A^1a2, 

for z. We 

property of

If Assumptions I-V are satisfied, then there exists a (i*>0 such

that for all |ie(0,M'v3 and for all xeD^ and z in any prescribed bounded set

E p  the origin x = 0, z = 0 of the feedback system (1) controlled by the

composite control u^ is asymptotically stable.

Theorem 1 can be applied in two different directions. As outlined

above, for any given D and E, , we first find £* such that S of (32)l i  in '



13

contains all xeD^, zeE-̂ . Then we find (J.* from (40). This direction is 

suitable when p. is a parameter at the designer's disposal, such as a gain 

factor [9]. In the other direction, if p. represents some given physical 

parameters, such as time constants, we use its value to determine the 

smallest £ such that U of (34) is negative definite, that is we find the 

largest and E^.

As a special case of Assumption V, consider that the origin x = 0

of the reduced system (12) is exponentially stable. Then near the origin,

Pq -s^Ro ‘*'so, Vq grow as |x|^, and |Vqx|, |aQ| grow as |x|, and we can find

positive constants k0,...,kQ and 6 such thatz y

k0|x|^ < p -s'R Xs < k_[xj^2' 1 — ro o o  o — 3‘ 1

kA !x!2 1 V0 < kJx| 2
(41)

k6U! 1 1  v0x| < k?!x !

k8l x l 1 |a0| < k9|x|

for all |x| < 6. It follows from (41) that there exists a fixed k^Q(&)>0 

such that

y 'q 1y 1  k io lx l2 <42)

and the limit (36) is bounded by

Urn J d a i - S
|x|-0 81

limUI-0
satisfying Assumption V.

(43)

In this case a claim stronger than Theorem 1 can be made.
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Corollary 1

If Assumptions I-IV are satisfied and the origin x = 0 of the 

reduced system is exponentially stable, then the conclusion of Theorem 1 holds 

and moreover the origin x = 0, z = 0 of (27) is exponentially stable.

Proof: The first part of the corollary follows from Theorem 1. The second

part follows from the linearization of (27) at the origin

• [ aa i <o) r  i

6x dx A x(0) 6x

1 332 (0) 16z M- dx M- a2(0) 6z
(44)

The system matrix of (44) has one group of n small eigenvalues 0(p-) close 
da-L___-i da2

to those of and another group of m large eigenvalues 0(1) 
x=0 _i da.I  _  ~ ~  ___________ r  1 _  _

close to those of — A0 (0) [8] . But a-i-ATA« a0 = a and ^ ^ — |Z Z r i z zda, _i oa0i
___o

Sx x=0
1 - a , a ;1

\1 ~ ~Z ' ' " ' 1 i z z o
as ao(0) = 0. Thus the real parts of the eigenvalues ofdx 12  dx 'x=o “2 

the system matrix of (44) are all negative and x = 0, z = 0 is exponentially

stable.

If the origin x = 0 of the reduced system is only asymptotically 

stable but not exponentially stable, then in general g need not be positive 

definite for all xeD. This situation includes the critical case when the 

linearized model does not provide any stability information as clarified by 

the example in Section VI. For this situation the system is now shown to 

possess a weaker stability property, that is, its trajectories tend to a 

small sphere around the origin. Define the domain in Rn

p(x) = {x : g(x,£,M-) < 0} (45)

which is contained in the domain D of (39). Due to the presence of p- in
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(34), U may be positive only if xep (x) and Tl=0(p). Otherwise, U is 

negative. Defining the surface

tt(x ,z ) = {x,z : xep (x;p ) , z = -A^ (x)a2 (x)} (46)
m j ^

about the origin in R » uc defined by (24) is a stabilizing control in the 

following sense.

Theorem 2

If Assumptions I-IV are satisfied, then there exists a P * > 0  such 

that for all pe(0,p*], the feedback control (24) steers all xeD^, zeE^ of the 

full system 0(p) close to the surface tt(x ,z ).

Proof: Since U > 0 and U < 0  except for xep (x) and T| = 0 ( (jl)  , x converges to

p (x) and T) decays to an 0 ( (jl) quantity. Thus in the x,z variables,(x,zjconverges 

to an 0(p) neighborhood of the surface tt(x ,z ).

In the case where the fast transients of z in (1) are exponentially 

stable, that is, A2(x) Is stable for all xeD, and we are only concerned with 

the optimality of the reduced system (5), then the z-independent reduced 

control u q of (10) stabilizes the full system (1) with essentially the same 

stabilizing properties as uc of (24). We shall not repeat the argument.

An attractive feature of the controls u and u is that they do 

not require the knowledge of the actual value of p provided that it is 

sufficiently small. When appropriately implemented, these controls stabilize 

the full system (1) and achieve optimality of the reduced system, and in the 

case of u^, also optimality of the fast part of z. The above results also 

answer the question of well posedness by giving the conditions under which 

the same optimal reduced order system is obtained when P is set equal to 

zero either when system (1) is uncontrolled or when it is controlled by
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uc or uq . In contrast to many other singular perturbation results which 

require p to be sufficiently small, this section provides a method to 

compute an estimate of allowable values of p given a stability domain or 

vice versa.

V. A Formal Expansion and Near-Optimality 

The expansion (16) only satisfies the Hamilton-Jacobi equation (15) 

to 0(p) order. We now propose to solve (15) by expanding V formally as a 

nested infinite power series. If this power series is convergent, then 

the optimal solution V of (15) exists. For x,z near the origin, it has been 

shown in [1] that the optimal solution exists and possesses a power series 

expansion when system (1) after linearization at the origin is stabilizable 

and the state in the quadratic approximation of J is observable. Here we 

are interested in a power series of V which satisfies (15) to any order of p.

Since system (1) is linear in z and J is quadratic in z, the 

optimal value function can be expanded as a power series in the components 

of z [2] . In addition, since z is the fast variable, the z terms in the 

optimal value function are multiplied by appropriate powers of [5] . In

view of these two characteristics, we seek a solution of (15) in the form
m m m

V (x, z ,P ) = VQ(x,p) (x,p)Zj + p ^  kSlV2jk^X, 0̂ ZjZk
9 m m m

+ p E E E v,
j=l k=l q=l -

+ p1"1 E
m
E •

V 1V 1
m

E V. . (x,p)z. z
J 1 J 2

. z . +

V0(0,H) = 0 (47)
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where V.. . . is the (j, > j0 > • • • > j. ) element of the completely symmetric
i  ̂ 1 t igeneralized matrix of dimension m and z^ is the jth component of z.

The summation signs in (47) and in other equations in the paper will be

omitted when there is no confusion as to which indices 3^*J2»•••*
are being summed. The partial derivatives V ,V expressed in termsX Z z1 m
of the vector x and the scalars z-,...,z are1 m

VX  = V0x + W ljXZj + liV2jkxZjZk + • • •

V s u<V, . 4" 2UV z •+■ 3ul V z z + i=l 9z± p li pv2ij j v3ijk j k  1 m

(48a)

(48b)

where the summation signs over j,k are omitted.

For the series (47) to satisfy (15) as an identity, we first

rewrite (15) in terms of the vector x and the scalars z,.....z ,1 ’ m

0 = p+s.z. + Q..Ziz. + Vx (a1+ A liz.) + ± Vz.(a2i +A2ij2j>

* \ <VxBl + f VZiB2i)R-1(Biv3; + J  B ^ V  ) (49)

where s.̂ , a2i are the ith components of the vectors s, a.̂ 3 respectively,

A^i is the ith column of the matrix A-̂ , B2i is the ith row of B2, ,

^2ij are t l̂e elements of Q, A2, respectively, and the summation signs

over the indices i,j are omitted. Then, upon substituting (48) into (49) 

and equating the coefficients of the like powers of z^, we obtain

The (jj, j2» • • • > j±) elements of ^  are identical for all permuta
tions of the indices j^,j2,...,ji [6].
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0 = P + V ^ + V ^ . - i  ( V ^ + V ^ ^ R - ^ B ^  + B - ^ ) ,

V0(0,p) =0 (50a)

0 "  8i + V l i + ‘‘Vl l x a l +Vl J A2j i +2V2i j * 2j -2 (V0xBl  

+ VljBj)R’1(̂ BiViix+ 2B2jV2ji) * i = 1>2>-" (50b)

0  = Qij + W 2ijxal <VlixA lj>s + 2 <V2ikA2kj>s + * V3ijka2k 

' 2 <V xBl + V lkB2k)R'1^ Bi ^ i jx + 3 M 2kV3kij>

^ VlixBl+2V2ikB2k)R'1("BiVijx + 2B2kV2kj) >
i,j — 1,2,... ,m (50c)

0  =
2 2 p- V0 . a, +P- (V0 . . A,, ) + 4p< V. . a„ + 3p (V0 . . A0 , ) 3ijkx 1 v 2ljx lk s ^  4ijkq 2q \3ijq 2qk7i

,-l/„2„.w. 2- i
- 2 (V0xBl + VlqB2q)R <“ BiV3ijkx +4^ B2qV4ijkq^

- r ^ VlixBl + 2V2iqB2q)R'lfrBiV2 jkx + 3^ q V3qjk> V

d  j  j  j k  1 , 2 , (50d)T

where the right hand sides of (50a), (50b),(50c),(50d),..., are the

coefficients of the z-independent terras and of the z^, z_̂ z , ^ z  z^,...,

terms, respectively. Because of symmetry, there are m(m+l)/2 equations
i -1

in (50c), m (m-f 1 ) (m+2 ) / 6 equations in (50d) and in general, (^TT^(m-fk))/i!

equations when the coefficients of z. z. . ..z, , j-. , j9, ..., j . = 1,2,... ,m,
J1 J2 Ji 1 Z

are equated.

•f

The subscript s denotes the symmetrization operation of generalized 
matrices [6]. For example,

(V2ikA2kj)s =2 (V2ikA2kj+ V2jkA2ki)

3ijq 2qk'*s 6l'V3ijqA2qk V3jiqA2qk+V3ikqA2qj+V3kiqA2qj+V3jkqA2qi+V3kjqA2q P  '
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For a simplified treatment of these equations we now exploit the 

presence of the small singular perturbation parameter |i. We expand each 

coefficient of (47) as a power series in |J.

00

Vi(x^ >  = jS0̂ Vi (x) > (51)

where the boundary condition of is V^(o)=0, j =0,1,2,... The 

expressions (51) substituted into equations (50) are to satisfy them as 

identities in M*. Equating the coefficients of the like powers in M-, we 

generate sets of equations for V3 , i,j = 0,1,2,... The first set of equations 

obtained by equating the (i-independent parts in (50a), (50b), (50c), 

are precisely equations (20), (21), (22), respectively. Hence from the 

uniqueness of solutions to (20), (21), (22). We conclude that

V0 = V0 = L> V1 = V  v2 = V2 (52)

and V thus consists of the leading terms of V.

The second set of equations in matrix form

0 = VJx*l + Vl '̂ 2 * V0(0) = °

0 = V^ 1  + + V1 >A2 + 2î2V2 

0 " V2°xri + 2(Vi°xÂl + K'°ù + V2̂2 + + 3ofo>

(53a)

(53b)

(53c)

0 " 3<V3°Vs + < V 2°x A 1 > , (53d)
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obtained by equating the M> terms in (50a), (50b), (50c), (50d), respectively, 

involve only the unknown terms Vq^, V^, and V^. In (53) the multi

plication of an n^X^Xn^ matrix by an n^Xn^ matrix results in an n^X^Xn^ 

matrix. For convenience we suppress the last dimension of the mXmXl 

matrices (V^a^) and (V̂ a"2) and regard them as mXm matrices. Since A2 is 

stable, (53d) and (53c) can be solved sequentially for and V2, respectively. 

Then can be solved from (53b) and its substitution into (53a) results in 

the partial differential equation

0 ■ vL?o - > v>>- °-
In general, in equating the M- terms we obtain the (i+l)st set 

of equations involving the unknown terms Vqx> V^, V2, "*",••• ,V?+2. The

terms V?+1,vj,...,V2  ̂are solved for sequentially and then Vq 1 is to be 

solved from an equation similar to (41).

The main accomplishment of the nested expansions is that the first 

set of equations (20)-(22) can be solved independently for the first three 

zeroth order terms Vq , V^, and V2 . Similarly, (53) and the subsequent sets 

of equations can be solved independently for Vq ,V^,...,V?+2 . These equations

are dependent only on x and not on z or M> . A further simplifying property

P __ .
0  2

is that at the first stage the equations (11), (22) for V? and v!? are

decoupled.

The approximation obtained by expanding V of (47), (51) to the ith 

set of equations is stated in the following theorem.

Theorem 3

Suppose that the solutions to the ith set of equations of V exist 

and let V1 be the truncated series of (47), (51) including all the terms
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up to the ith set. Then the control

ui = “ 2 R"1(BiVx ’+ t B2Vz ,} (55)

is near optimal in the sense that V satisfies the Hamilton-Jacobi equation 

(15) to an 0(|J,1) error.

Proof: Substituting the V^ terms into (15) and using the first i set of

equations of V, the coefficients of (i terms, k<i, in the resulting 

equation vanish, implying 0((i1) near-optimality.

Thus Theorem 3 implies that u£ of (24) is an 0(|i) near-optimal 

control because it is an O(p-) approximation of u^ which achieves 0(|i) near

optimality. In general, retaining only the M*'1 terms, k< i, in u^, the 

resulting control also is 0(|x1) near-optimal in the sense of Theorem 3. 

Repeating the derivation in Section IV, we can show that u.
l

stabilizes the full system (1) with similar stabilizing properties as u ofc
(24). We first introduce the x, ^ “ z + A ^ a ^  variables and consider U in 

(31) as a tentative Lyapunov function. The analysis is more cumbersome 

but results similar to Theorems 1 and 2 and Corollary 1 can be established.

VI. Discussion and Example

The computational advantage of the proposed procedure is that all 

the terms of V in (47), (51) are obtained from equations involving the slow 

variable x only. Moreover V^ and V^ are solved for independently. Explicit 

consideration of the initial boundary layer is avoided and it is optimally 

stabilized by the z variable feedback. Furthermore using the x,T] variables 

an estimate of the domain of stability is easily obtained. Alternatively,
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for a stability domain to encompass a prescribed bounded set TleE c  Rm 

a bound for M- can be determined.

Several aspects of the design procedure and the stability properties 

of the resulting feedback system are now illustrated by considering the 

optimal control problem of the second order system

x = xz 

(jl z = -z + u
(56)

with respect to the performance index

OÙ
4 l  ? 1 2J = J (x + -  z + — u )dt. (57)

0

0 2 2Solving the reduced problem we obtain L = V,- = x and u = -x .0 o
3

The optimally controlled reduced system (12) is x = -x and its unique 

asymptotically stable equilibrium is x=0. Note that the linearization 

of the reduced system fails to provide any stability information at x = 0. 

Let D be the interval [-1,1], that is, L = C o = l at x =+1 by Assumption IV.

The pair ^ 2,82) = (-1,1) satisfies (3) and we can solve (22) for 

V2 = 2* such that A2 = -v/2. Then the substitution of = L = x2 and
V2 into (23) yields the following expressions for (24) and (16)

uc = -(Æx2 + (s/2-l)z) (58)

V = x2 +M-y/2x2z+|i — (V2-l)z2. (59)

The resulting feedback system is

x = xz

M- z = - -v/ix2 - 1J2 z.
(60)
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This result is essentially nonlinear since the linearization of

(60) at x = 0, z = 0 does not provide any stability information. Using the
2change of variables 7) = z +x , system (60) becomes

x = -x2 +xTl

M*TJ = -2M-x̂  - (\/2-2m-x2 )7|.
(61)

Since we require |x| < 1, M- is restricted to be less than lA/2. The 

tentative Lyapunov function (31) is

U(x,71,e) = x2 + j (V2-l)eTl2 . (62)

If we require that the initial conditions of (61) be in jxj < .8, jT|I < 5, 

then we must set G to be less than .0695 in order for the ellipse

S (x, 7|, G ) = {x,T| : U = x2 + j (V2-l)£7]2 = l) (63)

to enclose these initial conditions. Plots of S in the x,7| coordinates 

and the x,z coordinates for G =  .06 are shown in Figure 1. The time 

derivative of U with respect to (61) is

where

G_
4M--jryS-ZT-r-^ifïr

= 2x^, y = 2 (1 - G (\/2-1)x2)x2 

5 =71-^- y, M = jr -ijl - 2fi(V/2-l)x2 .

(64)

(65) 
(65)

2
Since lim y /g =2, Assumption V is satisfied. For all x,71 in the interior 

x~*0
of S and 6 «.06, U is negative definite for all |J.e (0, .03] . Hence x = 0, z = 0 

is asymptotically stable for all |x|<.8, |z+x2|<5 and M-e (0, .03]. 

Furthermore, V satisfies the Hamilton-Jacobi equation (15) with an error 

of M'2V 2̂ x2z2 .



x,T) coordinates 
x,z coordinates

Figure 1. Plot of S in (63).
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If we are only interested in the optimality of the reduced problem

and consider the z-part as due to "system parasitics," we can apply the

reduced control uq to (56) as k̂  = -1 is stable. System (56) controlled by

u is o

x = xz
2M- z = -x - z.

(66 )

Transforming z to T| = z +x , system (66) becomes

x = -x^ +xT|

|iz = -2lix2 - (1 - 2|ix2)Tl.
(67)

We use U in (62) as a Lyapunov function for (67) and the time derivative of 

U with respect to (67) is

U = -[2 2(V2-l)<>/2+l - e x2)2]x4 [T| 2(Jl+l -£x2)x2]

- |  (y2-l)(j- 2̂ x2)Tl2. (68)

Thus for all x,T| enclosed in S and e = .06, U is negative definite for all

lie (0,.02]. Hence x = 0, z = 0 of (66) is asymptotically stable for all

| x | < . 8, | z-tec2 | < 5, M- e (0,. 02] .
2To obtain an 0((i ) approximation of V in the sense of Theorem 3, 

we solve (53) for higher order terms of and obtain

u^ = uc -|i2x^z (69)

V2 = V+p, -^-+|i2x2z2 . (70)
Jl

System (56) controlled by becomes
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X = xz

(i z = - ^ x 2 - 2x2)z , (71)

or, in the x,T| = z + x  variables,

x = -x~* +xT] 

IJ.fl = -a/2T1
(72)

which is globally asymptotically stable for all |X>0. Furthermore, V
2 ^ 2 2 3

satisfies (15) with an error of (i (8x z + 2x z ).

VII. Conclusions

A nested power series expansion method has been proposed for 

solving the optimal control problem of a class of nonlinear singularly 

perturbed systems. The terms in the expansion V are obtained from equations 

involving only the slow variable x. In addition, Vq and are solved for 

independently. Explicit consideration of the initial boundary layer is 

avoided and it is optimized by the z variable feedback. Sufficient condi

tions are obtained such that feedback controls using truncated series 

stabilize the nonlinear systems and the stability domain can encompass large

initial conditions of z. These truncated controls can achieve near-
2optimality of 0 (p.), 0(p ), etc. In particular, an 0(|x) near-optimal feed

back control can be implemented without knowing the value of the small 

parameter |x . The results apply to essentially nonlinear problems.
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Appendix

Substituting (23) into (20) and rearranging yields

0 = X, + V n X0 -7 Vn X-Vl 1 Ox 2 4 Ox 3 Ox

where

Xx = p - (s' + 2a^V2)A2 a2 - (j s ' +a^V2)A^1B2R ‘1B^A2"1 (| s + V2a2) 

X2

x3 = V 1!;

ao ' 31 • (Ai‘BiR B2V2)A2 a2 

Bo = B i  - (A1-B1R'1B^V2)A21B2

A2 A2 " B2R B2V2
0 0 -1»., _-l

and the superscript 0 in Vnv and V0 has been dropped. Let H = I +R B'V0A0 BOx

Then h ’1 = I - R ^ B ^ A “3̂  and h '^RH"1 = R ̂ A ^ Q A ^ 11̂  = R . Thus

B = B-.H-A-.A"1̂  = B H. Hence X = B R^B*. Also, o l l 2 2 o  j o o o  *

X2 " ao+BoR^1[(R+B2Ar lQA2lB2)R"lB2 V 2 " 1+B2 ^ ' lv2]a2+ 2 BoR’o1b2A2’1s 

= aQ + B oR^1B^A2'1(A2V2 +QA^1B2r ‘1B^V2 +

+ 2 BoR^ B2A2'1s 
_ „"I= a - B R s .o o o o

2 2 2 2

Furthermore, k̂  B^R lfi2A2 1 = 1h 'B2A2 1 = A21]B2Ro1b2A2 1 and
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A2 A2 +A2 B2R B2V2A2

= a^1 +a^1b2r 1̂b (̂v2 +a2‘1qa21b2r'1b v̂2)a21

= A^1 - A ^ B ^ ^ B ^ - ^ 1 -A21B2R;1B̂ A--1V2

Thus becomes

x i = p

+  a^V2A“1B2R^1B ^ " 1V2a2 -  a^ O ^ A"1

But
v2^ 1 + a^'1v2 = - v ^ 1 - a ^ 1v2 + v2a ^1b2r ;1b^ - 1qa21 + a^'1qa^1b2r ;1b^a 21v2

+ 2 V2A2 1B2r " 1B^A2 ’1V2

= A ^ Q A ^  - A2 1v 2B2R " 1b2V2A21 +  (V2 + A2 ’ 1q ) A21b2Ro1b2A2~1(V2 + Qa^1>

+ v2a2- - 1 v2 -  a ' ^ qa" 1b2r; 1b^a  ̂• xqa;  1,

and

A2 " 1v2B2R" 1b2V2A21 =  [‘ (V2 + ^ ’ 1Q2 )A^ 1 +  a^ ’ \ b2r ~1b2 V i ^ 1 B2R" 1b2V2A2 1 ’

that is,

A2 " V2 B2R ~ 1r2 V2 A21 = -(V2 +A2‘1Q2)A21B2r '1B2V2A21

= (V2 +a^'1q)a^1b2r‘1b2a^'1(qa^1 + v2),

implying = PQ - soR0^So* Hence elimination of from (20) yields the 

Hamilton-Jacobi equation (11) of the reduced problem.
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